The radioactivity in tobacco leaves collected from 15 different regions of Greece and before cigarette production was studied in order to find out any association between the root uptake of radionuclides from soil ground by the tobacco plants and the effective dose induced to smokers from cigarette tobacco due to the naturally occurring primordial radionuclides , such as
226Ra and
210Pb of the uranium series and
228Ra of the thorium series and/or man-made radionuclides, such as
137Cs of Chernobyl origin. Gamma-ray spectrometry was applied using Ge planar and coaxial type detectors of high resolution and high efficiency. It was concluded that the activities of the radioisotopes of radium,
226Ra and
228Ra in the tobacco leaves reflected their origin from the soil by root uptake rather than fertilizers used in the cultivation of tobacco plants. Lead-210 originated from the air and was deposited onto the tobacco leaves and trapped by the trichomes. Potassium-40 in the tobacco leaves was due to root uptake either from soil or from fertilizer. The cesium radioisotopes
137Cs and
134Cs in tobacco leaves were due to root uptake and not due to deposition onto the leaf foliage as they still remained in soil four years after the Chernobyl reactor accident, but were absent from the atmosphere because of the rain washout (precipitation) and gravitational settling. The annual effective dose due to inhalation for adults (smokers) for
226Ra varied from 42.5 to 178.6 μSv/y (average 79.7 μSv/y), while for
228Ra from 19.3 to 116.0 μSv/y (average 67.1 μSv/y) and for
210Pb from 47.0 to 134.9 μSv/y (average 104.7 μSv/y), that is the same order of magnitude for each radionuclide. The sum of the effective doses of the three radionuclides varied from 151.9 to 401.3 μSv/y (average 251.5 μSv/y). The annual effective dose from
137Cs of Chernobyl origin was three orders of magnitude lower as it varied from 70.4 to 410.4 nSv/y (average 199.3 nSv/y).
Full article