The Effect of Caffeine Supplementation on Resistance and Jumping Exercise: The Interaction with CYP1A2 and ADORA2A Genotypes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Approach to the Problem
2.2. Subjects
2.3. Procedures
2.4. Anthropometrics
2.5. One Repetition Maximum Testing
2.6. Exercise Testing
2.7. Isometric Mid-Thigh Pull
2.8. Bosco Jump Test
2.9. Bench Press Testing
2.10. Habitual CAF Consumption
2.11. Supplements
2.12. Genotyping
2.13. Salivary Paraxanthine and CAF
2.14. Statistical Analysis
3. Results
3.1. Salivary CAF and Paraxanthine Concentrations
3.2. IMTP
3.3. Jump Performance
3.4. Bench Press
4. Discussion
4.1. Strength and Power Performance
4.2. CYP1A2 and ADORA2A Genotypes
4.3. Habitual CAF Intake
4.4. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Guest, N.S.; VanDusseldorp, T.A.; Nelson, M.T.; Grgic, J.; Schoenfeld, B.J.; Jenkins, N.D.M.; Arent, S.M.; Antonio, J.; Stout, J.R.; Trexler, E.T.; et al. International society of sports nutrition position stand: Caffeine and exercise performance. J. Int. Soc. Sport. Nutr. 2021, 18, 1. [Google Scholar] [CrossRef]
- Gu, L.; Gonzalez, F.J.; Kalow, W.; Tang, B.K. Biotransformation of caffeine, paraxanthine, theobromine and theophylline by cDNA-expressed human CYP1A2 and CYP2E1. Pharmacogenetics 1992, 2, 73–77. [Google Scholar] [CrossRef]
- Xing, D.; Yoo, C.; Gonzalez, D.; Nottingham, K.; Dickerson, B.; Leonard, M.; Ko, J.; Faries, M.; Kephart, W.; Purpura, M.; et al. Dose-Response of Paraxanthine on Cognitive Function: A Double Blind, Placebo Controlled, Crossover Trial. Nutrients 2021, 13, 4478. [Google Scholar] [CrossRef]
- Guest, N.; Corey, P.; Vescovi, J.; El-Sohemy, A. Caffeine, CYP1A2 Genotype, and Endurance Performance in Athletes. Med. Sci. Sport. Exerc. 2018, 50, 1570–1578. [Google Scholar] [CrossRef] [PubMed]
- Womack, C.J.; Saunders, M.J.; Bechtel, M.K.; Bolton, D.J.; Martin, M.; Luden, N.D.; Dunham, W.; Hancock, M. The influence of a CYP1A2 polymorphism on the ergogenic effects of caffeine. J. Int. Soc. Sport. Nutr. 2012, 9, 7. [Google Scholar] [CrossRef] [Green Version]
- Benowitz, N.L.; Jacob, P., 3rd; Mayan, H.; Denaro, C. Sympathomimetic effects of paraxanthine and caffeine in humans. Clin. Pharmacol. Ther. 1995, 58, 684–691. [Google Scholar] [CrossRef]
- Chou, C.C.; Vickroy, T.W. Antagonism of adenosine receptors by caffeine and caffeine metabolites in equine forebrain tissues. Am. J. Vet. Res. 2003, 64, 216–224. [Google Scholar] [CrossRef]
