An Analysis of the Spatial Development of European Cities Based on Their Geometry and the CORINE Land Cover (CLC) Database
Abstract
:1. Introduction
1.1. Spatial Development of Cities
1.2. Fractal Dimension in Analyses of Urban Development
2. Materials and Methods
2.1. Study Area
2.2. Procedure for Calculating the Fractal Dimension of Boundaries and the Rate of Urban Development
- O is the perimeter;
- c is the shape constant;
- S is the surface area;
- Df is the box-counting fractal dimension.
- ΔDf is the increase in the fractal dimension;
- D1 is the fractal dimension in time t;
- D2 is the fractal dimension in time t + 1;
- i is the number for the analyzed city.
- ΔA i is the urban growth rate i city;
- A1 is the urban area in time t;
- A2 is the urban area in time t + 1,
- i is the number for the analyzed city.
- ΔAPi is the increase in the length of i city boundaries;
- P1 is the boundary length in time t;
- P2 is the boundary length in time t + 1;
- i is the number for the analyzed city.
- Class 8—
- in this rapid urban expansion, the city expands in an uncontrolled manner in all directions. New urban fabric is ragged and dendritic.
- Class 7—
- urban expansion involves mainly infill development between major transport routes, and obstacles are bypassed. Areas that are relatively sensitive to urbanization pressure are annexed by the city. City boundaries are more compact and regular.
- Class 6—
- urban expansion takes place only in the vicinity of urban infrastructure. Urban boundaries are smoother, but the city has a dendritic shape.
- Class 5—
- urban expansion takes place in areas that are more resistant to anthropogenic pressure. Urban boundaries are smoother and more compact.
- Class 4—
- urbanized areas disappear. City boundaries are more ragged and dendritic in shape. Examples of the above include reclaimed areas with urban infrastructure, in particular linear infrastructure.
- Class 3—
- in urban regression, urbanized areas disappear from the urban periphery. Urban boundaries are compact but ragged.
- Class 2—
- in the regression phase, urbanization regresses, and urbanized areas are found mainly in the vicinity of linear infrastructure. Urban boundaries evolve into a dendritic shape.
- Class 1—
- full regression occurs in all directions.
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
No. | City | Area 2000 | Perimeter 2000 | Df 2000 | Area 2006 | Perimeter 2006 | Df 2006 | Area 2012 | Perimeter 2012 | Df 2012 | Area 2018 | Perimeter 2018 | Df 2018 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | Aberdeen | 67,263,637 | 102,237 | 1.338 | 69,519,042 | 108,249 | 1.340 | 70,710,440 | 103,893 | 1.334 | 72,249,601 | 104,308 | 1.338 |
2 | Alicante | 50,496,580 | 192,360 | 1.422 | 81,238,955 | 262,196 | 1.446 | 77,068,189 | 202,382 | 1.412 | 79,707,784 | 212,726 | 1.420 |
3 | Almeria | 11,640,212 | 47,308 | 1.147 | 16,880,300 | 51,013 | 1.162 | 20,947,702 | 44,328 | 1.146 | 20,964,787 | 44,358 | 1.146 |
4 | Augsburg | 89,180,879 | 191,870 | 1.327 | 92,362,516 | 193,866 | 1.330 | 107,547,113 | 201,474 | 1.313 | 107,909,640 | 200,813 | 1.313 |
5 | Basel | 157,934,812 | 387,508 | 1.366 | 170,283,024 | 421,103 | 1.382 | 182,923,668 | 401,653 | 1.376 | 184,934,808 | 406,482 | 1.367 |
6 | Białystok | 64,455,729 | 100,112 | 1.328 | 75,273,396 | 156,922 | 1.376 | 80,130,273 | 159,010 | 1.376 | 83,448,907 | 168,136 | 1.378 |
7 | Bordeaux | 308,775,959 | 507,042 | 1.368 | 322,066,733 | 523,454 | 1.373 | 358,002,287 | 524,826 | 1.374 | 361,462,345 | 516,801 | 1.372 |
8 | Bournemouth | 142,992,121 | 217,121 | 1.323 | 147,159,663 | 207,152 | 1.317 | 150,338,702 | 213,805 | 1.324 | 150,513,812 | 214,668 | 1.324 |
9 | Brighton and Hove | 127,602,753 | 252,304 | 1.269 | 133,183,489 | 244,020 | 1.265 | 135,963,558 | 236,762 | 1.263 | 137,381,993 | 243,305 | 1.266 |
10 | Brunswick | 68,843,109 | 138,618 | 1.381 | 72,661,920 | 151,160 | 1.393 | 88,771,563 | 130,107 | 1.366 | 88,957,609 | 130,087 | 1.366 |
11 | Burgos | 20,668,599 | 44,840 | 1.156 | 23,074,207 | 87,269 | 1.274 | 27,158,455 | 83,590 | 1.273 | 35,929,603 | 106,524 | 1.311 |
12 | Cambridge | 37,317,910 | 111,882 | 1.334 | 49,680,391 | 139,553 | 1.349 | 51,974,652 | 142,752 | 1.353 | 53,166,626 | 140,307 | 1.351 |
13 | Cheltenham | 29,106,660 | 40,798 | 1.152 | 30,191,308 | 45,356 | 1.167 | 30,684,759 | 44,674 | 1.164 | 30,918,812 | 45,800 | 1.167 |
14 | Chemnitz | 95,025,243 | 237,192 | 1.400 | 100,236,312 | 227,238 | 1.394 | 134,918,653 | 311,087 | 1.388 | 132,202,434 | 323,719 | 1.393 |
15 | Colchester | 31,736,115 | 73,822 | 1.260 | 36,473,417 | 63,203 | 1.233 | 37,425,123 | 60,971 | 1.229 | 38,124,252 | 61,665 | 1.232 |
16 | Crawley | 45,806,994 | 95,786 | 1.296 | 64,077,035 | 128,968 | 1.320 | 64,920,112 | 128,877 | 1.320 | 65,106,310 | 129,090 | 1.320 |
17 | Częstochowa | 80,208,849 | 251,242 | 1.419 | 109,027,693 | 360,277 | 1.399 | 110,550,809 | 366,066 | 1.402 | 110,727,554 | 366,174 | 1.402 |
18 | Derby | 70,670,120 | 97,400 | 1.326 | 71,285,720 | 108,930 | 1.351 | 71,452,501 | 117,970 | 1.361 | 72,826,329 | 123,782 | 1.370 |
19 | Erfurt | 57,566,592 | 129,652 | 1.367 | 63,353,156 | 151,406 | 1.385 | 67,939,309 | 158,182 | 1.395 | 68,624,471 | 161,275 | 1.390 |
20 | Freiburg im Breisgau | 39,406,616 | 73,835 | 1.273 | 41,128,141 | 81,033 | 1.290 | 43,809,285 | 81,568 | 1.292 | 44,000,784 | 82,542 | 1.301 |
21 | Geneva | 145,904,944 | 437,914 | 1.339 | 168,884,570 | 459,823 | 1.351 | 172,782,425 | 470,774 | 1.354 | 17,506,1836 | 473,532 | 1.353 |
22 | Gloucester | 42,890,396 | 71,197 | 1.274 | 45,536,294 | 76,261 | 1.288 | 47,975,868 | 70,319 | 1.279 | 50,161,412 | 69,618 | 1.276 |
23 | Osijek | 24,599,969 | 60,670 | 1.220 | 24,698,581 | 60,602 | 1.220 | 26,061,040 | 65,773 | 1.235 | 26,064,768 | 65,804 | 1.235 |
24 | Rijeka | 47,180,036 | 163,676 | 1.382 | 69,847,365 | 254,635 | 1.387 | 70,362,184 | 256,854 | 1.389 | 70,832,830 | 258,890 | 1.393 |
25 | Split | 46,084,157 | 132,089 | 1.308 | 61,027,336 | 197,320 | 1.288 | 61,440,402 | 199,455 | 1.290 | 61,440,405 | 199,455 | 1.290 |
26 | Graz | 128,847,606 | 330,578 | 1.379 | 159,050,472 | 462,702 | 1.389 | 159,756,599 | 459,561 | 1.388 | 160,518,832 | 461,399 | 1.389 |
27 | Karlsruhe | 86,889,721 | 222,599 | 1.370 | 89,062,547 | 225,848 | 1.373 | 102,202,011 | 211,531 | 1.365 | 104,230,470 | 221,698 | 1.364 |
28 | Kiel | 89,888,134 | 180,704 | 1.382 | 92,140,510 | 180,346 | 1.384 | 100,675,617 | 177,516 | 1.371 | 100,617,931 | 174,345 | 1.373 |
29 | Linz | 98,715,706 | 272,948 | 1.431 | 106,758,145 | 291,937 | 1.424 | 110,305,359 | 297,418 | 1.427 | 110,912,553 | 296,469 | 1.427 |
30 | Lubeck | 78,665,421 | 162,210 | 1.391 | 81,268,488 | 174,363 | 1.401 | 90,610,074 | 172,119 | 1.396 | 93,274,423 | 174,876 | 1.398 |
31 | Luton | 54,020,400 | 76,852 | 1.297 | 54,562,317 | 74,594 | 1.292 | 54,756,663 | 76,424 | 1.296 | 55,096,487 | 76,931 | 1.297 |
32 | Magdeburg | 90,037,584 | 97,132 | 1.297 | 92,257,932 | 97,828 | 1.301 | 95,883,524 | 106,259 | 1.308 | 96,013,646 | 106,229 | 1.308 |
33 | Messina | 36,905,747 | 144,325 | 1.287 | 39,970,198 | 135,624 | 1.236 | 40,630,620 | 137,292 | 1.238 | 41,305,243 | 146,569 | 1.249 |
34 | Milton Keynes | 83,929,329 | 87,082 | 1.292 | 94,139,524 | 87,831 | 1.294 | 94,081,158 | 94,075 | 1.304 | 96,267,594 | 97,678 | 1.310 |
35 | Monchengladbach | 77,042,656 | 230,723 | 1.373 | 77,549,121 | 231,028 | 1.373 | 122,412,255 | 314,548 | 1.345 | 123,498,839 | 313,507 | 1.339 |
36 | Munster | 9,176,266 | 27,890 | 0.998 | 9,544,808 | 31,076 | 1.014 | 10,192,354 | 30,858 | 1.034 | 10,192,355 | 30,858 | 1.034 |
37 | Nantes | 196,300,406 | 497,202 | 1.402 | 210,214,281 | 508,659 | 1.408 | 220,020,040 | 489,220 | 1.401 | 222,787,045 | 484,651 | 1.400 |
38 | Newport | 92,690,567 | 196,917 | 1.337 | 104,052,121 | 226,191 | 1.315 | 107,181,083 | 218,345 | 1.310 | 107,432,449 | 220,198 | 1.311 |
39 | Northampton | 63,236,559 | 83,886 | 1.312 | 72,886,653 | 91,633 | 1.323 | 74,017,544 | 94,504 | 1.327 | 75,220,301 | 94,775 | 1.328 |
40 | Norwich | 58,350,202 | 105,102 | 1.341 | 68,785,504 | 106,601 | 1.348 | 71,163,865 | 113,734 | 1.355 | 72,476,976 | 116,894 | 1.361 |
41 | Oviedo | 30,270,394 | 130,194 | 1.326 | 40,454,565 | 159,681 | 1.351 | 46,695,897 | 159,549 | 1.342 | 46,981,231 | 162,124 | 1.344 |
42 | Padua | 113,177,353 | 480,654 | 1.367 | 122,373,858 | 522,587 | 1.382 | 130,302,472 | 520,817 | 1.380 | 132,809,463 | 523,260 | 1.378 |
43 | Radom | 63,372,848 | 227,487 | 1.394 | 90,990,809 | 300,446 | 1.409 | 102,731,711 | 309,310 | 1.407 | 105,125,141 | 316,793 | 1.410 |
44 | Rennes | 84,397,742 | 147,301 | 1.352 | 97,395,636 | 188,583 | 1.401 | 99,621,628 | 186,842 | 1.399 | 103,629,305 | 180,597 | 1.393 |
45 | Rostock | 80,216,869 | 203,482 | 1.428 | 84,941,850 | 215,400 | 1.442 | 95,138,942 | 214,734 | 1.437 | 95,422,326 | 214,270 | 1.437 |
46 | Salzburg | 60,770,398 | 159,021 | 1.408 | 63,451,964 | 189,834 | 1.418 | 62,272,285 | 197,466 | 1.423 | 62,282,265 | 198,602 | 1.425 |
47 | Santander | 46,175,380 | 206,776 | 1.412 | 58,128,853 | 190,515 | 1.414 | 63,353,448 | 236,678 | 1.431 | 63,459,655 | 236,063 | 1.431 |
48 | Stavanger | 72,917,640 | 188,031 | 1.341 | 74,362,384 | 193,489 | 1.332 | 77,402,931 | 193,773 | 1.334 | 79,872,570 | 190,696 | 1.335 |
49 | Strasbourg | 140,282,522 | 265,111 | 1.341 | 147,162,531 | 264,428 | 1.345 | 150,239,157 | 272,174 | 1.346 | 150,481,183 | 271,274 | 1.345 |
50 | Tampere | 167,864,760 | 501,069 | 1.337 | 173,900,228 | 524,051 | 1.344 | 193,083,347 | 527,909 | 1.348 | 202,683,538 | 508,279 | 1.344 |
51 | Taranto | 37,633,351 | 75,272 | 1.274 | 38,159,634 | 78,113 | 1.278 | 39,231,719 | 74,704 | 1.276 | 40,245,200 | 72,357 | 1.271 |
52 | Toruń | 51,195,714 | 117,397 | 1.365 | 73,447,782 | 181,093 | 1.363 | 80,300,568 | 198,199 | 1.365 | 80,519,719 | 198,545 | 1.365 |
53 | Trieste | 35,666,462 | 119,988 | 1.329 | 45,250,584 | 157,616 | 1.384 | 50,507,992 | 166,366 | 1.373 | 50,950,231 | 168,836 | 1.375 |
54 | Trondheim | 60,497,462 | 118,299 | 1.326 | 61,437,964 | 126,246 | 1.340 | 66,239,648 | 128,983 | 1.339 | 66,917,558 | 129,200 | 1.340 |
55 | Uppsala | 45,758,479 | 96,304 | 1.299 | 46,587,699 | 95,812 | 1.299 | 48,250,041 | 100,958 | 1.312 | 48,504,973 | 99,396 | 1.310 |
56 | Västerås | 54,461,025 | 75,194 | 1.288 | 56,785,936 | 86,065 | 1.307 | 57,440,334 | 85,526 | 1.306 | 77,730,254 | 304,210 | 1.386 |
57 | Verona | 45,782,281 | 137,632 | 1.370 | 76,586,414 | 305,048 | 1.386 | 77,356,561 | 304,873 | 1.386 | 79,615,225 | 337,288 | 1.383 |
58 | Vigo | 63,774,393 | 144,690 | 1.310 | 78,190,764 | 338,234 | 1.383 | 79,615,225 | 337,288 | 1.383 | 60,542,618 | 97,247 | 1.310 |
References
- Fang, C.; Yu, D. Urban Agglomeration: An Evolving Concept of an Emerging Phenomenon. Landsc. Urban Plan. 2017, 162, 126–136. [Google Scholar] [CrossRef]
- Samuelsson, K.; Giusti, M.; Peterson, G.D.; Legeby, A.; Brandt, S.A.; Barthel, S. Impact of Environment on People’s Everyday Experiences in Stockholm. Landsc. Urban Plan. 2018, 171, 7–17. [Google Scholar] [CrossRef]
- Malamis, S.; Katsou, E.; Inglezakis, V.J.; Kershaw, S.; Venetis, D.; Folini, S. Urban Environment. In Environment and Development: Basic Principles, Human Activities, and Environmental Implications; Elsevier: Amsterdam, The Netherlands, 2016. [Google Scholar]
- Cieślak, I.; Biłozor, A.; Szuniewicz, K. The Use of the CORINE Land Cover (CLC) Database for Analyzing Urban Sprawl. Remote Sens. 2020, 12, 282. [Google Scholar] [CrossRef] [Green Version]
- Maktav, D.; Erbek, F.S. Analysis of Urban Growth Using Multi-Temporal Satellite Data in Istanbul, Turkey. Int. J. Remote Sens. 2005, 26, 797–810. [Google Scholar] [CrossRef]
- Batty, M.; Besussi, E.; Chin, N. Traffic, Urban Growth and Suburban Sprawl; Centre for Advanced Spatial Analysis (UCL): London, UK, 2003; Volume 44. [Google Scholar]
- Power, A. Social Exclusion and Urban Sprawl: Is the Rescue of Cities Possible? Reg. Stud. 2001, 35, 731–742. [Google Scholar] [CrossRef]
- Wong, A. The Impact of Mobile Phones on the New Urban Poor: Leaving an Urban Footprint? J. Urban Technol. 2008, 15, 25–38. [Google Scholar] [CrossRef]
- Viana, C.M.; Oliveira, S.; Oliveira, S.C.; Rocha, J. Land Use/Land Cover Change Detection and Urban Sprawl Analysis. In Spatial Modeling in GIS and R for Earth and Environmental Sciences; Elsevier: Amsterdam, The Netherlands, 2019. [Google Scholar]
- Gill, S.E.; Handley, J.F.; Ennos, A.R.; Pauleit, S.; Theuray, N.; Lindley, S.J. Characterising the Urban Environment of UK Cities and Towns: A Template for Landscape Planning. Landsc. Urban Plan. 2008, 87, 210–222. [Google Scholar] [CrossRef]
- Batty, M.; Fotheringham, A.S.; Longley, P. Fractal Geometry and Urban Morphology. Fractals in Geography; Prentice Hall: Kent, OH, USA, 1993. [Google Scholar]
- Biłozor, A.; Cieślak, I.; Czyża, S. An Analysis of Urbanisation Dynamics with the Use of the Fuzzy Set Theory-A Case Study of the City of Olsztyn. Remote Sens. 2020, 12, 1784. [Google Scholar] [CrossRef]
- Wilson, I.D.; Ware, J.M.; Ware, J.A. A Genetic Algorithm Approach to Cartographic Map Generalisation. Comput. Ind. 2003, 52, 291–304. [Google Scholar] [CrossRef]
- Wilson, A. Entropy in Urban and Regional Modelling: Retrospect and Prospect. Geogr. Anal. 2010, 42, 364–394. [Google Scholar] [CrossRef]
- Ellman, T. Infill: The Cure for Sprawl? Ariz. Issue Anal. 1997, 146, 7–9. [Google Scholar]
- Bruegmann, R. Urban Sprawl. In International Encyclopedia of the Social & Behavioral Sciences, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2015; pp. 778–783. ISBN 9780080970875. [Google Scholar]
- Forman, R.T.T. Some General Principles of Landscape and Regional Ecology. Landsc. Ecol. 1995, 10, 133–142. [Google Scholar] [CrossRef]
- Biłozor, A.; Cieślak, I. Review of Experience in Recent Studies on the Dynamics of Land Urbanisation. Land 2021, 10, 1117. [Google Scholar] [CrossRef]
- UN-HABITAT. Urbanization and Development: Emerging Futures. World Cities Report 2016; UN-Habitat: Nairobi, Kenia, 2016. [Google Scholar]
- Heimlich, R.E.; Anderson, W.D. Development at the Urban Fringe and Beyond: Impacts on Agriculture and Rural Land; Economic Research Service/USDA: Washington, DC, USA, 2001.
- Rana, M.S.; Sarkar, S. Prediction of Urban Expansion by Using Land Cover Change Detection Approach. Heliyon 2021, 7, e08437. [Google Scholar] [CrossRef]
- Hens, L.; Thinh, N.A.; Hanh, T.H.; Cuong, N.S.; Lan, T.D.; van Thanh, N.; Le, D.T. Sea-Level Rise and Resilience in Vietnam and the AsiaPacific: A Synthesis. Vietnam. J. Earth Sci. 2018, 40, 127–153. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Gao, J.; Yuan, F. Growth Type and Functional Trajectories: An Empirical Study of Urban Expansion in Nanjing, China. PLoS ONE 2016, 11, e0148389. [Google Scholar] [CrossRef]
- He, Q.; Tan, R.; Gao, Y.; Zhang, M.; Xie, P.; Liu, Y. Modeling Urban Growth Boundary Based on the Evaluation of the Extension Potential: A Case Study of Wuhan City in China. Habitat. Int. 2018, 72, 57–65. [Google Scholar] [CrossRef]
- Liang, X.; Liu, X.; Li, X.; Chen, Y.; Tian, Y.; Yao, Y. Delineating Multi-Scenario Urban Growth Boundaries with a CA-Based FLUS Model and Morphological Method. Landsc. Urban Plan. 2018, 177, 47–63. [Google Scholar] [CrossRef]
- Zheng, X.; Lv, L. A WOE Method for Urban Growth Boundary Delineation and Its Applications to Land Use Planning. Int. J. Geogr. Inf. Sci. 2015, 30, 691–707. [Google Scholar] [CrossRef]
- Tayyebi, A.; Pijanowski, B.C.; Tayyebi, A.H. An Urban Growth Boundary Model Using Neural Networks, GIS and Radial Parameterization: An Application to Tehran, Iran. Landsc. Urban Plan. 2011, 100, 35–44. [Google Scholar] [CrossRef]
- Cieślak, I.; Biłozor, A.; Salvati, L. Land as a Basis for Recent Progress in the Study of Urbanization Dynamics. Land 2022, 11, 118. [Google Scholar] [CrossRef]
- Arbesman, S. New Ways to Measure Science. Wired, 9 January 2012; 1. [Google Scholar]
- Frankhauser, P. Aspects Fractals Des Structures Urbaines. Espace Geogr. 1990, 19, 45–69. [Google Scholar] [CrossRef]
- Sonis, M. Book Review: The Dynamics of Cities: Ecological Determinism, Dualism and Chaos. Urban Stud. 1993, 30, 1613–1616. [Google Scholar] [CrossRef]
- Rosser, J.B. The Dynamics of Cities: Ecological Determinism, Dualism and Chaos. J. Econ. Behav. Organ. 1994, 24, 115–118. [Google Scholar] [CrossRef]
- Batty, M. New Ways of Looking at Cities. Nature 1995, 377, 574. [Google Scholar] [CrossRef]
- Tannier, C.; Thomas, I.; Vuidel, G.; Frankhauser, P. A Fractal Approach to Identifying Urban Boundaries. Geogr. Anal. 2011, 43, 211–227. [Google Scholar] [CrossRef]
- Feder, J. The Fractal Dimension. In Fractals; Springer: Berlin/Heidelberg, Germany, 1988. [Google Scholar]
- de Castro, L.N. Fractal geometry of nature. In Fundamentals of Natural Computing; Chapman and Hall/CRC: Boca Raton, FL, USA, 2020. [Google Scholar]
- Mandelbrot, B.B.; Wheeler, J.A. The Fractal Geometry of Nature. Am. J. Phys. 1983, 51, 286–287. [Google Scholar] [CrossRef]
- Sparrow, C.; Mandelbrot, B. The Fractal Geometry of Nature. J. R. Stat. Soc. Ser. A 1984, 147, 616. [Google Scholar] [CrossRef]
- de Keersmaecker, M.L.; Frankhauser, P.; Thomas, I. Using Fractal Dimensions for Characterizing Intra-Urban Diversity: The Example of Brussels. Geogr. Anal. 2003, 35, 310–328. [Google Scholar] [CrossRef]
- Chen, Y.G. Logistic Models of Fractal Dimension Growth of Urban Morphology. Fractals 2018, 26, 1850033. [Google Scholar] [CrossRef] [Green Version]
- Sreelekha, M.G.; Krishnamurthy, K.; Anjaneyulu, M.V.L.R. Fractal Assessment of Road Transport System. Eur. Transpor—Trasp. Eur. 2017, 5, 1–13. [Google Scholar]
- Thomas, I.; Frankhauser, P.; Biernacki, C. The Morphology of Built-up Landscapes in Wallonia (Belgium): A Classification Using Fractal Indices. Landsc. Urban Plan. 2008, 84, 99–115. [Google Scholar] [CrossRef]
- Batty, M. Space, Scale, and Scaling in Entropy Maximizing. Geogr. Anal. 2010, 42, 395–421. [Google Scholar] [CrossRef]
- Whitehand, J.W.R.; Batty, M.; Longley, P. Fractal Cities: A Geometry of Form and Function. Geogr. J. 1996, 162, 113. [Google Scholar] [CrossRef]
- Purevtseren, M.; Tsegmid, B.; Indra, M.; Sugar, M. The Fractal Geometry of Urban Land Use: The Case of Ulaanbaatar City, Mongolia. Land 2018, 7, 67. [Google Scholar] [CrossRef] [Green Version]
- Molinero, C. A Fractal Theory of Urban Growth. Front. Phys. 2022, 10, 418. [Google Scholar] [CrossRef]
- Lerner, A.M.; Eakin, H. An Obsolete Dichotomy? Rethinking the Rural-Urban Interface in Terms of Food Security and Production in the Global South. Geogr. J. 2010, 177, 311–320. [Google Scholar] [CrossRef]
- Son, N.T.; Chen, C.F.; Chen, C.R.; Thanh, B.X.; Vuong, T.H. Assessment of Urbanization and Urban Heat Islands in Ho Chi Minh City, Vietnam Using Landsat Data. Sustain. Cities Soc. 2017, 30, 150–161. [Google Scholar] [CrossRef]
- Mulligan, G.F. Fractal Cities: A Geometry of Form and Function. Cities 1997, 14, 54–55. [Google Scholar] [CrossRef]
- Acevedo, W.; Masuoka, P. Time-Series Animation Techniques for Visualizing Urban Growth. Comput. Geosci. 1997, 23, 423–435. [Google Scholar] [CrossRef]
- Makse, H.A.; Havlin, S.; Stanley, H.E. Modelling Urban Growth Patterns. Nature 1995, 377, 608–612. [Google Scholar] [CrossRef]
- Ustaoglu, E.; Aydinoglu, A.C. Regional Variations of Land-Use Development and Land-Use/Cover Change Dynamics: A Case Study of Turkey. Remote Sens. 2019, 11, 885. [Google Scholar] [CrossRef]
- Pelorosso, R.; Leone, A.; Boccia, L. Land Cover and Land Use Change in the Italian Central Apennines: A Comparison of Assessment Methods. Appl. Geogr. 2009, 29, 35–48. [Google Scholar] [CrossRef]
- Cieslak, I.; Szuniewicz, K.; Czyża, S. Analysis of the Variation of the Areas under Urbanization Pressure Using Entropy Index. Procedia Eng. 2016, 161, 2001–2005. [Google Scholar] [CrossRef] [Green Version]
- Perdigão, V.; Annoni, A. Technical and Methodological Guide for Updating CORINE Land Cover Database; EARSeL: Paris, France, 1997. [Google Scholar]
- Biłozor, A.; Czyża, S.; Bajerowski, T. Identification and Location of a Transitional Zone between an Urban and a Rural Area Using Fuzzy Set Theory, CLC, and HRL Data. Sustainability 2019, 11, 7014. [Google Scholar] [CrossRef] [Green Version]
- Cieślak, I.; Szuniewicz, K.; Pawlewicz, K.; Czyża, S. Land Use Changes Monitoring with CORINE Land Cover Data. IOP Conf. Ser. Mater. Sci. Eng. 2017, 245, 052049. [Google Scholar] [CrossRef] [Green Version]
- United Nations. New Urban Agenda; United Nations: New York, NY, USA, 2017. [Google Scholar]
- Valentina, A.; Maria, A.R.; Carmelo, A.; Davide, A.; Ricardo, R.B.; Filipe, B.E.S.; Peter, B.; Paolo, B.; Flavio, B.; Ioris, B.; et al. The Future of Cities; Publications Office of the European Union: Luxembourg, 2019. [Google Scholar]
- European Environment Agency; Copernicus Land Monitoring Service. Corine Land Cover; European Environment Agency: Copenhagen, Denmark, 1995.
- Vaz, E.; Nijkamp, P.; Painho, M.; Caetano, M. A Multi-Scenario Forecast of Urban Change: A Study on Urban Growth in the Algarve. Landsc. Urban Plan. 2012, 104, 201–211. [Google Scholar] [CrossRef] [Green Version]
- Petrişor, A.-I. Using CORINE Data to Look at Deforestation in Romania: Distribution & Possible Consequences. Urban Arhit. Constr. 2015, 6, 83–90. [Google Scholar]
- Feranec, J.; Hazeu, G.; Christensen, S.; Jaffrain, G. Corine Land Cover Change Detection in Europe (Case Studies of the Netherlands and Slovakia). Land Use Policy 2007, 24, 234–247. [Google Scholar] [CrossRef]
- Bajerowski, T. Metodyka Wyboru Optymalnego Użytkowania Ziemi Na Obszarach Wiejskich; Wydawnictwo ART: Olsztyn, Poland, 1996. [Google Scholar]
- Schulz, D.; Yin, H.; Tischbein, B.; Verleysdonk, S.; Adamou, R.; Kumar, N. Land Use Mapping Using Sentinel-1 and Sentinel-2 Time Series in a Heterogeneous Landscape in Niger, Sahel. ISPRS J. Photogramm. Remote Sens. 2021, 178, 97–111. [Google Scholar] [CrossRef]
- de Jong, S.M.; Burrough, P.A. A Fractal Approach to the Classification of Mediterranean Vegetation Types in Remotely Sensed Images. Photogramm. Eng. Remote Sens. 1995, 61, 1041–1053. [Google Scholar]
- de Cola, L. Fractal Analysis of a Classified Landsat Scene. Photogramm. Eng. Remote Sens. 1989, 55, 601–610. [Google Scholar]
- Peitgen, H.-O.; Jürgens, H.; Saupe, D.; Feigenbaum, M.J. Chaos and Fractals: New Frontiers of Science; Springer: Berlin/Heidelberg, Germany, 1992; Volume 7. [Google Scholar]
- European Environment Agency. Urban Morphological Zones; European Environment Agency: Copenhagen, Denmark, 2006.
- Śleszyński, P.; Gibas, P.; Sudra, P. The Problem of Mismatch between the CORINE Land Cover Data Classification and the Development of Settlement in Poland. Remote Sens. 2020, 12, 2253. [Google Scholar] [CrossRef]
- Xie, Z.; Ye, X.; Zheng, Z.; Li, D.; Sun, L.; Li, R.; Benya, S. Modeling Polycentric Urbanization Using Multisource Big Geospatial Data. Remote Sens. 2019, 11, 310. [Google Scholar] [CrossRef] [Green Version]
- Krebs., C.J. Ecology: Pearson New International Edition: The Experimental Analysis of Distribution and Abundance; Pearson: London, UK, 2013. [Google Scholar]
- Jobe, J.M.; Crow, E.L.; Shimizu, K. Lognormal Distributions: Theory and Applications. Technometrics 1989, 31, 392. [Google Scholar] [CrossRef]
- Bretagnolle, A.; Paulus, F.; Pumain, D. Time and Space Scales for Measuring Urban Growth. Cybergeo Eur. J. Geogr. 2002, 2002. [Google Scholar] [CrossRef]
- van den Berg, L.; Drewett, R.; Klaassen, L.H.; Rossi, A.; Vijverberg, C.H.T. Urban Europe Vol. 1: A Study of Growth and Decline. Ann. Assoc. Am. Geogr. 1981, 73, 630–632. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions, or products referred to in the content. |
Class | P | A | Df |
---|---|---|---|
8 | ↑ | ↑ | ↑ |
7 | ↑ | ↑ | ↓ |
6 | ↑ | ↓ | ↑ |
5 | ↑ | ↓ | ↓ |
4 | ↓ | ↑ | ↑ |
3 | ↓ | ↑ | ↓ |
2 | ↓ | ↓ | ↑ |
1 | ↓ | ↓ | ↓ |
No. | City | ΔA 2000–2006 | ΔP 2000–2006 | ΔDf 2000–2006 | ΔA 2006–2012 | ΔP 2006–2012 | ΔDf 2006–2012 | ΔA 2012–2018 | ΔP 2012–2018 | ΔDf 2012–2018 |
---|---|---|---|---|---|---|---|---|---|---|
1 | Aberdeen | 0.034 | 0.059 | 0.002 | 0.017 | −0.040 | −0.004 | 0.022 | 0.004 | 0.003 |
2 | Alicante | 0.609 | 0.363 | 0.017 | −0.051 | −0.228 | −0.023 | 0.034 | 0.051 | 0.006 |
3 | Almeria | 0.450 | 0.078 | 0.014 | 0.241 | −0.131 | −0.014 | 0.001 | 0.001 | 0.000 |
4 | Augsburg | 0.036 | 0.010 | 0.002 | 0.164 | 0.039 | −0.013 | 0.003 | −0.003 | 0.000 |
5 | Basel | 0.078 | 0.087 | 0.012 | 0.074 | −0.046 | −0.005 | 0.011 | 0.012 | −0.007 |
6 | Białystok | 0.168 | 0.567 | 0.037 | 0.065 | 0.013 | 0.000 | 0.041 | 0.057 | 0.002 |
7 | Bordeaux | 0.043 | 0.032 | 0.004 | 0.112 | 0.003 | 0.000 | 0.010 | −0.015 | −0.001 |
8 | Bournemouth | 0.029 | −0.046 | −0.005 | 0.022 | 0.032 | 0.006 | 0.001 | 0.004 | 0.000 |
9 | Brighton and Hove | 0.044 | −0.033 | −0.003 | 0.021 | −0.030 | −0.002 | 0.010 | 0.028 | 0.003 |
10 | Brunswick | 0.056 | 0.090 | 0.009 | 0.222 | −0.139 | −0.019 | 0.002 | 0.000 | 0.000 |
11 | Burgos | 0.116 | 0.946 | 0.102 | 0.177 | −0.042 | −0.001 | 0.323 | 0.274 | 0.030 |
12 | Cambridge | 0.331 | 0.247 | 0.011 | 0.046 | 0.023 | 0.003 | 0.023 | −0.017 | −0.002 |
13 | Cheltenham | 0.037 | 0.112 | 0.013 | 0.016 | −0.015 | −0.003 | 0.008 | 0.025 | 0.003 |
14 | Chemnitz | 0.055 | −0.042 | −0.004 | 0.346 | 0.369 | −0.004 | −0.020 | 0.041 | 0.003 |
15 | Colchester | 0.149 | −0.144 | −0.021 | 0.026 | −0.035 | −0.003 | 0.019 | 0.011 | 0.002 |
16 | Crawley | 0.399 | 0.346 | 0.018 | 0.013 | −0.001 | 0.000 | 0.003 | 0.002 | 0.000 |
17 | Częstochowa | 0.359 | 0.434 | −0.014 | 0.014 | 0.016 | 0.002 | 0.002 | 0.000 | 0.000 |
18 | Derby | 0.009 | 0.118 | 0.019 | 0.002 | 0.083 | 0.008 | 0.019 | 0.049 | 0.006 |
19 | Erfurt | 0.101 | 0.168 | 0.014 | 0.072 | 0.045 | 0.007 | 0.010 | 0.020 | −0.004 |
20 | Freiburg im Breisgau | 0.044 | 0.097 | 0.014 | 0.065 | 0.007 | 0.001 | 0.004 | 0.012 | 0.007 |
21 | Geneva | 0.158 | 0.050 | 0.009 | 0.023 | 0.024 | 0.003 | 0.013 | 0.006 | −0.001 |
22 | Gloucester | 0.062 | 0.071 | 0.011 | 0.054 | −0.078 | −0.007 | 0.046 | −0.010 | −0.002 |
23 | Osijek | 0.004 | −0.001 | 0.000 | 0.055 | 0.085 | 0.012 | 0.000 | 0.000 | 0.000 |
24 | Rijeka | 0.480 | 0.556 | 0.004 | 0.007 | 0.009 | 0.001 | 0.007 | 0.008 | 0.003 |
25 | Split | 0.324 | 0.494 | −0.015 | 0.007 | 0.011 | 0.001 | 0.000 | 0.000 | 0.000 |
26 | Graz | 0.234 | 0.400 | 0.007 | 0.004 | −0.007 | −0.001 | 0.005 | 0.004 | 0.000 |
27 | Karlsruhe | 0.025 | 0.015 | 0.003 | 0.148 | −0.063 | −0.006 | 0.020 | 0.048 | −0.001 |
28 | Kiel | 0.025 | −0.002 | 0.001 | 0.093 | −0.016 | −0.010 | −0.001 | −0.018 | 0.002 |
29 | Linz | 0.082 | 0.070 | −0.005 | 0.033 | 0.019 | 0.002 | 0.006 | −0.003 | 0.000 |
30 | Lubeck | 0.033 | 0.075 | 0.007 | 0.115 | −0.013 | −0.004 | 0.029 | 0.016 | 0.001 |
31 | Luton | 0.010 | −0.029 | −0.004 | 0.004 | 0.025 | 0.004 | 0.006 | 0.007 | 0.000 |
32 | Magdeburg | 0.025 | 0.007 | 0.003 | 0.039 | 0.086 | 0.005 | 0.001 | 0.000 | 0.000 |
33 | Messina | 0.083 | −0.060 | −0.040 | 0.017 | 0.012 | 0.001 | 0.017 | 0.068 | 0.009 |
34 | Milton Keynes | 0.122 | 0.009 | 0.002 | −0.001 | 0.071 | 0.008 | 0.023 | 0.038 | 0.005 |
35 | Monchengladbach | 0.007 | 0.001 | 0.000 | 0.579 | 0.362 | −0.020 | 0.009 | −0.003 | −0.005 |
36 | Munster | 0.040 | 0.114 | 0.016 | 0.068 | −0.007 | 0.020 | 0.000 | 0.000 | 0.000 |
37 | Nantes | 0.071 | 0.023 | 0.004 | 0.047 | −0.038 | −0.005 | 0.013 | −0.009 | −0.001 |
38 | Newport | 0.123 | 0.149 | −0.016 | 0.030 | −0.035 | −0.004 | 0.002 | 0.008 | 0.001 |
39 | Northampton | 0.153 | 0.092 | 0.008 | 0.016 | 0.031 | 0.003 | 0.016 | 0.003 | 0.001 |
40 | Norwich | 0.179 | 0.014 | 0.005 | 0.035 | 0.067 | 0.005 | 0.019 | 0.028 | 0.004 |
41 | Oviedo | 0.336 | 0.226 | 0.019 | 0.154 | −0.001 | −0.006 | 0.006 | 0.016 | 0.001 |
42 | Padua | 0.081 | 0.087 | 0.011 | 0.065 | −0.003 | −0.001 | 0.019 | 0.005 | −0.002 |
43 | Radom | 0.436 | 0.321 | 0.011 | 0.129 | 0.030 | −0.001 | 0.023 | 0.024 | 0.002 |
44 | Rennes | 0.154 | 0.280 | 0.036 | 0.023 | −0.009 | −0.001 | 0.040 | −0.033 | −0.005 |
45 | Rostock | 0.059 | 0.059 | 0.010 | 0.120 | −0.003 | −0.004 | 0.003 | −0.002 | 0.000 |
46 | Salzburg | 0.044 | 0.194 | 0.007 | −0.019 | 0.040 | 0.004 | 0.000 | 0.006 | 0.001 |
47 | Santander | 0.259 | −0.079 | 0.001 | 0.090 | 0.242 | 0.012 | 0.002 | −0.003 | 0.000 |
48 | Stavanger | 0.020 | 0.029 | −0.006 | 0.041 | 0.001 | 0.002 | 0.032 | −0.016 | 0.001 |
49 | Strasbourg | 0.049 | −0.003 | 0.003 | 0.021 | 0.029 | 0.001 | 0.002 | −0.003 | −0.001 |
