A Review of Trastuzumab Biosimilars in Early Breast Cancer and Real World Outcomes of Neoadjuvant MYL-1401O versus Reference Trastuzumab
Abstract
:1. Introduction
2. Materials and Methods
2.1. Literature Review
2.2. Study Cohort
2.3. Outcome Measures
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Loibl, S.; Gianni, L. HER2-positive breast cancer. Lancet 2017, 389, 2415–2429. [Google Scholar] [CrossRef]
- Slamon, D.; Eiermann, W.; Robert, N.; Pienkowski, T.; Martin, M.; Press, M.; Mackey, J.; Glaspy, J.; Chan, A.; Pawlicki, M.; et al. Adjuvant Trastuzumab in HER2-Positive Breast Cancer. N. Engl. J. Med. 2011, 365, 1273–1283. [Google Scholar] [CrossRef] [PubMed]
- Swain, S.M.; Baselga, J.; Kim, S.-B.; Ro, J.; Semiglazov, V.; Campone, M.; Ciruelos, E.; Ferrero, J.-M.; Schneeweiss, A.; Heeson, S.; et al. Pertuzumab, Trastuzumab, and Docetaxel in HER2-Positive Metastatic Breast Cancer. N. Engl. J. Med. 2015, 372, 724–734. [Google Scholar] [CrossRef]
- Bazargani, Y.T.; de Boer, A.; Schellens, J.H.; Leufkens, H.G.; Mantel-Teeuwisse, A.K. Essential medicines for breast cancer in low and middle income countries. BMC Cancer 2015, 15, 591. [Google Scholar] [CrossRef]
- World Health Organization. WHO Model List of Essential Medicines: 19th List. Available online: http://www.who.int/medicines/publications/essentialmedicines/EML_2015_FINAL_amended_NOV2015.pdf?ua=1 (accessed on 3 April 2022).
- Alvarez, D.F.; Wolbink, G.; Cronenberger, C.; Orazem, J.; Kay, J. Interchangeability of Biosimilars: What Level of Clinical Evidence is Needed to Support the Interchangeability Designation in the United States? BioDrugs 2020, 34, 723–732. [Google Scholar] [CrossRef]
- Guidance for Industry: Bioavailability and Bioequivalence Studies Submitted in NDAs or INDs—General Considerations. Available online: https://www.fda.gov/media/88254/download (accessed on 3 April 2022).
- U.S. Drug and Food Administration. Scientific Considerations in Demonstrating Biosimilarity to a Reference Product; U.S. Drug and Food Administration: Washington, DC, USA, 2015.
- European Medicines Agency. Guideline on Similar Biological Medicinal Products Containing Monoclonal Antibodies—Non-clinical and Clinical Issues; European Medicines Agency: Brussels, Belgium, 2012.
- Azevedo, V.; Hassett, B.; Fonseca, J.E.; Atsumi, T.; Coindreau, J.; Jacobs, I.; Mahgoub, E.; O’Brien, J.; Singh, E.; Vicik, S.; et al. Differentiating biosimilarity and comparability in biotherapeutics. Clin. Rheumatol. 2016, 35, 2877–2886. [Google Scholar] [CrossRef]
- Center for Drug Evaluation and Research. Application Number: 761074Orig1s000. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/nda/2017/761074Orig1s000SumR.pdf (accessed on 1 November 2021).
- Center for Drug Evaluation and Research. Application Number: 761100Orig1s000. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/appletter/2019/761100Orig1s000ltr.pdf (accessed on 10 November 2021).
- Center for Drug Evaluation and Research. Application Number: 761091Orig1s000. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/nda/2018/761091Orig1s000SumR.pdf (accessed on 10 November 2021).
- Center for Drug Evaluation and Research. Application Number: 761081Orig1s000. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/nda/2019/761081Orig1s000SumR.pdf (accessed on 10 November 2021).
- Center for Drug Evaluation and Research. Application Number: 761073Orig1s000. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/nda/2019/761073Orig1s000SumR.pdf (accessed on 10 November 2021).
