Coupling and Coordinating Relationship between Agricultural Eco-Efficiency and Food Security System in China
Abstract
:1. Introduction
2. Literature Review
2.1. Agricultural Eco-Efficiency and Its Estimation
2.2. Agricultural Eco-Efficiency and Food Safety Studies
3. Methodology and Data
3.1. Methodology
3.1.1. Calculation of Agricultural Carbon Emissions
3.1.2. Estimating Agricultural Eco-Efficiency
3.1.3. Coupling Coordination Degree Model
3.1.4. Spatial Autocorrelation Model
3.2. Data
3.2.1. Data Sources
3.2.2. Measurement of Agricultural Eco-Efficiency and Food Security
4. Results
4.1. Analysis of Agricultural Eco-Efficiency
4.2. Analysis of Food Security Characteristics in China’s Provinces
4.3. Coupling Coordination Degree Analysis
4.4. Spatial Effect Analysis
4.4.1. Global Spatial Autocorrelation Analysis
4.4.2. Local Spatial Autocorrelation Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- IPCC Sixth Assessment Report: Summary for Policymakers; IPCC: Geneva, Switzerland, 2022.
- Lee, J.Y.; Marotzke, J.; Bala, G.; Cao, L.; Corti, S.; Dunne, J.P.; Engelbrecht, F.; Fischer, E.; Fyfe, J.C.; Jones, C.; et al. Future Global Climate: Scenario-42 Based Projections and Near-Term Information; Cambridge University Press: Cambridge, MA, USA, 2021; pp. 1–195. [Google Scholar]
- Wang, R.; Zhang, Y.; Zou, C. How does agricultural specialization affect carbon emissions in China? J. Clean. Prod. 2022, 370, 133463. [Google Scholar] [CrossRef]
- Guo, L.; Li, H.; Cao, X.; Cao, A.; Huang, M. Effect of agricultural subsidies on the use of chemical fertilizer. J. Environ. Manag. 2021, 299, 113621. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Hu, Y.; Lu, Y. Driving forces of China’s provincial bilateral carbon emissions and the redefinition of corresponding responsibilities. Sci. Total Environ. 2023, 857, 159404. [Google Scholar] [CrossRef]
- Zhou, X.; Niu, A.; Lin, C. Optimizing carbon emission forecast for modelling China’s 2030 provincial carbon emission quota allocation. J. Environ. Manag. 2023, 325, 116523. [Google Scholar] [CrossRef] [PubMed]
- Teixeira, H.M.; Bianchi, F.J.J.A.; Cardoso, I.M.; Tittonell, P.; Peña-Claros, M. Impact of agroecological management on plant diversity and soil-based ecosystem services in pasture and coffee systems in the Atlantic forest of Brazil. Agric. Ecosyst. Environ. 2021, 305, 107171. [Google Scholar] [CrossRef]
- Canwat, V.; Oelofse, M.; Onakuse, S.; de Neergaard, A. Agroecological intensification: Can organic conversion improve the production efficiency? A perspective from smallholder kale production systems Kenya. Clean. Environ. Syst. 2021, 3, 100048. [Google Scholar] [CrossRef]
- Grassauer, F.; Herndl, M.; Nemecek, T.; Guggenberger, T.; Fritz, C.; Steinwidder, A.; Zollitsch, W. Eco-efficiency of farms considering multiple functions of agriculture: Concept and results from Austrian farms. J. Clean. Prod. 2021, 297, 126662. [Google Scholar] [CrossRef]
- Schaltegger, S. Ansatzpunkte zur Ausgestaltung von ökologieorientierten Managementinstrumenten. Die Unternehm. 1990, 44, 273–290. [Google Scholar]
- Frank, D.L.D.P. Eco-Efficiency: The Business Link to Sustainable Development; The MIT Press: Cambridge, MA, USA, 2000. [Google Scholar]