50 | Tampere | 0.036 | 0.046 | 0.006 | 0.110 | 0.007 | 0.003 | 0.050 | −0.037 | −0.003 |
51 | Taranto | 0.014 | 0.038 | 0.003 | 0.028 | −0.044 | −0.002 | 0.026 | −0.031 | −0.004 |
52 | Toruń | 0.435 | 0.543 | −0.002 | 0.093 | 0.094 | 0.002 | 0.003 | 0.002 | 0.000 |
53 | Trieste | 0.269 | 0.314 | 0.041 | 0.116 | 0.056 | −0.008 | 0.009 | 0.015 | 0.001 |
54 | Trondheim | 0.016 | 0.067 | 0.010 | 0.078 | 0.022 | 0.000 | 0.010 | 0.002 | 0.001 |
55 | Uppsala | 0.018 | −0.005 | −0.001 | 0.036 | 0.054 | 0.010 | 0.005 | −0.015 | −0.001 |
56 | Västerås | 0.043 | 0.145 | 0.015 | 0.012 | −0.006 | −0.001 | 0.353 | 2.557 | 0.061 |
57 | Verona | 0.673 | 1.216 | 0.012 | 0.010 | −0.001 | 0.000 | 0.029 | 0.106 | −0.002 |
58 | Vigo | 0.226 | 1.338 | 0.056 | 0.018 | −0.003 | 0.000 | −0.240 | −0.712 | −0.052 |
No. | City | 2006 | 2012 | 2018 |
---|---|---|---|---|
1 | Aberdeen | 8 | 5 | 8 |
2 | Alicante | 8 | 1 | 8 |
3 | Almeria | 8 | 5 | 8 |
4 | Augsburg | 8 | 7 | 5 |
5 | Basel | 8 | 5 | 7 |
6 | Białystok | 8 | 8 | 8 |
7 | Bordeaux | 8 | 8 | 5 |
8 | Bournemouth | 5 | 8 | 8 |
9 | Brighton and Hove | 5 | 5 | 8 |
10 | Brunswick | 8 | 5 | 6 |
11 | Burgos | 8 | 5 | 8 |
12 | Cambridge | 8 | 8 | 5 |
13 | Cheltenham | 8 | 5 | 8 |
14 | Chemnitz | 5 | 7 | 4 |
15 | Colchester | 5 | 5 | 8 |
16 | Crawley | 8 | 5 | 8 |
17 | Częstochowa | 7 | 8 | 1 |
18 | Derby | 8 | 8 | 8 |
19 | Erfurt | 8 | 8 | 7 |
20 | Freiburg im Breisgau | 8 | 8 | 8 |
21 | Geneva | 8 | 8 | 7 |
22 | Gloucester | 8 | 5 | 5 |
23 | Osijek | 5 | 8 | 8 |
24 | Rijeka | 8 | 8 | 8 |
25 | Split | 7 | 8 | 1 |
26 | Graz | 8 | 5 | 8 |
27 | Karlsruhe | 8 | 5 | 7 |
28 | Kiel | 6 | 5 | 2 |
29 | Linz | 7 | 8 | 5 |
30 | Lubeck | 8 | 5 | 8 |
31 | Luton | 5 | 8 | 8 |
32 | Magdeburg | 8 | 8 | 5 |
33 | Messina | 5 | 8 | 8 |
34 | Milton Keynes | 8 | 4 | 8 |
35 | Monchengladbach | 8 | 7 | 5 |
36 | Munster | 8 | 6 | 1 |
37 | Nantes | 8 | 5 | 5 |
38 | Newport | 7 | 5 | 8 |
39 | Northampton | 8 | 8 | 8 |
40 | Norwich | 8 | 8 | 8 |
41 | Oviedo | 8 | 5 | 8 |
42 | Padua | 8 | 5 | 7 |
43 | Radom | 8 | 7 | 8 |
44 | Rennes | 8 | 5 | 5 |
45 | Rostock | 8 | 5 | 5 |
46 | Salzburg | 8 | 4 | 8 |
47 | Santander | 6 | 8 | 5 |
48 | Stavanger | 7 | 8 | 6 |
49 | Strasbourg | 6 | 8 | 5 |
50 | Tampere | 8 | 8 | 5 |
51 | Taranto | 8 | 5 | 5 |
52 | Toruń | 7 | 8 | 1 |
53 | Trieste | 8 | 7 | 8 |
54 | Trondheim | 8 | 7 | 8 |
55 | Uppsala | 5 | 8 | 5 |
56 | Västerås | 8 | 5 | 8 |
57 | Verona | 8 | 6 | 7 |
58 | Vigo | 8 | 5 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Czyża, S.; Szuniewicz, K.; Cieślak, I.; Biłozor, A.; Bajerowski, T. An Analysis of the Spatial Development of European Cities Based on Their Geometry and the CORINE Land Cover (CLC) Database. Int. J. Environ. Res. Public Health 2023, 20, 2049. https://doi.org/10.3390/ijerph20032049
Czyża S, Szuniewicz K, Cieślak I, Biłozor A, Bajerowski T. An Analysis of the Spatial Development of European Cities Based on Their Geometry and the CORINE Land Cover (CLC) Database. International Journal of Environmental Research and Public Health. 2023; 20(3):2049. https://doi.org/10.3390/ijerph20032049
Chicago/Turabian StyleCzyża, Szymon, Karol Szuniewicz, Iwona Cieślak, Andrzej Biłozor, and Tomasz Bajerowski. 2023. "An Analysis of the Spatial Development of European Cities Based on Their Geometry and the CORINE Land Cover (CLC) Database" International Journal of Environmental Research and Public Health 20, no. 3: 2049. https://doi.org/10.3390/ijerph20032049
APA StyleCzyża, S., Szuniewicz, K., Cieślak, I., Biłozor, A., & Bajerowski, T. (2023). An Analysis of the Spatial Development of European Cities Based on Their Geometry and the CORINE Land Cover (CLC) Database. International Journal of Environmental Research and Public Health, 20(3), 2049. https://doi.org/10.3390/ijerph20032049