- Rugo, H.S.; Barve, A.; Waller, C.F.; Hernandez-Bronchud, M.; Herson, J.; Yuan, J.; Sharma, R.; Baczkowski, M.; Kothekar, M.; Loganathan, S.; et al. Effect of a Proposed Trastuzumab Biosimilar Compared With Trastuzumab on Overall Response Rate in Patients With ERBB2 (HER2)–Positive Metastatic Breast Cancer: A Randomized Clinical Trial. JAMA 2017, 317, 37–47. [Google Scholar] [CrossRef] [PubMed]
- Pivot, X.; Georgievich, M.A.; Shamrai, V.; Dzagnidze, G.; Soo Hoo, H.F.; Kaewkangsadan, V.; Petrelli, F.; Villanueva, C.; Nikolaevich, L.O.; Hii, J.; et al. Efficacy of HD201 vs. Referent Trastuzumab in Patients With ERBB2-Positive Breast Cancer Treated in the Neoadjuvant Setting: A Multicenter Phase 3 Randomized Clinical Trial. JAMA Oncol. 2022, 8, 698–705. [Google Scholar] [CrossRef] [PubMed]
- Von Minckwitz, G.; Colleoni, M.; Kolberg, H.-C.; Morales, S.; Santi, P.; Tomasevic, Z.; Zhang, N.; Hanes, V. Efficacy and safety of ABP 980 compared with reference trastuzumab in women with HER2-positive early breast cancer (LILAC study): A randomised, double-blind, phase 3 trial. Lancet Oncol. 2018, 19, 987–998. [Google Scholar] [CrossRef]
- Grohmann-Izay, B.; Huang, C.-S.; Dzagnidze, G.; Llinas, N.; Misra, A.; Pominchuk, D.; Prokhorov, A.; Rapoport, B.; Semiglazov, V.; Tseng, L.-M.; et al. Abstract P2-13-17: A phase III, randomized, multicenter, double-blind study to compare efficacy and safety of EG12014 (EirGenix trastuzumab) with Herceptin® as neoadjuvant treatment in combination with anthracycline/paclitaxel-based systemic therapy in patients with HER2-positive early breast cancer—A multinational phase III study conducted during the COVID-19 pandemic. Cancer Res. 2022, 82, P2-13-17–P12-13-17. [Google Scholar] [CrossRef]
- Krivorotko, P.; Manikhas, A.; Moiseenko, F.; Poddubskaya, E.; Neciosup, S.P.; Gopichand, M.; Osynskyi, D.; Haynes, T.; Lai, J.; Mills, B.J. Trial comparing the safety, efficacy and immunogenicity of trastuzumab biosimilar candidate (TX05) with originator trastuzumab in HER2+ early breast cancer. In Proceedings of the ESMO Congress 2021, Virtual, 16–21 September 2021. [Google Scholar]
- Im, Y.-H.; Odarchenko, P.; Grecea, D.; Komov, D.; Anatoliy, C.V.; Gupta, S.; Shparyk, Y.V.; Caguioa, P.B.; Makhson, A.; Krasnozhon, D.; et al. Double-blind, randomized, parallel group, phase III study to demonstrate equivalent efficacy and comparable safety of CT-P6 and trastuzumab, both in combination with paclitaxel, in patients with metastatic breast cancer (MBC) as first-line treatment. J. Clin. Oncol. 2013, 31, 629. [Google Scholar] [CrossRef]
- Pegram, M.D.; Bondarenko, I.; Zorzetto, M.M.C.; Hingmire, S.; Iwase, H.; Krivorotko, P.V.; Lee, K.S.; Li, R.K.; Pikiel, J.; Aggarwal, R.; et al. PF-05280014 (a trastuzumab biosimilar) plus paclitaxel compared with reference trastuzumab plus paclitaxel for HER2-positive metastatic breast cancer: A randomised, double-blind study. Br. J. Cancer 2019, 120, 172–182. [Google Scholar] [CrossRef] [PubMed]
