The Prognostic Role of Pre-Treatment Neutrophil-to-Lymphocyte Ratio in an Asian Cohort of Patients with Oropharyngeal Squamous Cell Carcinoma
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Staging
2.3. Treatment Received
2.4. Data Collection
2.5. Statistical Methods
3. Results
3.1. Baseline Characteristics
3.2. Survival Probabilities via Kaplan–Meier Method
3.3. NLR Cutpoint and Univariate Cox PH
3.4. Multivariable Cox PH
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yang, L.; Huang, Y.; Zhou, L.; Dai, Y.; Hu, G. High pre-treatment neutrophil-to-lymphocyte ratio as a predictor of poor survival prognosis in head and neck squamous cell carcinoma: Systematic review and meta-analysis. Head Neck 2019, 41, 1525–1535. [Google Scholar] [CrossRef] [PubMed]
- Gu, L.; Li, H.; Chen, L.; Ma, X.; Li, X.; Gao, Y.; Zhang, Y.; Xie, Y.; Zhang, X. Prognostic role of lymphocyte to monocyte ratio for patients with cancer: Evidence from a systematic review and meta-analysis. Oncotarget 2016, 7, 31926. [Google Scholar] [CrossRef] [PubMed]
- Tham, T.; Bardash, Y.; Herman, S.W.; Costantino, P.D. Neutrophil-to-lymphocyte ratio as a prognostic indicator in head and neck cancer: A systematic review and meta-analysis. Head Neck 2018, 40, 2546–2557. [Google Scholar] [CrossRef]
- Galon, J.; Pagès, F.; Marincola, F.M.; Thurin, M.; Trinchieri, G.; Fox, B.A.; Gajewski, T.F.; Ascierto, P.A. The immune score as a new possible approach for the classification of cancer. J. Transl. Med. 2012, 10, 1. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Tang, D.; Heng, Y.; Zhu, X.K.; Zhou, L.; Tao, L.; Lu, L.M. Prognostic Impact of Tumor-Infiltrating Lymphocytes in Laryngeal Squamous Cell Carcinoma Patients. Laryngoscope 2020, 131, E1249–E1255. [Google Scholar] [CrossRef]
- Aguilar-Cazares, D.; Chavez-Dominguez, R.; Marroquin-Muciño, M.; Perez-Medina, M.; Benito-Lopez, J.J.; Camarena, A.; Rumbo-Nava, U.; Lopez-Gonzalez, J.S. The systemic-level repercussions of cancer-associated inflammation mediators produced in the tumor microenvironment. Front. Endocrinol. 2022, 13, 929572. [Google Scholar] [CrossRef]
- Dumitru, C.A.; Lang, S.; Brandau, S. Modulation of neutrophil granulocytes in the tumor microenvironment: Mechanisms and consequences for tumor progression. Semin. Cancer Biol. 2013, 23, 141–148. [Google Scholar] [CrossRef]
- Tazzyman, S.; Niaz, H.; Murdoch, C. Neutrophil-mediated tumour angiogenesis: Subversion of immune responses to promote tumour growth. Semin. Cancer Biol. 2013, 23, 149–158. [Google Scholar] [CrossRef]
- Huang, S.H.; Waldron, J.N.; Milosevic, M.; Shen, X.; Ringash, J.; Su, J.; Tong, L.; Perez-Ordonez, B.; Weinreb, I.; Bayley, A.J.; et al. Prognostic value of pre-treatment circulating neutrophils, monocytes, and lymphocytes in oropharyngeal cancer stratified by human papillomavirus status. Cancer 2015, 121, 545–555. [Google Scholar] [CrossRef]
- Chaturvedi, A.K.; Anderson, W.F.; Lortet-Tieulent, J.; Curado, M.P.; Ferlay, J.; Franceschi, S.; Rosenberg, P.; Bray, F.; Gillison, M.L. Worldwide trends in incidence rates for oral cavity and oropharyngeal cancers. J. Clin. Oncol. 2013, 31, 4550–4559. [Google Scholar] [CrossRef]