- Karcz-Kubicha, M.; Antoniou, K.; Terasmaa, A.; Quarta, D.; Solinas, M.; Justinova, Z.; Pezzola, A.; Reggio, R.; Müller, C.E.; Fuxe, K.; et al. Involvement of adenosine A1 and A2A receptors in the motor effects of caffeine after its acute and chronic administration. Neuropsychopharmacology 2003, 28, 1281–1291. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shi, D.; Daly, J.W. Chronic effects of xanthines on levels of central receptors in mice. Cell. Mol. Neurobiol. 1999, 19, 719–732. [Google Scholar] [CrossRef]
- Yoo, C.; Xing, D.; Gonzalez, D.; Nottingham, K.; Dickerson, B.; Leonard, M.; Ko, J.; Faries, M.; Kephart, W.; Purpura, M.; et al. Acute Paraxanthine Ingestion Improves Cognition and Short-Term Memory and Helps Sustain Attention in a Double-Blind, Placebo-Controlled, Crossover Trial. Nutrients 2021, 13, 3980. [Google Scholar] [CrossRef] [PubMed]
- Jäger, R.; Purpura, M.; Wells, S.D.; Liao, K.; Godavarthi, A. Paraxanthine Supplementation Increases Muscle Mass, Strength, and Endurance in Mice. Nutrients 2022, 14, 893. [Google Scholar] [CrossRef]
- Davis, J.M.; Zhao, Z.; Stock, H.S.; Mehl, K.A.; Buggy, J.; Hand, G.A. Central nervous system effects of caffeine and adenosine on fatigue. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2003, 284, R399–R404. [Google Scholar] [CrossRef] [Green Version]
- Fredholm, B.B.; Yang, J.; Wang, Y. Low, but not high, dose caffeine is a readily available probe for adenosine actions. Mol. Asp. Med. 2017, 55, 20–25. [Google Scholar] [CrossRef] [PubMed]
- Cornelis, M.C.; El-Sohemy, A.; Campos, H. Genetic polymorphism of the adenosine A2A receptor is associated with habitual caffeine consumption. Am. J. Clin. Nutr. 2007, 86, 240–244. [Google Scholar] [CrossRef] [Green Version]
- Childs, E.; Hohoff, C.; Deckert, J.; Xu, K.; Badner, J.; de Wit, H. Association between ADORA2A and DRD2 polymorphisms and caffeine-induced anxiety. Neuropsychopharmacology 2008, 33, 2791–2800. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Loy, B.D.; O’Connor, P.J.; Lindheimer, J.B.; Covert, S.F. Caffeine is ergogenic for adenosine A2A receptor gene (ADORA2A) T allele homozygotes: A pilot study. J. Caf. Res. 2015, 5, 73–81. [Google Scholar] [CrossRef]
- Grgic, J.; Pickering, C.; Bishop, D.J.; Del Coso, J.; Schoenfeld, B.J.; Tinsley, G.M.; Pedisic, Z. ADORA2A C Allele Carriers Exhibit Ergogenic Responses to Caffeine Supplementation. Nutrients 2020, 12, 741. [Google Scholar] [CrossRef] [Green Version]
- Carswell, A.T.; Howland, K.; Martinez-Gonzalez, B.; Baron, P.; Davison, G. The effect of caffeine on cognitive performance is influenced by CYP1A2 but not ADORA2A genotype, yet neither genotype affects exercise performance in healthy adults. Eur. J. Appl. Physiol. 2020, 120, 1495–1508. [Google Scholar] [CrossRef] [PubMed]
