Physiological Aspects of World Elite Competitive German Winter Sport Athletes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Participants
2.3. Measurements
2.4. Statistical Analysis
2.5. Ethical Consideration
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Armstrong, R.B.; Laughlin, M.H.; Rome, L.; Taylor, C.R. Metabolism of rats running up and down an incline. J. Appl. Physiol. 1983, 55, 518–521. [Google Scholar] [CrossRef] [PubMed]
- Balducci, P.; Clémençon, M.; Morel, B.; Quiniou, G.; Saboul, D.; Hautier, C.A. Comparison of level and graded treadmill tests to evaluate endurance mountain runners. J. Sports Sci. Med. 2016, 15, 239–246. [Google Scholar] [PubMed]
- Buskirk, E.R.; Kollias, J.; Akers, R.F.; Prokop, E.K.; Reategui, E.P. Maximal performance at altitude and on return from altitude in conditioned runners. J. Appl. Physiol. 1967, 23, 259–266. [Google Scholar] [CrossRef] [PubMed]
- Duc, S.; Cassirame, J.; Durand, F. Physiology of Ski mountaineering racing. Int. J. Sports Med. 2011, 32, 856–863. [Google Scholar] [CrossRef]
- Menz, V.; Niedermeier, M.; Stehle, R.; Mugele, H.; Faulhaber, M. Assessment of maximal aerobic capacity in Ski mountaineering: A laboratory-based study. Int. J. Environ. Res. Public Health 2021, 18, 7002. [Google Scholar] [CrossRef]
- Tosi, P.; Leonardi, A.; Schena, L. The energy cost of ski mountaineering: Effects of speed and ankle loading. J. Sports Med. Phys. Fit. 2009, 49, 25–29. [Google Scholar]
- Zimmermann, P.; Moser, O.; Eckstein, M.L.; Wüstenfeld, J.; Schöffl, V.; Zimmermann, L.; Braun, M.; Schöffl, I. Athlete’s heart in elite Biathlon, Nordic Cross—Country and Ski-mountaineering athletes: Cardiac adaptions determined using echocardiographic data. J. Cardiovasc. Dev. Dis. 2021, 9, 8. [Google Scholar] [CrossRef]
- Hoffman, M.D.; Clifford, P.S. Physiological aspects of competitive cross-country skiing. J. Sports Sci. 1992, 10, 3–27. [Google Scholar] [CrossRef]
- Jonsson Kårström, M.; McGawley, K.; Laaksonen, M.S. Physiological responses to rifle carriage during roller-skiing in elite biathletes. Front. Physiol. 2019, 10, 1519. [Google Scholar] [CrossRef]
- Laaksonen, M.S.; Andersson, E.; Jonsson Kårström, M.; Lindblom, H.; McGawley, K. Laboratory-based factors predicting skiing performance in female and male biathletes. Front. Sports Act. Living 2020, 2, 99. [Google Scholar] [CrossRef]
- Schöffl, V.R.; Bösl, T.; Lutter, C. Ski mountaineering: Sports medical considerations for this new Olympic sport. Br. J. Sports Med. 2022, 56, 2–3. [Google Scholar] [CrossRef] [PubMed]
- Bortolan, L.; Savoldelli, A.; Pellegrini, B.; Modena, R.; Sacchi, M.; Holmberg, H.-C.; Supej, M. Ski Mountaineering: Perspectives on a novel sport to be introduced at the 2026 Winter Olympic Games. Front. Physiol. 2021, 12, 737249. [Google Scholar] [CrossRef] [PubMed]
- Chandra, N.; Bastiaenen, R.; Papadakis, M.; Sharma, S. Sudden cardiac death in young athletes. J. Am. Coll. Cardiol. 2013, 61, 1027–1040. [Google Scholar] [CrossRef] [Green Version]
- Schöffl, I.; Wüstenfeld, J.; Jones, G.; Dittrich, S.; Lutter, C.; Schöffl, V. Athlete’s heart in elite sport climbers: Cardiac adaptations determined using ECG and echocardiography data. Wilderness Environ. Med. 2020, 31, 418–425. [Google Scholar] [CrossRef] [PubMed]
- Zimmermann, P.; Moser, O.; Edelmann, F.; Schöffl, V.; Eckstein, M.L.; Braun, M. Electrical and structural adaption of athlete’s heart and the impact on training and recovery management in professional basketball players: A retrospective observational study. Front. Physiol. 2022, 13, 142. [Google Scholar] [CrossRef] [PubMed]
- Galanti, G.; Stefani, L.; Mascherini, G.; di Tante, V.; Toncelli, L. Left ventricular remodeling and the athlete’s heart, irrespective of quality load training. Cardiovasc. Ultrasound 2016, 14, 46. [Google Scholar] [CrossRef] [Green Version]
- Major, Z.; Csajági, E.; Kneffel, Z.; Kováts, T.; Szauder, I.; Sidó, Z.; Pavlik, G. Comparison of left and right ventricular adaptation in endurance-trained male athletes. Acta Physiol. Hung. 2015, 102, 23–33. [Google Scholar] [CrossRef] [Green Version]
- Stefani, L.; Toncelli, L.; Gianassi, M.; Manetti, P.; di Tante, V.; Vono, M.R.C.; Moretti, A.; Cappelli, B.; Pedrizzetti, G.; Galanti, G. Two-dimensional tracking and TDI are consistent methods for evaluating myocardial longitudinal peak strain in left and right ventricle basal segments in athletes. Cardiovasc. Ultrasound 2007, 5, 7. [Google Scholar] [CrossRef] [Green Version]
- Szauder, I.; Kovács, A.; Pavlik, G. Comparison of left ventricular mechanics in runners versus bodybuilders using speckle tracking echocardiography. Cardiovasc. Ultrasound 2015, 13, 7. [Google Scholar] [CrossRef] [Green Version]
- Larsson, P.; Olofsson, P.; Jakobsson, E.; Burlin, L.; Henriksson-Larsén, K. Physiological predictors of performance in cross-country skiing from treadmill tests in male and female subjects. Scand. J. Med. Sci. Sports 2002, 12, 347–353. [Google Scholar] [CrossRef]
- Schupfner, R.; Pecher, S.; Pfeifer, E.; Stumpf, C. Physiological factors which influence the performance potential of athletes: Analysis of sports medicine performance testing in Nordic combined. Physician Sportsmed 2021, 49, 106–115. [Google Scholar] [CrossRef] [PubMed]
- Grzebisz, N. Cardiovascular adaptations to four months training in middle-aged amateur long-distance skiers. Diagnostics 2020, 10, 442. [Google Scholar] [CrossRef] [PubMed]
- Hébert-Losier, K.; Zinner, C.; Platt, S.; Stöggl, T.; Holmberg, H.-C. Factors that influence the performance of elite sprint cross-country skiers. Sports Med. 2017, 47, 319–342. [Google Scholar] [CrossRef] [Green Version]
- Rundell, K.W. Treadmill roller ski test predicts biathlon roller ski race results of elite U.S. biathlon women. Med. Sci. Sports Exerc. 1995, 27, 1677–1685. [Google Scholar] [CrossRef] [PubMed]
- Fletcher, G.F.; Balady, G.J.; Amsterdam, E.A.; Chaitman, B.; Eckel, R.; Fleg, J.; Froelicher, V.F.; Leon, A.S.; Piña, I.L.; Rodney, R.; et al. Exercise standards for testing and training. Circulation 2001, 104, 1694–1740. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mezzani, A. Cardiopulmonary exercise testing: Basics of methodology and measurements. Ann. Am. Thorac. Soc. 2017, 14, S3–S11. [Google Scholar] [CrossRef]
- Harriss, D.J.; MacSween, A.; Atkinson, G. Ethical standards in sport and exercise science research: 2020 update. Int. J. Sports Med. 2019, 40, 813–817. [Google Scholar] [CrossRef] [Green Version]