- Lu, Y.; Xie, Z.; Luo, G.; Yan, H.; Qian, H.Z.; Fu, L.; Wang, B.; Huang, R.; Cao, F.; Lin, H.; et al. Global burden of oropharyngeal cancer attributable to human papillomavirus by anatomical subsite and geographic region. Cancer Epidemiol. 2022, 78, 102140. [Google Scholar] [CrossRef] [PubMed]
- Rodrigo, J.P.; Sánchez-Canteli, M.; Triantafyllou, A.; de Bree, R.; Mäkitie, A.A.; Franchi, A.; Hellquist, H.; Saba, N.F.; Stenman, G.; Takes, R.P.; et al. Neutrophil to Lymphocyte Ratio in Oropharyngeal Squamous Cell Carcinoma: A Systematic Review and Meta-Analysis. Cancers 2023, 15, 802. [Google Scholar] [CrossRef] [PubMed]
- Ndon, S.; Singh, A.; Ha, P.K.; Aswani, J.; Chan, J.Y.; Xu, M.J. Human Papillomavirus-Associated Oropharyngeal Cancer: Global Epidemiology and Public Policy Implications. Cancers 2023, 15, 4080. [Google Scholar] [CrossRef] [PubMed]
- Tan, L.S.; Fredrik, P.; Ker, L.; Yu, F.G.; Wang, Y.; Goh, B.C.; Loh, K.S.; Lim, C.M. High-risk HPV genotypes and P16INK4a expression in a cohort of head and neck squamous cell carcinoma patients in Singapore. Oncotarget 2016, 7, 86730–86739. [Google Scholar] [CrossRef]
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef]
- Amin, M.B.; Edge, S.; Greene, F.; Byrd, D.R.; Brookland, R.K.; Washington, M.K.; Gershenwald, J.E.; Compton, C.C.; Hess, K.R.; Sullivan, D.C.; et al. (Eds.) AJCC Cancer Staging Manual, 8th ed.; Springer International Publishing: New York, NY, USA, 2017. [Google Scholar]
- NCCN. NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines®) for Head and Neck Cancers V.2.2023; National Comprehensive Cancer Network, Inc.: Plymouth Meeting, PA, USA, 2023; Available online: https:www.nccn.org (accessed on 15 May 2023).
- Oken, M.M.; Creech, R.H.; Tormey, D.C.; Horton, J.; Davis, T.E.; McFadden, E.T.; Carbone, P.P. Toxicity and response criteria of the Eastern Cooperative Oncology Group. Am. J. Clin. Oncol. 1982, 5, 649–655. [Google Scholar] [CrossRef]
- Piccirillo, J.F.; Feinstein, A.R. Clinical symptoms and comorbidity: Significance for the prognostic classification of cancer. Cancer 1996, 77, 834–842. [Google Scholar] [CrossRef] [PubMed]
- Lausen, B.; Sauerbrei, W.; Schumacher, M. Classification and Regression Trees (CART) used for the exploration of prognostic factors measured on different scales. In Computational Statistics; Dirschedl, P., Ostermann, R., Eds.; Physica-Verlag: Heidelberg, Germany, 1994; pp. 483–496. [Google Scholar]
- Contal, C.; O’Quigley, J. An application of changepoint methods in studying the effect of age on survival in breast cancer. Comput. Stat. Data Anal. 1999, 30, 253–270. [Google Scholar] [CrossRef]
- Ng, S.P.; Bahig, H.; Jethanandani, A.; Sturgis, E.M.; Johnson, F.M.; Elgohari, B.; Gunn, G.B.; Ferrarotto, R.; Phan, J.; Rosenthal, D.I.; et al. Prognostic significance of pre-treatment neutrophil-to-lymphocyte ratio (NLR) in patients with oropharyngeal cancer treated with radiotherapy. Br. J. Cancer 2021, 124, 628–633. [Google Scholar] [CrossRef]
- Kreinbrink, P.J.; Li, J.; Parajuli, S.; Wise-Draper, T.M.; Choi, D.L.; Tang, A.L.; Takiar, V. Pre-treatment absolute lymphocyte count predicts for improved survival in human papillomavirus (HPV)-driven oropharyngeal squamous cell carcinoma. Oral Oncol. 2021, 116, 105245. [Google Scholar] [CrossRef]
- Fanetti, G.; