Application of Solid-Phase Extraction and High-Performance Liquid Chromatography with Fluorescence Detection to Analyze Eleven Bisphenols in Amniotic Fluid Samples Collected during Amniocentesis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bisphenols’ Standards and Their Purity
2.2. Solvents Applied as Mobile-Phase Composition and during SPE Experiments
2.3. HPLC-FLD
2.4. HPLC-FLD Conditions Used during Analysis
2.5. Method Validation
2.5.1. Selectivity
2.5.2. Linearity
2.5.3. Calculation of Relative Standard Deviation Values (RSD) and Average Extraction Recovery
2.5.4. Matrix Effect—Assessment of the Degree of Matrix Interference
- x—peak area of analyte in matrix;
- y—peak area of analyte in standard mixture.
2.6. Optimization of the SPE-Based Extraction Procedure
2.7. Human Amniotic Fluid Sample Collection
Description of Patients Who Have Undergone Amniocentesis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Geyer, R.; Jambeck, J.R.; Law, K.L. Production, use, and fate of all plastics ever made. Sci. Adv. 2017, 3, e1700782. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gore, A.C.; Crews, D.; Doan, L.L.; La Merrill, M.; Patisaul, H.B.; Zota, A. Introduction to Endocrine Disrupting Chemicals (EDCs). A Guide for Public Interest Organizations and Policy-Markers. IPEN for a Toxics-Free Future. Available online: https://ipen.org/documents/introduction-endocrine-disrupting-chemicals-edcs (accessed on 15 February 2022).
- Gingrich, J.; Pu, Y.; Ehrhardt, R.; Karthikraj, R.; Kannan, K.; Veiga-Lopez, A. Toxicokinetics of bisphenol A, bisphenol S, and bisphenol F in a pregnancy sheep model. Chemosphere 2019, 220, 185–194. [Google Scholar] [CrossRef] [PubMed]
- Ji, Z.; Liu, J.; Sakkiah, S.; Guo, W.; Hong, H. BPA Replacement Compounds: Current Status and Perspectives. ACS Sustain. Chem. Eng. 2021, 9, 2433–2446. [Google Scholar] [CrossRef]
- Liao, C.; Liu, F.; Alomirah, H.; Loi, V.D.; Mohd, M.A.; Moon, H.-B.; Nakata, H.; Kannan, K. Bisphenol S in Urine from the United States and Seven Asian Countries: Occurrence and Human Exposures. Environ. Sci. Technol. 2012, 46, 6860–6866. [Google Scholar] [CrossRef]
- Liao, C.; Kannan, K. Concentrations and Profiles of Bisphenol A and Other Bisphenol Analogues in Foodstuffs from the United States and Their Implications for Human Exposure. J. Agric. Food Chem. 2013, 61, 4655–4662. [Google Scholar] [CrossRef] [PubMed]
- European-Parliament Comission Directive 2011/8/EU. 2011. Available online: https://eur-lex.europa.eu/legal-content/en/ALL/?uri=CELEX%3A32011L0008 (accessed on 14 June 2021).