- Tønnessen, E.; Haugen, T.A.; Hem, E.; Leirstein, S.; Seiler, S. Maximal aerobic capacity in the winter-Olympics endurance disciplines: Olympic-medal benchmarks for the time period 1990-2013. Int. J. Sports Physiol. Perform. 2015, 10, 835–839. [Google Scholar] [CrossRef]
- Losnegard, T. Energy system contribution during competitive cross-country skiing. Eur. J. Appl. Physiol. 2019, 119, 1675–1690. [Google Scholar] [CrossRef] [Green Version]
- Hoffman, M.D. Physiological comparisons of cross-country skiing techniques. Med. Sci. Sports Exerc. 1992, 24, 1023–1032. [Google Scholar] [CrossRef]
- Losnegard, T.; Myklebust, H.; Spencer, M.; Hallén, J. Seasonal variations in VO2max, O2-cost, O2-deficit, and performance in elite cross-country skiers. J. Strength Cond. Res. 2013, 27, 1780–1790. [Google Scholar] [CrossRef] [PubMed]
- Skattebo, Ø.; Losnegard, T. Variability, Predictability, and race factors affecting performance in elite biathlon. Int. J. Sports Physiol. Perform. 2018, 13, 313–319. [Google Scholar] [CrossRef] [PubMed]
- Talsnes, R.K.; Solli, G.S.; Kocbach, J.; Torvik, P.-Ø.; Sandbakk, Ø. Laboratory- and field-based performance-predictions in cross-country skiing and roller-skiing. PLoS ONE 2021, 16, e0256662. [Google Scholar] [CrossRef]
- Cassirame, J.; Tordi, N.; Fabre, N.; Duc, S.; Durand, F.; Mourot, L. Heart rate variability to assess ventilatory threshold in ski-mountaineering. Eur. J. Sport Sci. 2015, 15, 615–622. [Google Scholar] [CrossRef] [PubMed]
- Rusko, H.K. Development of aerobic power in relation to age and training in cross-country skiers. Med. Sci. Sports Exerc. 1992, 24, 1040–1047. [Google Scholar] [CrossRef]
- Schöffl, V.; Pöppelmeier, O.; Emmler, J.; Schöffl, I.; Küpper, T.; Lutter, C. Ski Mountaineering—Evaluation of a sports specific performance diagnosis. Sportverletz. Sportschaden 2018, 32, 233–242. [Google Scholar] [CrossRef] [PubMed]
- Schmitt, L.; Willis, S.J.; Coulmy, N.; Millet, G.P. Effects of different training intensity distributions between elite cross-country skiers and nordic-combined athletes during live high—train low. Front. Physiol. 2018, 9, 932. [Google Scholar] [CrossRef]
- Sandbakk, Ø.; Rasdal, V.; Bråten, S.; Moen, F.; Ettema, G. How do world-class nordic combined athletes differ from specialized cross-country skiers and ski jumpers in sport-specific capacity and training characteristics? Int. J. Sports Physiol. Perform. 2016, 11, 899–906. [Google Scholar] [CrossRef]
Ski-Mo n = 9 | NCC n = 10 | Biathletes n = 12 | ||||
---|---|---|---|---|---|---|
Male n = 5 | Female n = 4 | Male n = 6 | Female n = 4 | Male n = 6 | Female n = 6 | |
Age (y) | 21.4 ± 1.8 | 20.8 ± 2.4 | 26.3 ± 4.1 | 25.5 ± 0.5 | 27.3 ± 3.6 | 29.0 ± 3.2 |
Height (cm) | 178.0 ± 3.9 | 163.5 ± 8.8 | 181.3 ± 4.7 | 171.2 ± 5.8 | 180.9 ± 5.1 | 172.8 ± 3.7 |
Weight (kg) | 66.5 ± 0.8 | 53.2 ± 6.5 | 72.0 ± 3.0 | 63.4 ± 5.9 | 77.1 ± 3.7 | 62.5 ± 4.1 |
BMI (kg/m2) | 19.9 ± 1.4 | 19.8 ± 0.4 | 22.0 ± 1.1 | 21.6 ± 1.2 | 23.6 ± 0.9 | 20.9 ± 1.0 |
resting blood pressure systolic/diastolic (mmHg) | 118 ± 5.4 78 ± 4.0 | 100 ± 8.2 72 ± 1.5 | 125 ± 8.3 78 ± 2.9 | 105 ± 7.2 71 ± 3.8 | 117 ± 7.6 77 ± 2.2 | 108 ± 6.2 70 ± 3.3 |
resting heart rate (bpm) | 41 ± 4.6 | 44 ± 4.5 | 42 ± 3.6 | 46 ± 5.1 | 41 ± 4.2 | 45 ± 5.1 |