- Lammers, P.E.; Dank, M.; Masetti, R.; Abbas, R.; Hilton, F.; Coppola, J.; Jacobs, I. Neoadjuvant PF-05280014 (a potential trastuzumab biosimilar) versus trastuzumab for operable HER2+ breast cancer. Br. J. Cancer 2018, 119, 266–273. [Google Scholar] [CrossRef] [PubMed]
- Stebbing, J.; Baranau, Y.; Baryash, V.; Manikhas, A.; Moiseyenko, V.; Dzagnidze, G.; Zhavrid, E.; Boliukh, D.; Stroyakovskii, D.; Pikiel, J.; et al. CT-P6 compared with reference trastuzumab for HER2-positive breast cancer: A randomised, double-blind, active-controlled, phase 3 equivalence trial. Lancet Oncol. 2017, 18, 917–928. [Google Scholar] [CrossRef]
- Pivot, X.; Bondarenko, I.; Nowecki, Z.; Dvorkin, M.; Trishkina, E.; Ahn, J.-H.; Vinnyk, Y.; Im, S.-A.; Sarosiek, T.; Chatterjee, S.; et al. Phase III, Randomized, Double-Blind Study Comparing the Efficacy, Safety, and Immunogenicity of SB3 (Trastuzumab Biosimilar) and Reference Trastuzumab in Patients Treated With Neoadjuvant Therapy for Human Epidermal Growth Factor Receptor 2–Positive Early. J. Clin. Oncol. 2018, 36, 968–974. [Google Scholar] [CrossRef] [PubMed]
- Alexeev, S.M.; Khorinko, A.V.; Mukhametshina, G.Z.; Shelepen, K.G.; Burdaeva, O.N.; Kulik, S.A.; Satheesh, C.T.; Srivastava, K.; Vikranth, M.; Kryukov, F.; et al. Randomized double-blind clinical trial comparing safety and efficacy of the biosimilar BCD-022 with reference trastuzumab. BMC Cancer 2020, 20, 783. [Google Scholar] [CrossRef]
- Xu, B.; Zhang, Q.; Sun, T.; Li, W.; Teng, Y.E.; Hu, X.; Bondarenko, I.; Adamchuk, H.; Zhang, L.; Trukhin, D.; et al. Efficacy, Safety, and Immunogenicity of HLX02 Compared with Reference Trastuzumab in Patients with Recurrent or Metastatic HER2-Positive Breast Cancer: A Randomized Phase III Equivalence Trial. BioDrugs 2021, 35, 337–350. [Google Scholar] [CrossRef]
- Suppan, C.; Steiner, D.; Eva; Posch, F.; Henzinger, E.; Hannah; Stöger, H.; Dandachi, N.; Balic, M. Safety and Clinical Evaluation of Dual Inhibition with Pertuzumab and Trastuzumab Biosimilar SB3 in HER2-Positive Breast Cancer Patients. Breast Care 2021, 38, 513766. [Google Scholar] [CrossRef]
- Schneeweiss, A.; Chia, S.; Hickish, T.; Harvey, V.; Eniu, A.; Hegg, R.; Tausch, C.; Seo, J.H.; Tsai, Y.F.; Ratnayake, J.; et al. Pertuzumab plus trastuzumab in combination with standard neoadjuvant anthracycline-containing and anthracycline-free chemotherapy regimens in patients with HER2-positive early breast cancer: A randomized phase II cardiac safety study (TRYPHAENA). Ann. Oncol. 2013, 24, 2278–2284. [Google Scholar] [CrossRef]
- Gianni, L.; Pienkowski, T.; Im, Y.-H.; Roman, L.; Tseng, L.-M.; Liu, M.-C.; Lluch, A.; Staroslawska, E.; de la Haba-Rodriguez, J.; Im, S.-A.; et al. Efficacy and safety of neoadjuvant pertuzumab and trastuzumab in women with locally advanced, inflammatory, or early HER2-positive breast cancer (NeoSphere): A randomised multicentre, open-label, phase 2 trial. Lancet Oncol. 2012, 13, 25–32. [Google Scholar] [CrossRef]