- European Commission Commission Regulation (EU). 2018/213 of 12 February 2018 on the Use of Bisphenol A in Varnishes and Coatings Intended to Come into Contact with Food and Amending Regulation (EU) No 10/2011 as Regards the Use of That Substance in Plastic Food Contact Materi. Off. J. Eur. Union 2018, 2001, 20–30. [Google Scholar]
- Yang, Y.; Yin, J.; Yang, Y.; Zhou, N.; Zhang, J.; Shao, B.; Wu, Y. Determination of bisphenol AF (BPAF) in tissues, serum, urine and feces of orally dosed rats by ultra-high-pressure liquid chromatography–electrospray tandem mass spectrometry. J. Chromatogr. B 2012, 901, 93–97. [Google Scholar] [CrossRef]
- Gilles, L.; Govarts, E.; Rambaud, L.; Vogel, N.; Castaño, A.; López, M.E.; Martin, L.R.; Koppen, G.; Remy, S.; Vrijheid, M.; et al. HBM4EU combines and harmonises human biomonitoring data across the EU, building on existing capacity—The HBM4EU survey. Int. J. Hyg. Environ. Health 2021, 237, 113809. [Google Scholar] [CrossRef]
- Firestone, M.P.; Amler, R.W. Children’s environmental health—An international perspective. Int. J. Hyg. Environ. Health 2003, 206, 395–400. [Google Scholar] [CrossRef]
- Sly, P.D.; Flack, F. Susceptibility of Children to Environmental Pollutants. Ann. N. Y. Acad. Sci. 2008, 1140, 163–183. [Google Scholar] [CrossRef]
- Tuzimski, T.; Szubartowski, S.; Gadzała-Kopciuch, R.; Miturski, A.; Wójtowicz-Marzec, M.; Kwaśniewski, W.; Buszewski, B. Comparison of DAD and FLD Detection for Identification of Selected Bisphenols in Human Breast Milk Samples and Their Quantitative Analysis by LC-MS/MS. J. AOAC Int. 2020, 103, 1029–1042. [Google Scholar] [CrossRef] [PubMed]
- Tuzimski, T.; Szubartowski, S. Application of d-SPE before SPE and HPLC-FLD to the analysis of bisphenols in human breast milk samples. Molecules 2021, 26, 4930. [Google Scholar] [CrossRef] [PubMed]
- Philippat, C.; Wolff, M.S.; Calafat, A.M.; Ye, X.; Bausell, R.; Meadows, M.; Stone, J.; Slama, R.; Engel, S.M. Prenatal exposure to environmental phenols: Concentrations in amniotic fluid and variability in urinary concentrations during pregnancy. Environ. Health Perspect. 2013, 121, 1225–1231. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; He, Y.; Zhu, H.; Huang, X.; Bai, X.; Kannan, K.; Zhang, T. Concentrations of bisphenol A and its alternatives in paired maternal–fetal urine, serum and amniotic fluid from an e-waste dismantling area in China. Environ. Int. 2020, 136, 105407. [Google Scholar] [CrossRef]
- European Medicines Agency. ICH Topic Q 2 (R1) Validation of Analytical Procedures: Text and Methodology, Note for Guidance on Validation of Analytical Procedures: Text and Methodology (CPMP/ICH/381/95); European Medicines Agency: London, UK, 1995.
- Codex Alimentarius Commission. Procedural Manual, 21st ed.; Joint FAO/WHO Food Standards Programme; World Health Organization, Food And Agriculture Organization of The United Nations: Rome, Italy, 2013; Available online: www.codexalimentarius.org (accessed on 15 February 2022).