- Nie Wan, Y.F. Analysis on the progress of research on agricultural ecological efficiency. Chin. J. Ecol. Agric. 2017, 25, 1371–1380. [Google Scholar]
- Kuo, H.-F.; Chen, H.-L.; Tsou, K.-W. Analysis of Farming Environmental Efficiency Using a DEA Model with Undesirable Outputs. APCBEE Procedia 2014, 10, 154–158. [Google Scholar] [CrossRef] [Green Version]
- Liu, S.; Jun, X. The spatio-temporal heterogeneity of county-level economic development and primary drivers across the Loess Plateau, China. J. Geogr. Sci. 2021, 31, 423–436. [Google Scholar] [CrossRef]
- Zeng, L.; Li, X.; Ruiz-Menjivar, J. The effect of crop diversity on agricultural eco-efficiency in China: A blessing or a curse? J. Clean. Prod. 2020, 276, 124243. [Google Scholar] [CrossRef]
- Degieter, M.; Gellynck, X.; Goyal, S.; Ott, D.; De Steur, H. Life cycle cost analysis of agri-food products: A systematic review. Sci. Total Environ. 2022, 850, 158012. [Google Scholar] [CrossRef]
- Yang, B.; Zhang, Z.; Wu, H. Detection and attribution of changes in agricultural eco-efficiency within rapid urbanized areas: A case study in the Urban agglomeration in the middle Reaches of Yangtze River, China. Ecol. Indic. 2022, 144, 109533. [Google Scholar] [CrossRef]
- Xue, D.; Yue, L.; Ahmad, F.; Umar Draz, M.; Ali Chandio, A. Urban eco-efficiency and its influencing factors in Western China: Fresh evidence from Chinese cities based on the US-SBM. Ecol. Indic. 2021, 127, 107784. [Google Scholar] [CrossRef]
- Zhang, C.; Chen, P. Applying the three-stage SBM-DEA model to evaluate energy efficiency and impact factors in RCEP countries. Energy 2022, 241, 122917. [Google Scholar] [CrossRef]
- Zhong, K.; Wang, Y.; Pei, J.; Tang, S.; Han, Z. Super efficiency SBM-DEA and neural network for performance evaluation. Inf. Process. Manag. 2021, 58, 102728. [Google Scholar] [CrossRef]
- Li, H.; Luo, L.; Zhang, X.; Zhang, J. Dynamic change of agricultural energy efficiency and its influencing factors in China. Chin. J. Popul. Resour. Environ. 2021, 19, 311–320. [Google Scholar] [CrossRef]
- Su, Y.; He, S.; Wang, K.; Shahtahmassebi, A.R.; Zhang, L.; Zhang, J.; Zhang, M.; Gan, M. Quantifying the sustainability of three types of agricultural production in China: An emergy analysis with the integration of environmental pollution. J. Clean. Prod. 2020, 252, 119650. [Google Scholar] [CrossRef]
- Alcon, F.; Zabala, J.A.; Martínez-Paz, J.M. Assessment of social demand heterogeneity to inform agricultural diffuse pollution mitigation policies. Ecol. Econ. 2022, 191, 107216. [Google Scholar] [CrossRef]
- Kazemi, F.; Hosseinpour, N. GIS-based land-use suitability analysis for urban agriculture development based on pollution distributions. Land Use Policy 2022, 123, 106426. [Google Scholar] [CrossRef]
- Hao, Z.; Ye, D.; Hui, W.; Zenglin, H.; Hongye, W. An empirical analysis of tourism eco-efficiency in ecological protection priority areas based on the DPSIR-SBM model: A case study of the Yellow River Basin, China. Ecol. Inform. 2022, 70, 101720. [Google Scholar] [CrossRef]
- Wang, Y.; Guo, X.; Zhang, F.; Yin, H.; Guo, P.; Zhang, W.; Li, Q. The spatially-distributed ANN-optimization approach for water-agriculture-ecology nexus management under uncertainties and risks. Agric. Water Manag. 2022, 271, 107780. [Google Scholar] [CrossRef]
- Wang, Y.; Guo, X.; Yin, H.; Zhang, W.; Li, Q. Spatially distributed footprint families-based simulation–optimization approach for agricultural-ecological resources management under uncertainty. J. Hydrol. 2022, 613, 128319. [Google Scholar] [CrossRef]
- Li, Y.; Song, Z. Have protected areas in China achieved the ecological and economic “win-win” goals? Evidence from the Giant Panda Reserves of the Min Mont Range. For. Policy Econ. 2022, 144, 102845. [Google Scholar] [CrossRef]
- Liu, X.; Guo, W.; Feng, Q.; Wang, P. Spatial correlation, driving factors and dynamic spatial spillover of electricity consumption in China: A perspective on industry heterogeneity. Energy 2022, 257, 124756. [Google Scholar] [CrossRef]
- da Silva, J.T.; Garzillo, J.M.F.; Rauber, F.; Kluczkovski, A.; Rivera, X.S.; da Cruz, G.L.; Frankowska, A.; Martins, C.A.; da Costa Louzada, M.L.; Monteiro, C.A.; et al. Greenhouse gas emissions, water footprint, and ecological footprint of food purchases according to their degree of processing in Brazilian metropolitan areas: A time-series study from 1987 to 2018. Lancet Planet. Health 2021, 5, e775–e785. [Google Scholar] [CrossRef]
- Fu Gonghua, Y.B. Research on China’s Future Food Security and Ecological Sustainability–Empirical Analysis Based on Ecological Footprint of Food Production Process. Resour. Environ. Yangtze River Val. 2013, 22, 1550–1556. [Google Scholar]
- Liu, Y.N.X.G.; Xiao, Y.; Liu, J.Y.; Zou, H.X.; Qin, K.Y.; Wang, Y.Y.; Huang, M.D. The story of grain self-sufficiency: China’s food security and food for thought. Food Energy Secur. 2021, 11, e344. [Google Scholar]
- Tribouillois, H.; Constantin, J.; Murgue, C.; Villerd, J.; Therond, O. Integrated modeling of crop and water management at the watershed scale: Optimizing irrigation and modifying crop succession. Eur. J. Agron. 2022, 140, 126592. [Google Scholar] [CrossRef]
- Qi, X.; Li, J.; Yuan, W.; Wang, R.Y. Coordinating the food-energy-water nexus in grain production in the context of rural livelihood transitions and farmland resource constraints. Resour. Conserv. Recycl. 2021, 164, 105148. [Google Scholar] [CrossRef]
- Liu, G.; Zhang, F. How do trade-offs between urban expansion and ecological construction influence CO2 emissions? New evidence from China. Ecol. Indic. 2022, 141, 109070. [Google Scholar] [CrossRef]
- Liu, F.; Wang, C.; Luo, M.; Zhou, S.; Liu, C. An investigation of the coupling coordination of a regional agricultural economics-ecology-society composite based on a data-driven approach. Ecol. Indic. 2022, 143, 109363. [Google Scholar] [CrossRef]
- Yao, X.; Chen, W.; Song, C.; Gao, S. Sustainability and efficiency of water-land-energy-food nexus based on emergy-ecological footprint and data envelopment analysis: Case of an important agriculture and ecological region in Northeast China. J. Clean. Prod. 2022, 379, 134854. [Google Scholar] [CrossRef]
- Zhu, C.; Lin, Y.; Zhang, J.; Gan, M.; Xu, H.; Li, W.; Yuan, S.; Wang, K. Exploring the relationship between rural transition and agricultural eco-environment using a coupling analysis: A case study of Zhejiang Province, China. Ecol. Indic. 2021, 127, 107733. [Google Scholar] [CrossRef]