- Fredholm, B.B. Adenosine actions and adenosine receptors after 1 week treatment with caffeine. Acta Physiol. Scand. 1982, 115, 283–286. [Google Scholar] [CrossRef]
- Muñoz, A.; López-Samanes, Á.; Aguilar-Navarro, M.; Varillas-Delgado, D.; Rivilla-García, J.; Moreno-Pérez, V.; Del Coso, J. Effects of CYP1A2 and ADORA2A Genotypes on the Ergogenic Response to Caffeine in Professional Handball Players. Genes 2020, 11, 933. [Google Scholar] [CrossRef]
- Nikodijević, O.; Jacobson, K.A.; Daly, J.W. Locomotor activity in mice during chronic treatment with CAF and withdrawal. Pharmacol. Biochem. Behav. 1993, 44, 199–216. [Google Scholar] [CrossRef] [Green Version]
- Bangsbo, J.; Jacobsen, K.; Nordberg, N.; Christensen, N.J.; Graham, T. Acute and habitual caffeine ingestion and metabolic responses to steady-state exercise. J. Appl. Physiol. 1992, 72, 1297–1303. [Google Scholar] [CrossRef]
- Karayigit, R.; Aras, D. One week of low or moderate doses of caffeinated coffee consumption does not induce tolerance to the acute effects of caffeine on sprint performance. Eur. J. Hum. Mov. 2021, 47, 49–60. [Google Scholar]
- Grgic, J.; Mikulic, P. Acute effects of caffeine supplementation on resistance exercise, jumping, and Wingate performance: No influence of habitual caffeine intake. Eur. J. Sport Sci. 2020, 2, 1165–1175. [Google Scholar] [CrossRef]
- Beaumont, R.; Cordery, P.; Funnell, M.; Mears, S.; James, L.; Watson, P. Chronic ingestion of a low dose of caffeine induces tolerance to the performance benefits of caffeine. J. Sport. Sci. 2017, 35, 1920–1927. [Google Scholar] [CrossRef]
- Gonçalves, L.S.; Painelli, V.S.; Yamaguchi, G.; Oliveira, L.F.; Saunders, B.; da Silva, R.P.; Maciel, E.; Artioli, G.G.; Roschel, H.; Gualano, B. Dispelling the myth that habitual caffeine consumption influences the performance response to acute caffeine supplementation. J. Appl. Physiol. 2017, 123, 213–220. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Irwin, C.; Desbrow, B.; Ellis, A.; O’Keeffe, B.; Grant, G.; Leveritt, M. Caffeine withdrawal and high-intensity endurance cycling performance. J. Sport. Sci. 2011, 29, 509–515. [Google Scholar] [CrossRef] [Green Version]
- Lara, B.; Ruiz-Moreno, C.; Salinero, J.J.; Del Coso, J. Time course of tolerance to the performance benefits of caffeine. PLoS ONE 2019, 14, e0210275. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Green, M.; FACSM. RISK STRATIFICATION: Effective Use of ACSM Guidelines and Integration of Professional Judgment. ACSMs Health Fit. J. 2020, 14, 22–28. [Google Scholar] [CrossRef]
- Kraemer, W.J.; Ratamess, N.A.; Fry, A.C.; French, D.N. Strength training: Development and evaluation of methodology. In Physiological Assessment of Human Fitness; Maud, P.J., Foster, C., Eds.; Human Kinetics: Champaign, IL, USA, 2005. [Google Scholar]