- Tuzimski, T.; Szubartowski, S. Application of Solid Phase Extraction and High-Performance Liquid Chromatography with Fluorescence Detection to Analyze Bisphenol A Bis (2,3-Dihydroxypropyl) Ether (BADGE 2H2O), Bisphenol F (BPF), and Bisphenol E (BPE) in Human Urine Samples. Int. J. Environ. Res. Public Health 2021, 18, 10307. [Google Scholar] [CrossRef]
- Sanchisa, Y.; Coscollà, C.; Corpas-Burgosa, F.; Ventoc, M.; Gormaz, M.; Yusà, V. Bettermilk project. Biomonitoring of bisphenols A, F, S and parabens in urine of breastfeeding mothers: Exposure and risk assessment. Environ. Res. 2020, 185, 109481. [Google Scholar] [CrossRef]
- Moura, H.S.R.P.; Rocha, P.R.S.; Amato, A.A.; Sodré, F.F. Quantification of bisphenol A in urine samples from children studying in public schools from the Brazilian Capital. Microchem. J. 2020, 152, 104347. [Google Scholar] [CrossRef]
- Gys, C.; Bamai, Y.A.; Araki, A.; Bastiaensen, M.; Caballero-Casero, N.; Kishi, R.; Covaci, A. Biomonitoring and temporal trends of bisphenols exposure in Japanese school children. Environ. Res. 2020, 191, 110172. [Google Scholar] [CrossRef]
- Polovkov, N.Y.; Starkova, J.E.; Borisov, R.S. A simple, inexpensive, non-enzymatic microwave-assisted method for determining bisphenol-A in urine in the form of trimethylsilyl derivative by GC/MS with single quadrupole. J. Pharm. Biomed. Anal. 2020, 188, 113417. [Google Scholar] [CrossRef]
- Gys, C.; Bastiaensen, M.; Bruckers, L.; Colles, A.; Govarts, E.; Martin, L.R.; Verheyen, V.; Koppen, G.; Morrens, B.; Hond, E.D.; et al. Determinants of exposure levels of bisphenols in flemish adolescents. Environ. Res. 2021, 193, 110567. [Google Scholar] [CrossRef]
- Rebai, I.; Fernandes, J.O.; Azzouz, M.; Benmohammed, K.; Bader, G.; Benmbarek, K.; Cunha, S.C. Urinary bisphenol levels in plastic industry workers. Environ. Res. 2021, 202, 111666. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Choi, K.; Park, J.; Moon, H.-B.; Choi, G.; Lee, J.J.; Suh, E.; Kim, H.-J.; Eun, S.-H.; Kim, G.-H.; et al. Bisphenol A distribution in serum, urine, placenta, breast milk, and umbilical cord serum in a birth panel of mother–neonate pairs. Sci. Total Environ. 2018, 626, 1494–1501. [Google Scholar] [CrossRef]
- Kim, J.J.; Lee, Y.A.; Shin, C.H.; Hong, Y.-C.; Kim, B.-N.; Lim, Y.-H. Association of bisphenol A, bisphenol F, and bisphenol S with ADHD symptoms in children. Environ. Int. 2022, 161, 107093. [Google Scholar] [CrossRef] [PubMed]
- Yi, B.; Kim, C.; Yang, M. Biological monitoring of bisphenol A with HPLC/FLD and LC/MS/MS assays. J. Chromatogr. B 2010, 878, 2606–2610. [Google Scholar] [CrossRef]
- Dima, A.P.; De Santis, L.; Verlengia, C.; Lombardo, F.; Lenzi, A.; Mazzarino, M.; Botrè, F.; Paoli, D.; on behalf of the Italian Society of Embryology, Reproduction, Research (SIERR). Development and validation of a liquid chromatography-tandem mass spectrometry method for the simultaneous determination of phthalates and bisphenol a in serum, urine and follicular fluid. Clin. Mass Spectrom. 2020, 18, 54–65. [Google Scholar] [CrossRef] [PubMed]
- Dualde, P.; Pardo, O.; Fernández, S.F.; Pastor, A.; Yusà, V. Determination of four parabens and bisphenols A, F and S in human breast milk using QuEChERS and liquid chromatography coupled to mass spectrometry. J. Chromatogr. B 2019, 1114, 154–166. [Google Scholar] [CrossRef]
- Khmiri, I.; Côté, J.; Mantha, M.; Khemiri, R.; Lacroix, M.; Gely, C.; Toutain, P.-L.; Picard-Hagen, N.; Gayrard, V.; Bouchard, M. Toxicokinetics of bisphenol-S and its glucuronide in plasma and urine following oral and dermal exposure in volunteers for the interpretation of biomonitoring data. Environ. Int. 2020, 138, 105644. [Google Scholar] [CrossRef]
- Pastor-Belda, M.; Drauschke, T.; Campillo, N.; Arroyo-Manzanares, N.; Torres, C.; Pérez-Cárceles, M.D.; Hernández-Córdoba, M.; Viñas, P. Dual stir bar sorptive extraction coupled to thermal desorption-gas chromatography-mass spectrometry for the determination of endocrine disruptors in human tissues. Talanta 2020, 207, 120331. [Google Scholar] [CrossRef]
- Nowak, K.; Jabłońska, E.; Ratajczak-Wrona, W. Immunomodulatory effects of synthetic endocrine disrupting chemicals on the development and functions of human immune cells. Environ. Int. 2019, 125, 350–364. [Google Scholar] [CrossRef] [PubMed]
Patient Number | Age | The Indication for Amniocentesis |
---|---|---|
1 | 38 | The risk of trisomy 13—1:120 The risk of trisomy 18—1:45 |
2 | 36 | The risk of trisomy 13—1:12 The risk of trisomy 18—1:4 The risk of trisomy 21—1:4 |
3 | 30 | The risk of trisomy 21—1:125 |
4 | 26 | The risk of trisomy 13—1:79 Increased risk of trisomy 18 |
5 | 37 | The risk of trisomy 18—1:118 |
6 | 38 | The risk of trisomy 21—1:155 |
7 | 39 | The risk of trisomy 13—1:252 |
8 | 24 | The risk of trisomy 13—1:384 The risk of trisomy 18—1:268 The risk of trisomy 21—>1:4 |
9 | 39 | The risk of trisomy 13—1:200 The risk of trisomy 21—1:119 |
10 | 32 | The risk of trisomy 13—>1:50 The risk of trisomy 18—>1:50 |
11 | 41 | Increased risk of trisomy 21 |
12 | 25 | Increased risk of trisomy 21 |
13 | 28 | The risk of trisomy 21—1:101 |
14 | 36 | The risk of trisomy 21—1:300 |
15 | 29 | The risk of trisomy 13—1:12 The risk of trisomy 18—1:470 |
16 | 30 | Toxoplasmosis |
17 | 31 | Toxoplasmosis |
18 | 30 | Toxoplasmosis |
19 | 44 | Toxoplasmosis |
20 | 36 | Avidity of antibodies |
No. | Bisphenol | IUPAC Name | Chemical Structure | Molecular Weight | Log P | H Donors | H Acceptors | |
---|---|---|---|---|---|---|---|---|
1 | BADGE∙2H2O | 3-[4-[2-[4-(2,3-dihydroxypropoxy)phenyl]propan-2-yl]phenoxy]propane-1,2-diol | 376.4 | 2.1 | 4 | 6 | Mixture 1 | |
2 | BPE | 4-[1-(4-hydroxyphenyl)ethyl]phenol | 214.3 | 3.9 | 2 | 2 | ||
3 | BADGE∙H2O | 3-[4-[2-[4-(oxiran-2-ylmethoxy)phenyl]propan-2-yl]phenoxy]propane-1,2-diol | 358.4 | 3.1 | 2 | 5 | ||
4 | BPAF | 4-[1,1,1,3,3,3-hexafluoro-2-(4-hydroxyphenyl)propan-2-yl]phenol | 336.2 | 4.5 | 2 | 8 | ||
5 | BADGE | 2-[[4-[2-[4-(oxiran-2-ylmethoxy)phenyl]propan-2-yl]phenoxy]methyl]oxirane | 340.4 | 4.0 | 0 | 4 | ||
6 | BPF | 4-[(4-hydroxyphenyl)methyl]phenol | 200.2 | 2.9 | 2 | 2 | Mixture 2 | |
7 | BADGE∙H2O∙HCl | 3-[4-[2-[4-(3-chloro-2-hydroxypropoxy)phenyl]propan-2-yl]phenoxy]propane-1,2-diol | 394.9 | 3.3 | 3 | 5 | ||
8 | BPB | 4-[2-(4-hydroxyphenyl)butan-2-yl]phenol | 242.3 | 3.9 | 2 | 2 | ||
9 | BPAP | 4-[1-(4-hydroxyphenyl)-1-phenylethyl]phenol | 290.4 | 4.4 | 2 | 2 | ||
10 | BADGE∙2HCl | 1-chloro-3-[4-[2-[4-(3-chloro-2-hydroxypropoxy)phenyl]propan-2-yl]phenoxy]propan-2-ol | 413.3 | 4.6 | 2 | 4 | ||
11 | BPP | 4-[2-[4-[2-(4-hydroxyphenyl)propan-2-yl]phenyl]propan-2-yl]phenol | 346.5 | 6.1 | 2 | 2 |
No. | Bisphenol | Retention Time (tr), min. | Concentration Range, ng mL−1 | Linear Regression | Coefficient of Determination (R2) | Limit of Detection (LOD), ng mL−1 | Limit of Quantification (LOQ), ng mL−1 |
---|---|---|---|---|---|---|---|
1 | BADGE∙2H2O | ~7.5 | 0.5–20 | y = 10.969x − 3.5584 | 0.9954 | 1.3 | 4.0 |
2 | BPE | ~10.8 | 0.5–20 | y = 9.1235x + 2.9894 | 0.9976 | 1.0 | 2.9 |
3 | BADGE∙H2O | ~11.6 | 0.5–20 | y = 10.21x + 14.406 | 0.9966 | 1.1 | 3.5 |
4 | BPAF | ~13.2 | 0.5–20 | y = 13.873x − 8.1584 | 0.9971 | 1.1 | 3.2 |
5 | BADGE | ~15.7 | 0.5–20 | y = 9.3354x + 15.447 | 0.9866 | 2.3 | 6.9 |
6 | BPF | ~10.1 | 0.5–20 | y = 8.1827x − 8.6264 | 0.9954 | 1.3 | 4.1 |
7 | BADGE∙H2O∙HCl | ~11.3 | 0.5–20 | y = 12.93x − 3.0183 | 0.9986 | 0.8 | 2.4 |
8 | BPB | ~12.6 | 0.5–20 | y = 8.1644x − 3.086 | 0.9912 | 1.9 | 5.6 |
9 | BPAP | ~13.3 | 0.5–20 | y = 10.258x − 13.628 | 0.9983 | 2.5 | 7.5 |
10 | BADGE∙2HCl | ~14.9 | 0.5–20 | y = 13.658x − 5.6061 | 0.9922 | 1.7 | 5.3 |
11 | BPP | ~15.9 | 0.5–20 | y = 15.556x − 15.54 | 0.9869 | 2.3 | 5.9 |
No. | Bisphenol | Retention Time (tr), min. | Concentration Range, ng/mL | Linear Regression | Coefficient of Determination (R2) | Limit of Detection (LOD), ng/mL | Limit of Quantification (LOQ) ng/mL | Matrix Effect (ME) |
---|---|---|---|---|---|---|---|---|
1 | BADGE∙2H2O | ~7.5 | 2.5–50 | y = 10.317x + 82.514 | 0.9973 | 2.5 | 7.7 | 29% |
2 | BPE | ~10.8 | 2.5–50 | y = 6.9794x + 9.4408 | 0.9995 | 1.1 | 3.2 | −25% |
3 | BADGE∙H2O | ~11.6 | 2.5–50 | y = 9.6941x + 1050.9 | 0.9982 | 2.1 | 6.3 | 50% |
4 | BPAF | ~13.2 | 2.5–50 | y = 11.84x + 33.191 | 0.9992 | 1.4 | 4.2 | 11% |
5 | BADGE | ~15.7 | 2.5–50 | y = 7.9407x + 96.777 | 0.9888 | 5.2 | 15.7 | 13% |
6 | BPF | ~10.1 | 2.5–50 | y = 7.6505x + 19.466 | 0.9927 | 4.2 | 12.6 | 19% |
7 | BADGE∙H2O∙ HCl | ~11.3 | 2.5–50 | y = 8.8985x + 5.7375 | 0.9969 | 5.2 | 15.6 | −6% |
8 | BPB | ~12.6 | 2.5–50 | y = 8.8985x + 5.7375 | 0.9969 | 2.7 | 8.2 | 22% |
9 | BPAP | ~13.3 | 2.5–50 | y = 11.913x + 38.88 | 0.9957 | 3.2 | 9.7 | 55% |
10 | BADGE∙2HCl | ~14.9 | 2.5–50 | y = 13.312x + 43.256 | 0.9958 | 3.2 | 9.6 | 23% |
11 | BPP | ~15.9 | 2.5–50 | y = 16.466x + 129.07 | 0.9987 | 1.8 | 5.4 | 50% |
Recoveries Obtained for Fortification Level at 10 ng per Mililiter of Sample (2 × LOQ) after Procedure Shown in Figure 1 | ||||||||||||||||
Bisphenol | Intra-Day Repeatability a | Inter-Day Repeatability b (n = 18) | Intra-Laboratory Reproducibility c | Overall d (n = 30) | ||||||||||||
Name | Day 1 (n = 6) | Day 2 (n = 6) | Day 3 (n = 6) | Analyst 1 (n = 6) | Analyst 2 (n = 6) | Mean (n = 12) | ||||||||||
Rec.e | RSD% | Rec.e | RSD% | Rec.e | RSD% | Rec.e | RSD% | Rec.e | RSD% | Rec.e | RSD% | Rec.e | RSD% | Rec.e | RSD% | |
BADGE∙2H2O | 109.2 | 2.7 | 110.7 | 4.3 | 110.7 | 2.3 | 110.2 | 3.1 | 108.7 | 4.1 | 107.3 | 3.3 | 108.0 | 3.7 | 109.2 | 3.4 |
BPE | 74.8 | 6.6 | 76.2 | 4.5 | 76.0 | 6.3 | 75.7 | 5.8 | 76.2 | 5.2 | 73.3 | 4.9 | 74.8 | 5.1 | 75.3 | 5.4 |
BADGE∙H2O | 89.3 | 3.9 | 87.8 | 5.7 | 89.0 | 3.6 | 88.7 | 4.4 | 89.7 | 4.4 | 88.5 | 4.4 | 89.1 | 4.4 | 89.0 | 4.4 |
BPAF | 71.7 | 5.4 | 72.7 | 6.1 | 71.8 | 5.8 | 72.1 | 5.8 | 72.8 | 5.7 | 72.2 | 8.4 | 72.5 | 7.1 | 72.5 | 6.4 |
BADGE | 121.2 | 8.6 | 122.2 | 9.3 | 121.3 | 9.9 | 121.6 | 9.3 | 121.3 | 10.6 | 121.3 | 8.5 | 121.3 | 9.5 | 121.4 | 9.4 |
BPF | 76.3 | 4.9 | 76.7 | 4.7 | 75.7 | 3.9 | 76.2 | 4.5 | 75.2 | 4.6 | 74.8 | 4.0 | 75.0 | 4.3 | 75.6 | 4.4 |
BADGE∙H2O∙HCl | 70.3 | 9.6 | 71.8 | 11.7 | 71.8 | 10.7 | 71.3 | 10.6 | 71.0 | 11.9 | 70.8 | 11.4 | 70.9 | 11.6 | 71.3 | 11.1 |
BPB | 66.2 | 10.7 | 66.8 | 10.1 | 66.8 | 9.4 | 66.6 | 10.1 | 67.7 | 9.5 | 67.8 | 11.3 | 67.8 | 10.4 | 67.3 | 10.2 |
BPAP | 86.8 | 7.7 | 87.7 | 7.9 | 86.7 | 7.8 | 87.1 | 7.8 | 86.2 | 6.3 | 86.8 | 7.5 | 86.5 | 6.9 | 87.0 | 7.4 |
BADGE∙2HCl | 104.5 | 3.8 | 104.0 | 4.9 | 104.7 | 4.2 | 104.4 | 4.3 | 104.3 | 3.2 | 104.3 | 4.4 | 104.3 | 3.8 | 104.4 | 4.1 |
BPP | 51.3 | 6.1 | 50.8 | 6.2 | 51.7 | 6.9 | 51.3 | 6.4 | 50.8 | 7.0 | 51.8 | 4.9 | 51.3 | 6.0 | 51.3 | 6.2 |
Recoveries Obtained for Fortification Level at 20 ng per Mililiter of Sample (4 × LOQ) after Procedure Shown in Figure 1 | ||||||||||||||||
Bisphenol | Intra-Day Repeatability a | Inter-Day Repeatability b (n = 18) | Intra-Laboratory Reproducibility c | Overall d (n = 30) | ||||||||||||
Name | Day 1 (n = 6) | Day 2 (n = 6) | Day 3 (n = 6) | Analyst 1 (n = 6) | Analyst 2 (n = 6) | Mean (n = 12) | ||||||||||
Rec.e | RSD% | Rec.e | RSD% | Rec.e | RSD% | Rec.e | RSD% | Rec.e | RSD% | Rec.e | RSD% | Rec.e | RSD% | Rec.e | RSD% | |
BADGE∙2H2O | 102.2 | 6.5 | 102.5 | 6.2 | 101.8 | 4.9 | 102.2 | 5.8 | 101.3 | 6.7 | 101.5 | 6.6 | 101.4 | 6.6 | 101.8 | 6.2 |
BPE | 77.8 | 8.9 | 77.2 | 7.5 | 77.3 | 8.5 | 77.4 | 8.3 | 76.5 | 7.2 | 77.2 | 7.2 | 76.8 | 7.2 | 77.1 | 7.7 |
BADGE∙H2O | 80.8 | 2.3 | 80.7 | 1.8 | 81.2 | 3.2 | 80.9 | 2.5 | 80.5 | 2.7 | 79.7 | 2.0 | 80.1 | 2.3 | 80.5 | 2.4 |
BPAF | 70.2 | 3.9 | 71.0 | 4.7 | 69.8 | 4.2 | 70.3 | 4.3 | 71.2 | 4.8 | 70.5 | 3.1 | 70.8 | 4.0 | 70.6 | 4.1 |
BADGE | 89.8 | 16.4 | 90.5 | 17.9 | 91.3 | 14.9 | 90.6 | 16.4 | 89.7 | 16.5 | 88.8 | 16.2 | 89.3 | 16.3 | 89.9 | 16.4 |
BPF | 79.2 | 7.5 | 80.7 | 7.1 | 81.5 | 7.3 | 80.4 | 7.3 | 80.8 | 8.2 | 79.8 | 6.8 | 80.3 | 7.5 | 80.4 | 7.4 |
BADGE∙H2O∙HCl | 69.8 | 3.5 | 70.2 | 3.8 | 71.0 | 5.1 | 70.3 | 4.1 | 69.7 | 3.8 | 71.3 | 5.5 | 70.5 | 4.6 | 70.4 | 4.4 |
BPB | 75.3 | 1.3 | 75.5 | 1.5 | 75.0 | 1.9 | 75.3 | 1.5 | 76.7 | 1.2 | 76.5 | 1.0 | 76.6 | 1.1 | 75.9 | 1.3 |
BPAP | 74.2 | 8.2 | 73.2 | 8.4 | 74.3 | 8.1 | 73.9 | 8.2 | 72.3 | 7.8 | 71.5 | 8.3 | 71.9 | 8.1 | 72.9 | 8.1 |
BADGE∙2HCl | 82.5 | 3.8 | 83.2 | 3.6 | 83.5 | 2.9 | 83.1 | 3.4 | 83.7 | 3.6 | 82.8 | 2.9 | 83.3 | 3.2 | 83.2 | 3.3 |
BPP | 49.7 | 7.3 | 49.3 | 7.8 | 49.8 | 4.7 | 49.6 | 6.6 | 48.7 | 8.0 | 47.7 | 7.7 | 48.2 | 7.9 | 48.9 | 7.2 |
Bisphenol | Sample 1 | Sample 2 |
---|---|---|
BADGE∙2H2O | <LOQ | <LOQ |
BPE | not detected | not detected |
BADGE∙H2O | not detected | not detected |
BPAF | <LOQ | <LOQ |
BADGE | <LOQ | <LOQ |
BPF | not detected | not detected |
BADGE∙H2O∙HCl | <LOQ | not detected |
BPB | not detected | not detected |
BPAP | not detected | not detected |
BADGE∙2HCl | <LOQ | <LOQ |
BPP | not detected | not detected |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tuzimski, T.; Szubartowski, S. Application of Solid-Phase Extraction and High-Performance Liquid Chromatography with Fluorescence Detection to Analyze Eleven Bisphenols in Amniotic Fluid Samples Collected during Amniocentesis. Int. J. Environ. Res. Public Health 2022, 19, 2309. https://doi.org/10.3390/ijerph19042309
Tuzimski T, Szubartowski S. Application of Solid-Phase Extraction and High-Performance Liquid Chromatography with Fluorescence Detection to Analyze Eleven Bisphenols in Amniotic Fluid Samples Collected during Amniocentesis. International Journal of Environmental Research and Public Health. 2022; 19(4):2309. https://doi.org/10.3390/ijerph19042309
Chicago/Turabian StyleTuzimski, Tomasz, and Szymon Szubartowski. 2022. "Application of Solid-Phase Extraction and High-Performance Liquid Chromatography with Fluorescence Detection to Analyze Eleven Bisphenols in Amniotic Fluid Samples Collected during Amniocentesis" International Journal of Environmental Research and Public Health 19, no. 4: 2309. https://doi.org/10.3390/ijerph19042309
APA StyleTuzimski, T., & Szubartowski, S. (2022). Application of Solid-Phase Extraction and High-Performance Liquid Chromatography with Fluorescence Detection to Analyze Eleven Bisphenols in Amniotic Fluid Samples Collected during Amniocentesis. International Journal of Environmental Research and Public Health, 19(4), 2309. https://doi.org/10.3390/ijerph19042309