- Bae, S.J.; Kim, J.H.; Ahn, S.G.; Jeung, H.-C.; Sohn, J.; Kim, G.M.; Kim, M.H.; Kim, S.I.; Park, S.; Park, H.S.; et al. Real-World Clinical Outcomes of Biosimilar Trastuzumab (CT-P6) in HER2-Positive Early-Stage and Metastatic Breast Cancer. Front. Oncol. 2021, 11, 689587. [Google Scholar] [CrossRef] [PubMed]
- Hester, A.; Gaß, P.; Fasching, P.A.; Krämer, A.K.; Ettl, J.; Diessner, J.; Wöckel, A.; Egger, T.; Stock, K.; Redlin, J.; et al. Trastuzumab Biosimilars in the Therapy of Breast Cancer—“Real World” Experiences from four Bavarian University Breast Centres. Geburtshilfe Frauenheilkd 2020, 80, 924–931. [Google Scholar] [CrossRef] [PubMed]
- Berg, T.; Jensen, M.-B.; Jakobsen, E.H.; Al-Rawi, S.; Kenholm, J.; Andersson, M. Neoadjuvant chemotherapy and HER2 dual blockade including biosimilar trastuzumab (SB3) for HER2-positive early breast cancer: Population based real world data from the Danish Breast Cancer Group (DBCG). Breast 2020, 54, 242–247. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.; Khwaja, R.; King, K.; Tang, P.A.; Nixon, N.A.; Lupichuk, S.M. Trastuzumab-dkst versus trastuzumab: Real-world pCR rates in patients with HER2+ breast cancer treated with neoadjuvant chemotherapy plus trastuzumab from Alberta, Canada. J. Clin. Oncol. 2021, 39, e12569. [Google Scholar] [CrossRef]
- Resende, H.M.; Ladislau, L.; Cardoso, A.C.F.; Brandão, J.D.P.; Assis, B.R.; Cardoso, P.; Marassi, P.H.A.; Castilho, V. Biosimilar Use in Breast Cancer Treatment: A National Survey of Brazilian Oncologists’ Opinions, Practices, and Concerns. JCO Glob. Oncol. 2021, 7, 1316–1324. [Google Scholar] [CrossRef]
- Wolff, A.C.; Hammond, M.E.H.; Allison, K.H.; Harvey, B.E.; McShane, L.M.; Dowsett, M. HER2 Testing in Breast Cancer: American Society of Clinical Oncology/College of American Pathologists Clinical Practice Guideline Focused Update Summary. J. Oncol. Pract. 2018, 14, 437–441. [Google Scholar] [CrossRef]
- Alberta Innovations. ARECCI Ethics Guideline Tool; Alberta Innovations: Calgary, AB, Canada, 2017.
- Zhang, G.-C.; Qian, X.-K.; Guo, Z.-B.; Ren, C.-Y.; Yao, M.; Li, X.-R.; Wang, K.; Zu, J.; Liao, N. Pre-treatment hormonal receptor status and Ki67 index predict pathologic complete response to neoadjuvant trastuzumab/taxanes but not disease-free survival in HER2-positive breast cancer patients. Med. Oncol. 2012, 29, 3222–3231. [Google Scholar] [CrossRef]
- Untch, M.; Rezai, M.; Loibl, S.; Fasching, P.A.; Huober, J.; Tesch, H.; Bauerfeind, I.; Hilfrich, J.; Eidtmann, H.; Gerber, B.; et al. Neoadjuvant Treatment With Trastuzumab in HER2-Positive Breast Cancer: Results From the GeparQuattro Study. J. Clin. Oncol. 2010, 28, 2024–2031. [Google Scholar] [CrossRef]
- Gianni, L.; Pienkowski, T.; Im, Y.-H.; Tseng, L.-M.; Liu, M.-C.; Lluch, A.; Starosławska, E.; De La Haba-Rodriguez, J.; Im, S.-A.; Pedrini, J.L.; et al. 5-year analysis of neoadjuvant pertuzumab and trastuzumab in patients with locally advanced, inflammatory, or early-stage HER2-positive breast cancer (NeoSphere): A multicentre, open-label, phase 2 randomised trial. Lancet Oncol. 2016, 17, 791–800. [Google Scholar] [CrossRef]
- Petit, T.; Wilt, M.; Velten, M.; Millon, R.; Rodier, J.F.; Borel, C.; Mors, R.; Haegelé, P.; Eber, M.; Ghnassia, J.P. Comparative value of tumour grade, hormonal receptors, Ki-67, HER-2 and topoisomerase II alpha status as predictive markers in breast cancer patients treated with neoadjuvant anthracycline-based chemotherapy. Eur. J. Cancer 2004, 40, 205–211. [Google Scholar] [CrossRef]
- Precht, L.M.; Lowe, K.A.; Atwood, M.; Beatty, J.D. Neoadjuvant Chemotherapy of Breast Cancer: Tumor Markers as Predictors of Pathologic Response, Recurrence, and Survival. Breast J. 2010, 16, 362–368. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Liang, Y.; Feng, Z.; Wang, M. Efficacy and safety of HER2 inhibitors in combination with or without pertuzumab for HER2-positive breast cancer: A systematic review and meta-analysis. BMC Cancer 2019, 19, 973. [Google Scholar] [CrossRef] [PubMed]
- Vici, P.; Pizzuti, L.; Sperduti, I.; Frassoldati, A.; Natoli, C.; Gamucci, T.; Tomao, S.; Michelotti, A.; Moscetti, L.; Gori, S.; et al. “Triple positive” early breast cancer: An observational multicenter retrospective analysis of outcome. Oncotarget 2016, 7, 17932–17944. [Google Scholar] [CrossRef] [PubMed]
- Curigliano, G.; Cardinale, D.; Dent, S.; Criscitiello, C.; Aseyev, O.; Lenihan, D.; Cipolla, C.M. Cardiotoxicity of anticancer treatments: Epidemiology, detection, and management. CA A Cancer J. Clin. 2016, 66, 309–325. [Google Scholar] [CrossRef] [PubMed]
- Slamon, D.J.; Leyland-Jones, B.; Shak, S.; Fuchs, H.; Paton, V.; Bajamonde, A.; Fleming, T.; Eiermann, W.; Wolter, J.; Pegram, M.; et al. Use of Chemotherapy plus a Monoclonal Antibody against HER2 for Metastatic Breast Cancer That Overexpresses HER2. N. Engl. J. Med. 2001, 344, 783–792. [Google Scholar] [CrossRef] [PubMed]
- Romond, E.H.; Jeong, J.-H.; Rastogi, P.; Swain, S.M.; Geyer, C.E.; Ewer, M.S.; Rathi, V.; Fehrenbacher, L.; Brufsky, A.; Azar, C.A.; et al. Seven-Year Follow-Up Assessment of Cardiac Function in NSABP B-31, a Randomized Trial Comparing Doxorubicin and Cyclophosphamide Followed by Paclitaxel (ACP) With ACP Plus Trastuzumab As Adjuvant Therapy for Patients With Node-Positive, Human Epidermal Growth Factor Receptor 2–Positive Breast Cancer. J. Clin. Oncol. 2012, 30, 3792–3799. [Google Scholar] [CrossRef]
- Van Ramshorst, M.S.; van der Voort, A.; van Werkhoven, E.D.; Mandjes, I.A.; Kemper, I.; Dezentjé, V.O.; Oving, I.M.; Honkoop, A.H.; Tick, L.W.; van de Wouw, A.J.; et al. Neoadjuvant chemotherapy with or without anthracyclines in the presence of dual HER2 blockade for HER2-positive breast cancer (TRAIN-2): A multicentre, open-label, randomised, phase 3 trial. Lancet Oncol. 2018, 19, 1630–1640. [Google Scholar] [CrossRef]
- Blackwell, K.; Gligorov, J.; Jacobs, I.; Twelves, C. The Global Need for a Trastuzumab Biosimilar for Patients With HER2-Positive Breast Cancer. Clin. Breast Cancer 2018, 18, 95–113. [Google Scholar] [CrossRef]
- Drucker, A.; Skedgel, C.; Virik, K.; Rayson, D.; Sellon, M.; Younis, T. The Cost Burden of Trastuzumab and Bevacizumab Therapy for Solid Tumours in Canada. Curr. Oncol. 2008, 15, 136–142. [Google Scholar] [CrossRef]
- Lee, S.M.; Jung, J.H.; Suh, D.; Jung, Y.S.; Yoo, S.L.; Kim, D.W.; Kim, J.A.; Suh, D.C. Budget Impact of Switching to Biosimilar Trastuzumab (CT-P6) for the Treatment of Breast Cancer and Gastric Cancer in 28 European Countries. BioDrugs 2019, 33, 423–436. [Google Scholar] [CrossRef]
Biosimilar [Reference] | Population (N) | Primary Outcome | Primary Outcome Results | PFS |
---|---|---|---|---|
SB3 [25] | NA + A (800) | bpCR | SB3 51.7% vs. TRZ 42.0% RR 1.26 (95% CI 1.09–1.46) | - |
ABP-980 [18] | NA + A (725) | tpCR | ABP-980 48% vs. TRZ 41% RR 1.19 (90% CI 1.03–1.37) | - |
PF-05280014 [22] | MET (707) | ORR | PF-05280014 62.5% vs. TRZ 66.5% RR: 0.94 (95% CI 0.84–1.05) | PF-05280014 12.16 vs. TRZ 12.06 months RR: 1.00 (95% CI 0.80–1.26) |
NA (226) | Cycle 5 trough > 20 ug/mL | PF-05280014 92.1% vs. TRZ 93.3% | - | |
CT-P6 [24] | NA + A (549) | tpCR | CT-P6 46.8% vs. TRZ 50.4% RR: 0.93 (95% CI 0.78–1.11) | - |
MET (475) | ORR | CT-P6 57% vs. TRZ 62% | CT-P6 11.07 vs. TRZ 15.52 months | |
BCD-022 [26] | MET (126) | ORR | BCD-022 49.6 vs. TRZ 43.6% | - |
MYL-1401O [16] | MET (500) | ORR | MYL-1401O 69.6% vs. TRZ 64.0% RR: 1.09 (90% CI 0.97–1.21) | At 48 weeks: MYL-1401O 44.3% vs. TRZ 44.7% RR: 0.95 (95% CI 0.71–1.25) |
TX05 [20] | NA (674) | tpCR | TX05 48.8% vs. TRZ 45.3% RR: 1.08 (95% CI 0.92–1.27) | - |
EG 12014 [19] | NA + A (807) | tpCR | tpCR rates n/a in abstract RR: 0.99 (90% CI 0.88–1.12) | - |
HLX02 [27] | MET (649) | ORR | HLX02 71.3% vs. TRZ 71.4% | HLX02 11.7 vs. TRZ 10.6 months HR: 0.83 (p = 0.09) |
HD201 [17] | NA + A (502) | tpCR | HD201 49.8% vs. TRZ 51.9% | - |
Biosimilar (Reference) | Population (N) | Primary Outcome | Primary Outcome Results |
---|---|---|---|
SB3 [33] | NA (215) | tpCR | SB3 56% |
SB3 [28] | NA (67) | tpCR | SB3 50% vs. TRZ 58% (p = 0.532) |
CT-P6 [31] | NA (254) MET (103) | tpCR PFS | CT-P6 74.4% vs. TRZ 69.8% (p = 0.411) CT-P6 13.0 vs. TRZ 18.0 months (p = 0.976) |
ABP 980 [32] | NA (79) | tpCR | ABP 980 55% vs. TRZ 33–55% |
MYL-1401O [34] | NA (136) | tpCR | MYL-1401O 39% vs. TRZ 40.3% (p = 0.598) |
Total (n = 136) | TRZ (n = 77) | MYL-1401O (n = 59) | p-Value | |
---|---|---|---|---|
Mean age in years | 50.6 | 51.7 | 49.2 | 0.190 |
Age < 40 | 26 (19.1%) | 13 (16.9%) | 13 (22.0%) | 0.512 |
Age 40+ | 110 (80.9%) | 64 (83.1%) | 46 (78.0%) | |
HR- | 46 (33.8%) | 23 (29.9%) | 23 (39.0%) | 0.266 |
HR+ | 90 (66.2%) | 54 (70.1%) | 36 (61.0%) | |
HER2 3+ | 123 (90.4%) | 67 (87.0%) | 56 (94.9%) | 0.120 |
ISH+ | 13 (9.6%) | 10 (13.0%) | 3 (5.1%) | |
Grade 1/2 | 35 (25.7%) | 17 (22.1%) | 18 (30.5%) | 0.265 |
Grade 3 | 101 (74.3%) | 60 (77.9%) | 41 (69.5%) | |
Clinical T1/T2 | 107 (78.7%) | 57 (74.0%) | 50 (84.7%) | 0.166 |
Clinical T3/T4 | 23 (20.6%) | 20 (26.0%) | 9 (15.3%) | |
Clinical N- | 34 (25.0%) | 11 (14.3%) | 23 (39.0%) | 0.001 |
Clinical N+ | 102 (75.0%) | 66 (85.7%) | 36 (61.0%) | |
Mean time from biopsy to 1st chemotherapy (months) | 1.3 | 1.1 | 1.5 | 0.002 |
Mean time from biopsy to surgery (months) | 6.1 | 6.0 | 6.2 | 0.274 |
AT | 53 (39.0%) | 30 (39.0%) | 23 (39.0%) | 0.998 |
TCb | 83 (61.0%) | 47 (61.0%) | 36 (61.0%) | |
Chemotherapy completed | 114 (83.8%) | 69 (89.6%) | 45 (76.3%) | 0.058 |
Neoadjuvant pertuzumab | 5 (3.7%) | 3 (3.9%) | 2 (3.4%) | 1.000 |
Total (n = 136) | TRZ (n = 77) | MYL-1401O (n = 59) | p-Value | |
---|---|---|---|---|
tpCR—Yes | 52 (38.2%) | 31 (40.3%) | 21 (35.6%) | 0.598 |
tpCR—No | 84 (61.8%) | 46 (59.7%) | 38 (64.4%) |
OR | 95% CI (Lower) | 95% CI (Upper) | p-Value | |
---|---|---|---|---|
TRZ vs. MYL-1401O | 1.079 | 0.491 | 2.367 | 0.850 |
Age 40+ years vs. less | 1.335 | 0.483 | 3.692 | 0.578 |
HR- vs. HR+ | 2.359 | 1.029 | 5.411 | 0.043 |
ISH+ vs. HER2 3+ | 0.971 | 0.248 | 3.796 | 0.966 |
grade 3 vs. grade 1/2 | 1.971 | 0.744 | 5.221 | 0.172 |
T1/2 vs. T3/4 | 1.049 | 0.400 | 2.747 | 0.923 |
clinical N+ vs. N0 | 0.474 | 0.181 | 1.244 | 0.129 |
AT vs. TCb | 0.716 | 0.320 | 1.604 | 0.417 |
chemotherapy completed: yes vs. no | 2.122 | 0.675 | 6.675 | 0.198 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, C.; Khwaja, R.; Tang, P.; Nixon, N.; King, K.; Lupichuk, S. A Review of Trastuzumab Biosimilars in Early Breast Cancer and Real World Outcomes of Neoadjuvant MYL-1401O versus Reference Trastuzumab. Curr. Oncol. 2022, 29, 4224-4234. https://doi.org/10.3390/curroncol29060337
Yang C, Khwaja R, Tang P, Nixon N, King K, Lupichuk S. A Review of Trastuzumab Biosimilars in Early Breast Cancer and Real World Outcomes of Neoadjuvant MYL-1401O versus Reference Trastuzumab. Current Oncology. 2022; 29(6):4224-4234. https://doi.org/10.3390/curroncol29060337
Chicago/Turabian StyleYang, Charlie, Raida Khwaja, Patricia Tang, Nancy Nixon, Karen King, and Sasha Lupichuk. 2022. "A Review of Trastuzumab Biosimilars in Early Breast Cancer and Real World Outcomes of Neoadjuvant MYL-1401O versus Reference Trastuzumab" Current Oncology 29, no. 6: 4224-4234. https://doi.org/10.3390/curroncol29060337
APA StyleYang, C., Khwaja, R., Tang, P., Nixon, N., King, K., & Lupichuk, S. (2022). A Review of Trastuzumab Biosimilars in Early Breast Cancer and Real World Outcomes of Neoadjuvant MYL-1401O versus Reference Trastuzumab. Current Oncology, 29(6), 4224-4234. https://doi.org/10.3390/curroncol29060337