- Zhang, Z.; Shi, K.; Tang, L.; Su, K.; Zhu, Z.; Yang, Q. Exploring the spatiotemporal evolution and coordination of agricultural green efficiency and food security in China using ESTDA and CCD models. J. Clean. Prod. 2022, 374, 133967. [Google Scholar] [CrossRef]
- Koondhar, M.A.; Aziz, N.; Tan, Z.; Yang, S.; Raza Abbasi, K.; Kong, R. Green growth of cereal food production under the constraints of agricultural carbon emissions: A new insights from ARDL and VECM models. Sustain. Energy Technol. Assess. 2021, 47, 101452. [Google Scholar] [CrossRef]
- Li, Z.; Li, J. The influence mechanism and spatial effect of carbon emission intensity in the agricultural sustainable supply: Evidence from china’s grain production. Environ. Sci. Pollut. Res. 2022, 29, 44442–44460. [Google Scholar] [CrossRef]
- West, T.O.; Marland, G. A synthesis of carbon sequestration, carbon emissions, and net carbon flux in agriculture: Comparing tillage practices in the United States. Agric. Ecosyst. Environ. 2002, 91, 217–232. [Google Scholar] [CrossRef]
- Ofipcc, W. Climate Change 2013, The Physical Science Basis. Contrib. Work. 2013, 43, 866–871. [Google Scholar]
- Duan, H.; Zhang, Y.; Zhao, J.; Bian, X. Carbon Footprint Analysis of Farml and Ecosystem in China. J. Soil Water Conserv. 2011, 25, 203–208. [Google Scholar]
- Cooper WW, S.L.M.; Tone, K. Undesirable Outputs Models; Springer: New York, NY, USA, 2007. [Google Scholar]
- Wang, Y.; Song, J.; Zhang, X.; Sun, H.; Bai, H. Coupling coordination evaluation of water-energy-food and poverty in the Yellow River Basin, China. J. Hydrol. 2022, 614, 128461. [Google Scholar] [CrossRef]
- Zhang, Y.; Haseeb, M.; Hossain, M.E.; Hu, M.; Li, Z. Study on the coupling and coordination degree between urban tourism development and habitat environment in the Yangtze River Delta in China. Environ. Sci. Pollut. Res. 2022, 2022, 1–16. [Google Scholar] [CrossRef]
- Moran, A.P. Notes on continuous stochastic phenomena. Biometrika 1950, 37, 17–23. [Google Scholar] [CrossRef]
- Kuang, B.; Lu, X.; Zhou, M.; Chen, D. Provincial cultivated land use efficiency in China: Empirical analysis based on the SBM-DEA model with carbon emissions considered. Technol. Forecast. Soc. Change 2020, 151, 119874. [Google Scholar] [CrossRef]
- Gür, T.M. Carbon Dioxide Emissions, Capture, Storage and Utilization: Review of Materials, Processes and Technologies. Prog. Energy Combust. Sci. 2022, 89, 100965. [Google Scholar] [CrossRef]
- Reza, M.S.; Sabau, G. Impact of climate change on crop production and food security in Newfoundland and Labrador, Canada. J. Agric. Food Res. 2022, 10, 100405. [Google Scholar] [CrossRef]
- Singh, R.K.; Joshi, P.K.; Sinha, V.S.P.; Kumar, M. Indicator based assessment of food security in SAARC nations under the influence of climate change scenarios. Future Foods 2022, 5, 100122. [Google Scholar] [CrossRef]
- Randell, H.; Gray, C.; Shayo, E.H. Climatic conditions and household food security: Evidence from Tanzania. Food Policy 2022, 112, 102362. [Google Scholar] [CrossRef]
Carbon Source | Carbon Emission Factor | Reference Source |
---|---|---|
fertilizer | 0.896 kgC/kg | Oak Ridge National Laboratory [42] |
pesticide | 4.934 kgC/kg | Oak Ridge National Laboratory |
agricultural film | 5.180 kgC/kg | Institute of Agricultural Resources and Ecological Environment, Nanjing Agricultural University |