heart rate VT2 (bpm) | 133 ± 2.2 | 132.3 ± 1.9 | 136.3 ± 11.6 | 128.3 ± 9.1 | 148.5 ± 20.9 | 134.5 ± 8.1 |
maximum heart rate (bpm) | 185.6 ± 6.3 | 171.8 ± 2.5 | 183 ± 14.3 | 173.8 ± 4.0 | 179.5 ± 10.3 | 181.0 ± 12.9 |
BSA (body surface area m2) | 1.70 ± 0.06 | 1.61 ± 0.12 | 1.88 ± 0.04 | 1.81 ±0.07 | 1.92 ± 0.04 | 1.77 ± 0.05 |
Ski-Mo (I) | NCC (II) | Biathletes (III) | p-Value Male | p-Value Female | Overall p-Value | ||||
---|---|---|---|---|---|---|---|---|---|
Male | Female | Male | Female | Male | Female | ||||
VE VT2 (L) | 96.4 ± 15.5 | 77.0 ± 11.2 | 71.3 ± 15.9 | 55.1 ± 6.9 | 80.2 ± 7.2 | 62.7 ± 13.0 | ns | Ski-Mo vs. NCC 0.0286 * | Ski-Mo vs. NCC 0.0076 * |
87.8 ± 16.5 | 64.8 ± 15.0 | 71.4 ± 13.6 | Ski-Mo vs. Bia 0.0339 * | ||||||
VE maximum (L) | 134.9 ± 24.6 | 109.2 ± 20.6 | 166.2 ± 28.4 | 118.2± 23.8 | 175.8 ± 11.7 | 125.4 ± 9.1 | Ski-Mo vs. Bia | ns | Ski-Mo vs. Bia |
123.5 ± 25.4 | 147.0 ± 35.4 | 150.6 ± 28.1 | 0.0087 * | 0.0409 * | |||||
VO2 maximum (mL) | 3964.8 ± 367.8 | 3021.3 ± 515.1 | 4620.8 ± 603.8 | 3315.3 ± 576.0 | 4935.2 ± 525.1 | 3555.7± 274.7 | Ski-Mo vs. Bia 0.0087 * | Ski-Mo vs. Bia 0.0381 * | ns |
3545.4 ± 643.7 | 4098.6 ± 876.2 | 4245.4 ± 823.8 | |||||||
VO2/kg VT2 (mL/kg) | 52.3 ± 9.7 | 47.5 ± 5.8 | 41.4 ± 7.3 | 33.0 ± 2.8 | 41.5 ± 4.5 | 36.6 ± 6.1 | ns | Ski-Mo vs. NCC 0.0286 * | Ski-Mo vs. NCC 0.0072 * |
50.2 ± 8.1 | 38.1 ± 7.1 | 39.1 ± 5.6 | Ski-Mo vs. Bia 0.0381 * | Ski-Mo vs. Bia 0.0030 * | |||||
VO2/kg maximum (mL/kg) | 65.0 ± 7.9 | 57.4 ± 4.5 | 64.5 ± 7.1 | 52.7 ± 4.9 | 64.6 ± 4.4 | 57.4 ± 2.3 | ns | ns | ns |
61.6 ± 7.5 | 59.7 ± 8.6 | 61.0 ± 5.0 | |||||||
Oxygen pulse VT2 (mL/min) | 18.4 ± 2.6 | 14.4 ± 2.3 | 21.8 ± 3.5 | 16.3 ± 2.4 | 21.6 ± 2.6 | 16.9 ± 2.7 | ns | ns | Ski-Mo vs. Bia 0.0426 * |
16.6 ± 3.1 | 19.6 ± 4.1 | 19.2 ± 3.5 | |||||||
Oxygen pulse maximum (mL/min) | 20.8 ± 3.0 | 15.6 ± 3.1 | 26.9 ± 4.2 | 19.4 ± 3.1 | 27.8 ± 3.2 | 22.8± 5.4 | Ski-Mo vs. NCC 0.0303 * Ski-Mo vs. Bia 0.0260 * | Ski-Mo vs. Bia 0.0190 * | Ski-Mo vs. NCC 0.0231 * Ski-Mo vs. Bia 0.0033 * |
18.5 ± 4.0 | 23.9 ± 5.3 | 25.3 ± 4.9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zimmermann, P.; Wüstenfeld, J.; Zimmermann, L.; Schöffl, V.; Schöffl, I. Physiological Aspects of World Elite Competitive German Winter Sport Athletes. Int. J. Environ. Res. Public Health 2022, 19, 5620. https://doi.org/10.3390/ijerph19095620
Zimmermann P, Wüstenfeld J, Zimmermann L, Schöffl V, Schöffl I. Physiological Aspects of World Elite Competitive German Winter Sport Athletes. International Journal of Environmental Research and Public Health. 2022; 19(9):5620. https://doi.org/10.3390/ijerph19095620
Chicago/Turabian StyleZimmermann, Paul, Jan Wüstenfeld, Lukas Zimmermann, Volker Schöffl, and Isabelle Schöffl. 2022. "Physiological Aspects of World Elite Competitive German Winter Sport Athletes" International Journal of Environmental Research and Public Health 19, no. 9: 5620. https://doi.org/10.3390/ijerph19095620
APA StyleZimmermann, P., Wüstenfeld, J., Zimmermann, L., Schöffl, V., & Schöffl, I. (2022). Physiological Aspects of World Elite Competitive German Winter Sport Athletes. International Journal of Environmental Research and Public Health, 19(9), 5620. https://doi.org/10.3390/ijerph19095620