- Baechle, T.R.; Earle, R.W. Essential of Strength and Conditioning, 2nd ed.; Human Kinetics Publishers: Champaign, IL, USA, 2000. [Google Scholar]
- Verdijk, L.B.; van Loon, L.; Meijer, K.; Savelberg, H.H. One-repetition maximum strength test represents a valid means to assess leg strength in vivo in humans. J. Sport. Sci. 2009, 27, 59–68. [Google Scholar] [CrossRef] [PubMed]
- Ritti-Dias, R.M.; Avelar, A.; Salvador, E.P.; Cyrino, E.S. Influence of previous experience on resistance training on reliability of one-repetition maximum test. J. Strength Cond. Res. 2011, 25, 1418–1422. [Google Scholar] [CrossRef]
- Drake, D.; Kennedy, R.; Wallace, E. The Validity and Responsiveness of Isometric Lower Body Multi-Joint Tests of Muscular Strength: A Systematic Review. Sport. Med. Open 2017, 3, 23. [Google Scholar] [CrossRef] [Green Version]
- Harty, P.S.; Zabriskie, H.A.; Stecker, R.A.; Currier, B.S.; Tinsley, G.M.; Surowiec, K.; Jagim, A.R.; Richmond, S.R.; Kerksick, C.M. Caffeine Timing Improves Lower-Body Muscular Performance: A Randomized Trial. Front. Nutr. 2020, 7, 585900. [Google Scholar] [CrossRef] [PubMed]
- James, L.P.; Roberts, L.A.; Haff, G.G.; Kelly, V.G.; Beckman, E.M. Validity and Reliability of a Portable Isometric Mid-Thigh Clean Pull. J. Strength Cond. Res. 2017, 31, 1378–1386. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kent, M. The Oxford Dictionary of Sports Science & Medicine, 3rd ed.; Oxford University Press: Oxford, UK, 2006. [Google Scholar]
- Wadhi, T.; Rauch, J.T.; Tamulevicius, N.; Andersen, J.C.; De Souza, E.O. Validity and Reliability of the GymAware Linear Position Transducer for Squat Jump and Counter-Movement Jump Height. Sports 2018, 6, 177. [Google Scholar] [CrossRef] [Green Version]
- Raya-González, J.; Rendo-Urteaga, T.; Domínguez, R.; Castillo, D.; Rodríguez-Fernández, A.; Grgic, J. Acute Effects of Caffeine Supplementation on Movement Velocity in Resistance Exercise: A Systematic Review and Meta-analysis. Sport. Med. 2020, 50, 717–729. [Google Scholar] [CrossRef] [PubMed]
- Dorrell, H.F.; Moore, J.M.; Smith, M.F.; Gee, T.I. Validity and reliability of a linear positional transducer across commonly practised resistance training exercises. J. Sport. Sci. 2019, 37, 67–73. [Google Scholar] [CrossRef]
- Hoffman, J.R.; Ratamess, N.A.; Kang, J.; Rashti, S.L.; Faigenbaum, A.D. Effect of betaine supplementation on power performance and fatigue. J. Int. Soc. Sport. Nutr. 2009, 6, 7. [Google Scholar] [CrossRef] [Green Version]
- Bühler, E.; Lachenmeier, D.W.; Schlegel, K.; Winkler, G. Development of a tool to assess the caffeine intake among teenagers and young adults. Ernahr. Umsch. 2004, 61, 58–63. [Google Scholar]
- Garbieri, T.F.; Brozoski, D.T.; Dionísio, T.J.; Santos, C.F.; Neves, L.T. Human DNA extraction from whole saliva that was fresh or stored for 3, 6 or 12 months using five different protocols. J. Appl. Oral Sci. 2017, 25, 147–158. [Google Scholar] [CrossRef] [Green Version]
- Perera, V.; Gross, A.S.; McLachlan, A.J. Caffeine and paraxanthine HPLC assay for CYP1A2 phenotype assessment using saliva and plasma. Biomed. Chromatogr. 2010, 24, 1136–1144. [Google Scholar] [CrossRef]
- Chou, J.; Trexler, E.T.; Lazinica, B.; Pedisic, Z. Effects of caffeine intake on muscle strength and power: A systematic review and meta-analysis. J. Int. Soc. Sport. Nutr. 2018, 15, 11. [Google Scholar]
- Grgic, J.; Pickering, C. The effects of caffeine ingestion on isokinetic muscular strength: A meta-analysis. J. Sci. Med. Sport 2019, 22, 353–360. [Google Scholar] [CrossRef] [PubMed]
- Filip-Stachnik, A.; Krzysztofik, M.; Kaszuba, M.; Leznicka, K.; Kostrzewa, M.; Del Coso, J.; Wilk, M. Effects of Acute Caffeine Intake on Power Output and Movement Velocity During a Multiple-Set Bench Press Exercise among Mild Caffeine Users. J. Hum. Kinet. 2021, 78, 219–228. [Google Scholar] [CrossRef] [PubMed]
- Glaister, M.; Chopra, K.; Pereira De Sena, A.L.; Sternbach, C.; Morina, L.; Mavrommatis, Y. Caffeine, exercise physiology, and time-trial performance: No effect of ADORA2A or CYP1A2 genotypes. Appl. Physiol. Nutr. Metab. 2021, 46, 541–551. [Google Scholar] [CrossRef]
- Daly, J.W.; Butts-Lamb, P.; Padgett, W. Subclasses of adenosine receptors in the central nervous system: Interaction with caffeine and related methylxanthines. Cell. Mol. Neurobiol. 1983, 3, 69–80. [Google Scholar] [CrossRef] [PubMed]
- Orrú, M.; Guitart, X.; Karcz-Kubicha, M.; Solinas, M.; Justinova, Z.; Barodia, S.K.; Zanoveli, J.; Cortes, A.; Lluis, C.; Casado, V.; et al. Psychostimulant pharmacological profile of paraxanthine, the main metabolite of caffeine in humans. Neuropharmacology 2013, 67, 476–484. [Google Scholar] [CrossRef] [Green Version]
- Whalley, P.; Paton, C.; Dearing, C.G. Caffeine metabolites are associated with different forms of caffeine supplementation and with perceived exertion during endurance exercise. Biol. Sport. 2021, 38, 261–267. [Google Scholar] [CrossRef]
- Meeusen, R.; Roelands, B.; Spriet, L.L. Caffeine, exercise and the brain. In Limits of Human Endurance; Karger Publishers: London, UK, 2013; Volume 76, pp. 1–12. [Google Scholar]
- Rothwell, J.A.; Fillâtre, Y.; Martin, J.F.; Lyan, B.; Pujos-Guillot, E.; Fezeu, L.; Hercberg, S.; Comte, B.; Galan, P.; Touvier, M.; et al. New biomarkers of coffee consumption identified by the non-targeted metabolomic profiling of cohort study subjects. PLoS ONE 2014, 9, e93474. [Google Scholar] [CrossRef] [Green Version]
- Dhaenens, C.M.; Burnouf, S.; Simonin, C.; Van Brussel, E.; Duhamel, A.; Defebvre, L.; Duru, C.; Vuillaume, I.; Cazeneuve, C.; Charles, P.; et al. Huntington French Speaking Network. A genetic variation in the ADORA2A gene modifies age at onset in Huntington’s disease. Neurobiol. Dis. 2009, 35, 474–476. [Google Scholar] [CrossRef]
CYP1A2 | ADORA2A | Habitual CAF Intake | ||||||
---|---|---|---|---|---|---|---|---|
All | AA | C allele Carriers | CC | CT | TT | Low | High | |
Age (years) | 22.6 ± 4.1 | 22.4 ± 3.6 | 22.9 ± 4.8 | 23.2 ± 4.8 | 22.7 ± 4.2 | 21.0 ± 1.8 | 22.1 ± 4.5 | 23.2 ± 3.9 |
Height (cm) | 177.8 ± 7.2 | 178.6 ± 6.4 | 176.6 ± 8.2 | 174.9 ± 6.7 | 180.4 ± 6.8 | 177.9 ± 8.5 | 176.1 ± 7.6 | 179.6 ± 6.6 |
Weight (kg) | 83.5 ± 17.4 | 83.4 ± 9.7 | 83.8 ± 25.3 | 80.8 ± 10.4 | 83.0 ± 15.2 | 92.5 ± 35.9 | 78.4 ± 16.0 | 89.1 ± 17.8 |
Body fat (%) | 17.3 ± 7.2 | 16.2 ± 6.9 | 19.1 ± 7.4 | 18.6 ± 7.2 | 15.6 ± 5.9 | 19.1 ± 11.3 | 16.1 ± 4.6 | 18.6 ± 9.3 |
RT experience (years) | 4.3 ± 2.2 | 4.2 ± 2.2 | 4.5 ± 2.3 | 4.1 ± 2.7 | 4.5 ± 2.9 | 4.5 ± 1.7 | 4.0 ± 2.0 | 4.7 ± 2.5 |
1RM Bench press (kg) | 100 ± 21 | 105 ± 17 | 93 ± 23 | 100 ± 19 | 98 ± 16 | 111 ± 37 | 93 ± 17 | 108 ± 22 |
CAF intake (mg/d) | 145 ± 137 | 171 ± 158 | 107 ± 93 | 152 ± 145 | 117 ± 135 | 212 ± 125 | 35 ± 31 | 264 ± 100 |
CYP1A2 (AA/C allele) | n = 16/n = 11 | NA | NA | n = 7/n = 4 | n = 8/n = 4 | n = 1/n = 3 | n = 7/n = 7 | n = 9/n = 4 |
ADORA2A (CC/CT/TT) | n = 11/n = 12/ n = 4 | n = 7/n = 8/ n = 1 | n = 4/n = 4/ n = 3 | NA | NA | NA | n = 6/n = 4/ n = 3 | n = 5/n = 8/ n = 1 |
All Subjects | CYP1A2 rs762551 | ADORA2A rs5751876 | Habitual Caffeine Intake | ||||||
---|---|---|---|---|---|---|---|---|---|
AA | C-Allele Carriers | CC | CT | TT | High | Low | |||
1 IMTP force (N) | CAF | 2805 ± 525 | 2970 ± 543 | 2580 ± 424 | 2775 ± 548 | 2780 ± 526 | 2954 ± 586 | 2921 ± 620 | 2706 ± 426 |
PL | 2804 ± 564 | 2894 ± 650 | 2680 ± 420 | 2898 ± 661 | 2674 ± 501 | 2958 ± 542 | 2851 ± 658 | 2763 ± 493 | |
2 IMTP force (N) | CAF | 2794 ± 574 | 2977 ± 582 | 2544 ± 480 | 2768 ± 660 | 2777 ± 535 | 2911 ± 606 | 2944 ± 694 | 2665 ± 432 |
PL | 2757 ± 541 | 2874 ± 552 | 2596 ± 506 | 2764 ± 608 | 2690 ± 483 | 2941 ± 643 | 2866 ± 616 | 2664 ± 471 | |
Av IMTP force (N) | CAF | 2800 ± 544 | 2974 ± 555 | 2562 ± 449 | 2772 ± 597 | 2778 ± 527 | 2933 ± 590 | 2932 ± 650 | 2686 ± 426 |
PL | 2780 ± 543 | 2884 ± 602 | 2638 ± 330 | 2831 ± 630 | 2682 ± 478 | 2949 ± 588 | 2858 ± 624 | 2713 ± 477 | |
Jump peak power (W) | CAF | 2139 ± 395 | 2169 ± 370 | 2096 ± 444 | 2018 ± 394 | 2178 ± 276 | 2355 ± 661 | 2237 ± 363 | 2048 ± 415 |
PL | 2063 ± 486 | 2027 ± 526 | 2050 ± 377 | 1926 ± 376 | 2092 ± 399 | 2353 ± 897 | 2137 ± 525 | 1994 ± 455 | |
Jump av power (W) | CAF | 1846 ± 344 * | 1852 ± 322 | 1836 ± 389 | 1722 ± 302 | 1901 ± 285 | 2022 ± 559 | 1941 ± 295 * | 1758 ± 372 |
PL | 1792 ± 352 | 1779 ± 364 | 1767 ± 314 | 1682 ± 294 | 1834 ± 316 | 1970 ± 573 | 1852 ± 355 | 1736 ± 371 | |
Jump velocity max (m/s) | CAF | 1.87 ± 0.15 * | 1.87 ± 0.16 | 1.87 ± 0.15 | 1.82 ± 0.19 | 1.91 ± 0.10 | 1.89 ± 0.14 | 1.83 ± 0.13 | 1.91 ± 0.16 |
PL | 1.83 ± 0.15 | 1.82 ± 0.14 | 1.82 ± 0.18 | 1.78 ± 0.19 | 1.85 ± −0.12 | 1.89 ± 0.11 | 1.78 ± 0.15 | 1.87 ± 0.15 | |
Jump velocity av (m/s) | CAF | 1.75 ± 0.15 * | 1.74 ± 0.16 | 1.77 ± 0.14 * | 1.70 ± 0.20 * | 1.79 ± 0.09 * | 1.77 ± 0.12 | 1.71 ± 0.13 * | 1.78 ± 0.16 |
PL | 1.72 ± 0.15 | 1.71 ± 0.15 | 1.71 ± 0.16 | 1.67 ± 0.19 | 1.74 ± 0.11 | 1.75 ± 0.13 | 1.66 ± 0.14 | 1.76 ± 0.15 |
All Subjects | CYP1A2 rs762551 | ADORA2A rs5751876 | Habitual Caffeine Intake | ||||||
---|---|---|---|---|---|---|---|---|---|
AA | C-Allele Carriers | CC | CT | TT | Low | High | |||
Set 1 (reps to 60% fatigue) | CAF | 9.4 ± 1.8 $ | 9.7 ± 1.7 * | 9.0 ± 1.9 | 9.1 ± 2.1 | 9.6 ± 1.3 | 9.8 ± 2.8 | 9.1 ± 1.8 | 9.7 ± 1.9 |
PL | 8.9 ± 1.8 | 8.9 ± 1.8 | 8.9 ± 1.9 | 9.0 ± 2.0 | 8.8 ± 1.7 | 9.0 ± 2.0 | 8.9 ± 1.5 | 8.9 ± 2.1 | |
Set 2 (reps to 60% fatigue) | CAF | 7.8 ± 1.5 a | 8.1 ± 1.5 a | 7.5 ± 1.4 a | 7.5 ± 1.6 a | 8.1 ± 1.2 a | 8.0 ± 2.0 | 7.5 ± 1.6 | 8.1 ± 1.3 |
PL | 7.9 ± 1.4 a | 7.6 ± 1.3 | 8.3 ± 1.5 | 7.9 ± 1.6 | 7.9 ± 1.2 | 7.8 ± 1.5 | 7.8 ± 1.0 | 8.0 ± 1.7 | |
Set 3 (reps to 60% fatigue) | CAF | 7.2 ± 1.5 a | 7.3 ± 1.4 a | 7.2 ± 1.5 a | 7.5 ± 1.4 a | 7.1 ± 1.6 a | 7.0 ± 1.4 a | 7.4 ± 1.0 | 7.0 ± 1.8 |
PL | 7.1 ± 1.5 a | 7.3 ± 1.6 | 6.8 ± 1.2 ab | 7.3 ± 1.7 | 6.8 ± 1.2 a | 7.5 ± 1.7 | 7.4 ± 1.6 | 6.9 ± 1.4 | |
Set 4 (reps to exhaustion) | CAF | 12.0 ± 3.0 | 12.3 ± 2.8 | 11.6 ± 3.4 | 11.2 ± 3.7 | 12.4 ± 2.2 | 13.3 ± 3.3 | 12.8 ± 3.1 | 11.4 ± 28 |
PL | 12.1 ± 3.7 | 12.4 ± 3.8 | 11.6 ± 3.6 | 11.4 ± 3.8 | 11.9 ± 3.0 | 14.8 ± 5.1 | 12.8 ± 3.8 | 11.4 ± 3.7 | |
Total reps (four sets) | CAF | 36.5 ± 5.9 | 37.3 ± 5.7 | 35.3 ± 6.3 | 35.2 ± 6.6 | 37.2 ± 4.5 | 38.0 ± 8.6 | 36.8 ± 5.5 | 36.2 ± 6.5 |
PL | 36.0 ± 6.3 | 36.3 ± 6.8 | 35.6 ± 5.9 | 35.6 ± 7.5 | 35.4 ± 4.8 | 39.0 ± 8.0 | 36.9 ± 5.7 | 35.1 ± 6.9 |
All Subjects | CYP1A2 rs762551 | ADORA2A rs5751876 | Habitual Caffeine Intake | ||||||
---|---|---|---|---|---|---|---|---|---|
AA | C-Allele Carriers | CC | CT | TT | High | Low | |||