diesel fuel | 0.593 kgC/kg | 2013 IPCC United Nations Intergovernmental Committee of Experts on Climate Change [43] |
irrigation | 266.48 kgC/hm2 | Reference related literature [44] |
ploughing | 312.6 kgC/km2 | Reference related literature |
D | Grading | Index |
---|---|---|
Severe maladjustment | ||
Low coordination | , Efficiency lagging type | |
Moderate coordination | , Efficiency lagging type | |
High coordination | , Lagging food security | |
Extreme coordination |
Index | Category | Variable | Units | Explanation |
---|---|---|---|---|
Input | Labor input | Labor | 104 | Proportion of rural individual employment |
Capital input | Machinery | 104 kw | Agricultural machinery investment | |
Irrigation | 104 hm2 | Effective irrigation area | ||
Land input | Sown area | 104 hm2 | Crop sown area | |
Agricultural inputs | Chemical fertilizer | 104 kg | Fertilizer application amount | |
Pesticide | 104 kg | Pesticide application amount | ||
Agricultural film | 104 kg | Amount of agricultural plastic film | ||
Diesel | 104 kg | Application amount of agricultural diesel | ||
Output | Desirable output | Total output value of agriculture, forestry, animal husbandry and fishery | 108 yuan | Total grain output |
Undesirable output | Agricultural carbon emissions | 104 kgc | Total agricultural carbon emissions |
Target | Criterion | Explanation | Units | Attribute |
---|---|---|---|---|
Food security | Quantity security | Per capita share of grain | tons/per | + |
Total grain output | 104 tons | + | ||
Sown area of grain crops | 104 hm2 | + | ||
Proportion of disaster affected area in total planting area of crops | % | − | ||
Quality safety | Pesticide loss coefficient * pesticide usage/grain crop yield | tons/tons | − | |
Number of certified green food products by region in the year | Unit | + | ||
Economic security | Agriculture, forestry and water affairs expenditure/local public finance expenditure | % | + | |
Sub index of grain retail price by region | − | − | ||
Resource security | Water resources used per unit grain output | m3/ton | − | |
Sown area per unit grain yield | hm2/ton | − |
Area | 2011 | 2020 | Rate% | ||
---|---|---|---|---|---|
Index | Rank | Index | Rank | ||
Beijing | 1.186 | 2 | 1.076 | 9 | −9.22 |
Tianjin | 1.072 | 13 | 1.503 | 1 | 40.30 |
Hebei | 0.573 | 25 | 0.413 | 25 | −27.93 |
Shanxi | 0.423 | 30 | 0.345 | 29 | −18.25 |
Inner Mongolia | 1.107 | 10 | 0.364 | 28 | −67.11 |
Liaoning | 1.068 | 14 | 0.537 | 20 | −49.72 |
Jilin | 0.628 | 21 | 0.289 | 30 | −54.04 |
Heilongjiang | 0.517 | 28 | 1.037 | 11 | 100.54 |
Shanghai | 1.074 | 12 | 0.420 | 24 | −60.93 |
Jiangsu | 1.010 | 17 | 0.596 | 17 | −41.00 |
Zhejiang | 1.024 | 15 | 0.520 | 21 | −49.24 |
Anhui | 0.529 | 27 | 0.405 | 27 | −23.43 |
Fujian | 1.096 | 11 | 1.117 | 8 | 1.88 |
Jiangxi | 0.578 | 24 | 0.557 | 18 | −3.62 |
Shandong | 0.608 | 22 | 0.412 | 26 | −32.24 |
Henan | 0.594 | 23 | 0.472 | 22 | −20.44 |
Hubei | 0.732 | 20 | 0.625 | 16 | −14.58 |
Hunan | 1.153 | 5 | 1.031 | 12 | −10.61 |
Guangdong | 1.139 | 8 | 1.152 | 7 | 1.16 |
Guangxi | 1.123 | 9 | 1.051 | 10 | −6.43 |
Hainan | 1.401 | 1 | 1.289 | 3 | −7.97 |
Chongqing | 1.021 | 16 | 1.001 | 14 | −1.93 |
Sichuan | 1.140 | 7 | 0.860 | 15 | −24.56 |
Guizhou | 1.009 | 18 | 1.325 | 2 | 31.34 |