Set 1 peak power (W) | CAF | 372 ± 79 | 381 ± 84 | 357 ± 74 | 364 ± 51 | 371 ± 95 | 394 ± 107 | 375 ± 72 | 368 ± 88 |
PL | 373 ± 81 | 383 ± 72 | 359 ± 94 | 374 ± 71 | 359 ± 64 | 413 ± 148 | 376 ± 89 | 371 ± 75 | |
Set 2 peak power (W) | CAF | 367 ± 78 * | 369 ± 73 | 364 ± 87 | 356 ± 60 | 363 ± 76 * | 410 ± 126 | 373 ± 85 | 361 ± 73 |
PL | 346 ± 77 a | 348 ± 67 a | 342 ± 91 | 361 ± 61 | 323 ± 59 | 372 ± 145 | 352 ± 88 | 340 ± 69 | |
Set 3 peak power (W) | CAF | 353 ± 73 a | 358 ± 66 a | 346 ± 85 | 344 ± 53 | 349 ± 75 | 388 ± 121 | 360 ± 75 | 346 ± 74 |
PL | 340 ± 87 a | 343 ± 69 a | 334 ± 115 | 342 ± 77 | 318 ± 58 | 398 ± 164 | 348 ± 104 | 333 ± 73 | |
Set 1 mean velocity (m/s) | CAF | 0.54 ± 0.08 | 0.52 ± 0.08 | 0.56 ± 0.07 | 0.54 ± 0.06 | 0.54 ± 0.11 | 0.52 ± 0.03 | 0.50 ± 0.04 | 0.57 ± 0.10 |
PL | 0.54 ± 0.08 | 0.52 ± 0.07 | 0.56 ± 0.08 | 0.54 ± 0.08 | 0.54 ± 0.08 | 0.53 ± 0.08 | 0.49 ± 0.05 | 0.58 ± 0.08 | |
Set 2 mean velocity (m/s) | CAF | 0.53 ± 0.08 | 0.50 ± 0.08 | 0.57 ± 0.07 | 0.52 ± 0.05 | 0.54 ± 0.10 | 0.53 ± 0.09 | 0.50 ± 0.05 | 0.56 ± 0.09 |
PL | 0.50 ± 0.08 a | 0.48 ± 0.07 | 0.53 ± 0.08 | 0.52 ± 0.07 | 0.48 ± 0.09 | 048 ± 0.07 | 0.47 ± 0.05 | 0.52 ± 0.09 | |
Set 3 mean velocity (m/s) | CAF | 0.51 ± 0.09 | 0.49 ± 0.09 | 0.54 ± 0.08 | 0.50 ± 0.07 | 0.52 ± 0.10 | 0.51 ± 0.09 | 0.48 ± 0.06 | 0.54 ± 0.10 |
PL | 0.49 ± 0.09 a | 0.47 ± 0.08 | 0.52 ± 0.09 | 0.49 ± 0.08 | 0.48 ± 0.10 | 0.51 ± 0.07 | 0.46 ± 0.06 | 0.52 ± 0.10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zawieja, E.; Chmurzynska, A.; Anioła, J.; Zawieja, B.; Cholewa, J. The Effect of Caffeine Supplementation on Resistance and Jumping Exercise: The Interaction with CYP1A2 and ADORA2A Genotypes. Nutraceuticals 2023, 3, 274-289. https://doi.org/10.3390/nutraceuticals3020022
Zawieja E, Chmurzynska A, Anioła J, Zawieja B, Cholewa J. The Effect of Caffeine Supplementation on Resistance and Jumping Exercise: The Interaction with CYP1A2 and ADORA2A Genotypes. Nutraceuticals. 2023; 3(2):274-289. https://doi.org/10.3390/nutraceuticals3020022
Chicago/Turabian StyleZawieja, Emilia, Agata Chmurzynska, Jacek Anioła, Bogna Zawieja, and Jason Cholewa. 2023. "The Effect of Caffeine Supplementation on Resistance and Jumping Exercise: The Interaction with CYP1A2 and ADORA2A Genotypes" Nutraceuticals 3, no. 2: 274-289. https://doi.org/10.3390/nutraceuticals3020022
APA StyleZawieja, E., Chmurzynska, A., Anioła, J., Zawieja, B., & Cholewa, J. (2023). The Effect of Caffeine Supplementation on Resistance and Jumping Exercise: The Interaction with CYP1A2 and ADORA2A Genotypes. Nutraceuticals, 3(2), 274-289. https://doi.org/10.3390/nutraceuticals3020022