Yunnan | 0.500 | 29 | 1.001 | 13 | 100.23 |
Tibet | 1.001 | 19 | 1.200 | 4 | 19.88 |
Shaanxi | 1.164 | 3 | 1.161 | 6 | −0.25 |
Gansu | 0.330 | 31 | 0.281 | 31 | −14.86 |
Qinghai | 1.146 | 6 | 1.199 | 5 | 4.60 |
Ningxia | 0.544 | 26 | 0.436 | 23 | −19.88 |
Xinjiang | 1.157 | 4 | 0.551 | 19 | −52.32 |
Area | 2011 | 2020 | Rate% | ||
---|---|---|---|---|---|
Index | Rank | Index | Rank | ||
Beijing | 0.081 | 30 | 0.081 | 31 | −0.14 |
Tianjin | 0.089 | 29 | 0.103 | 30 | 15.58 |
Hebei | 0.402 | 4 | 0.391 | 10 | −2.61 |
Shanxi | 0.184 | 21 | 0.283 | 18 | 53.94 |
Inner Mongolia | 0.328 | 9 | 0.523 | 5 | 59.53 |
Liaoning | 0.259 | 12 | 0.288 | 16 | 11.16 |
Jilin | 0.360 | 7 | 0.483 | 7 | 34.24 |
Heilongjiang | 0.598 | 1 | 0.925 | 1 | 54.73 |
Shanghai | 0.077 | 31 | 0.161 | 25 | 108.86 |
Jiangsu | 0.383 | 5 | 0.497 | 6 | 29.74 |
Zhejiang | 0.187 | 19 | 0.210 | 22 | 12.32 |
Anhui | 0.371 | 6 | 0.600 | 3 | 61.76 |
Fujian | 0.154 | 25 | 0.159 | 26 | 3.33 |
Jiangxi | 0.259 | 13 | 0.324 | 14 | 25.02 |
Shandong | 0.512 | 2 | 0.661 | 2 | 29.07 |
Henan | 0.461 | 3 | 0.599 | 4 | 29.95 |
Hubei | 0.322 | 10 | 0.389 | 11 | 20.91 |
Hunan | 0.318 | 11 | 0.469 | 8 | 47.41 |
Guangdong | 0.183 | 22 | 0.175 | 24 | −4.33 |
Guangxi | 0.200 | 17 | 0.251 | 19 | 25.52 |
Hainan | 0.089 | 28 | 0.110 | 29 | 23.93 |
Chongqing | 0.187 | 20 | 0.359 | 12 | 91.91 |
Sichuan | 0.354 | 8 | 0.419 | 9 | 18.49 |
Guizhou | 0.158 | 23 | 0.227 | 20 | 43.42 |
Yunnan | 0.252 | 14 | 0.339 | 13 | 34.61 |
Tibet | 0.128 | 26 | 0.146 | 27 | 13.92 |
Shaanxi | 0.192 | 18 | 0.223 | 21 | 15.94 |
Gansu | 0.204 | 15 | 0.313 | 15 | 53.23 |
Qinghai | 0.091 | 27 | 0.139 | 28 | 53.24 |
Ningxia | 0.158 | 24 | 0.187 | 23 | 18.57 |
Xinjiang | 0.203 | 16 | 0.287 | 17 | 41.57 |
Area | 2011 | 2020 | Rate% | ||||
---|---|---|---|---|---|---|---|
Index | Rank | Type | Index | Rank | Type | ||
Beijing | 0.318 | 30 | ② | 0.311 | 31 | ② | −2.11 |
Tianjin | 0.319 | 29 | ② | 0.358 | 27 | ② | 12.13 |
Hebei | 0.472 | 8 | ④ | 0.446 | 13 | ④ | −5.58 |
Shanxi | 0.343 | 24 | ② | 0.388 | 22 | ② | 13.11 |
Inner Mongolia | 0.486 | 6 | ④ | 0.484 | 9 | ③ | −0.44 |
Liaoning | 0.446 | 12 | ④ | 0.416 | 19 | ④ | −6.76 |
Jilin | 0.460 | 9 | ④ | 0.453 | 12 | ③ | −1.50 |
Heilongjiang | 0.535 | 1 | ③ | 0.692 | 1 | ⑤ | 29.31 |
Shanghai | 0.307 | 31 | ② | 0.327 | 30 | ② | 6.39 |
Jiangsu | 0.505 | 3 | ④ | 0.512 | 6 | ④ | 1.44 |
Zhejiang | 0.398 | 18 | ② | 0.370 | 26 | ② | −7.00 |
Anhui | 0.454 | 10 | ④ | 0.515 | 5 | ③ | 13.56 |
Fujian | 0.379 | 21 | ② | 0.384 | 23 | ② | 1.30 |
Jiangxi | 0.405 | 16 | ④ | 0.436 | 16 | ④ | 7.66 |
Shandong | 0.519 | 2 | ④ | 0.534 | 3 | ③ | 2.84 |
Henan | 0.499 | 5 | ④ | 0.528 | 4 | ③ | 5.87 |
Hubei | 0.453 | 11 | ④ | 0.473 | 11 | ④ | 4.48 |
Hunan | 0.484 | 7 | ④ | 0.544 | 2 | ④ | 12.37 |
Guangdong | 0.403 | 17 | ④ | 0.398 | 20 | ② | −1.17 |
Guangxi | 0.413 | 14 | ④ | 0.440 | 15 | ④ | 6.56 |
Hainan | 0.338 | 27 | ② | 0.354 | 28 | ② | 4.67 |
Chongqing | 0.398 | 19 | ② | 0.493 | 8 | ④ | 23.92 |
Sichuan | 0.501 | 4 | ④ | 0.509 | 7 | ④ | 1.57 |
Guizhou | 0.376 | 22 | ② | 0.443 | 14 | ④ | 17.86 |
Yunnan | 0.393 | 20 | ② | 0.484 | 10 | ④ | 23.17 |
Tibet | 0.352 | 23 | ② | 0.379 | 24 | ② | 7.69 |
Shaanxi | 0.410 | 15 | ④ | 0.430 | 17 | ④ | 4.86 |
Gansu | 0.343 | 25 | ② | 0.389 | 21 | ① | 13.54 |
Qinghai | 0.326 | 28 | ② | 0.374 | 25 | ② | 14.71 |
Ningxia | 0.338 | 26 | ② | 0.347 | 29 | ② | 2.49 |
Xinjiang | 0.418 | 13 | ④ | 0.417 | 18 | ④ | −0.10 |
Average | 0.413 | — | — | 0.440 | — | — | 7.00 |
Coupling Coordination Level | 2011 | 2020 |
---|---|---|
Severe disorder | — | — |
Low coordination | Beijing, Tianjin, Shanxi, Shanghai, Zhejiang, Fujian, Hainan, Chongqing, Guizhou, Yunnan, Tibet, Gansu, Qinghai, Ningxia | Beijing, Tianjin, Shanxi, Shanghai, Zhejiang, Fujian, Guangdong, Hainan, Tibet, Qinghai, Gansu, Ningxia |
Moderate coordination | Hebei, Inner Mongolia, Liaoning, Jilin, Jiangsu, Anhui, Jiangxi, Shandong, Henan, Hubei, Hunan, Guangdong, Guangxi, Sichuan, Shaanxi, Xinjiang, Heilongjiang | Hebei, Inner Mongolia, Liaoning, Jilin, Jiangsu, Anhui, Jiangxi, Shandong, Henan, Hubei, Hunan, Guangxi, Chongqing, Sichuan, Guizhou, Yunnan, Shaanxi, Xinjiang |
High coordination | — | Heilongjiang |
Extreme coordination | — | — |
Year | Wg | Year | Wg |
---|---|---|---|
2011 | 0.143 * (1.459) | 2016 | 0.135 * (1.443) |
2012 | 0.153 * (1.548) | 2017 | 0.164 ** (1.710) |
2013 | 0.155 * (1.564) | 2018 | 0.158 ** (1.705) |
2014 | 0.154 * (1.567) | 2019 | 0.153 * (1.606) |
2015 | 0.111 (1.227) | 2020 | 0.210 ** (2.113) |
Year | High–High | Low–High | Low–Low | High–Low |
---|---|---|---|---|
2011 | Heilongjiang, Shandong, Jilin, Liaoning, Henan, Anhui, Hubei | Shanghai, Shanxi, Guizhou, Chongqing, Jiangxi | Beijing, Tianjin, Qinghai, Hainan, Ningxia, Gansu, Tibet, Fujian, Yunnan, Zhejiang, Guangdong, Guangxi, Shaanxi | Sichuan, Xinjiang, Hunan, Jiangsu, Inner Mongolia, Hebei |
2016 | Heilongjiang, Shandong, Jilin, Liaoning, Henan, Anhui, Hubei | Shanghai, Shanxi, Guizhou, Chongqing, Jiangxi, Tibet, Yunnan, Guangxi | Beijing, Tianjin, Qinghai, Hainan, Ningxia, Gansu, Fujian, Zhejiang, Guangdong, Shaanxi | Sichuan, Xinjiang, Hunan, Jiangsu, Inner Mongolia, Hebei |
2020 | Heilongjiang, Shandong, Jilin, Henan, Anhui, Hubei, Chongqing, Hunan | Shanxi, Guizhou, Jiangxi, Tibet, Liaoning, Shaanxi, Guangxi | Beijing, Tianjin, Qinghai, Hainan, Ningxia, Gansu, Fujian, Zhejiang, Guangdong, Shanghai, Xinjiang | Sichuan, Yunnan, Inner Mongolia, Jiangsu, Hebei |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, R.; Chen, J.; Li, M. Coupling and Coordinating Relationship between Agricultural Eco-Efficiency and Food Security System in China. Int. J. Environ. Res. Public Health 2023, 20, 431. https://doi.org/10.3390/ijerph20010431
Wang R, Chen J, Li M. Coupling and Coordinating Relationship between Agricultural Eco-Efficiency and Food Security System in China. International Journal of Environmental Research and Public Health. 2023; 20(1):431. https://doi.org/10.3390/ijerph20010431
Chicago/Turabian StyleWang, Ruixue, Jiancheng Chen, and Minhuan Li. 2023. "Coupling and Coordinating Relationship between Agricultural Eco-Efficiency and Food Security System in China" International Journal of Environmental Research and Public Health 20, no. 1: 431. https://doi.org/10.3390/ijerph20010431
APA StyleWang, R., Chen, J., & Li, M. (2023). Coupling and Coordinating Relationship between Agricultural Eco-Efficiency and Food Security System in China. International Journal of Environmental Research and Public Health, 20(1), 431. https://doi.org/10.3390/ijerph20010431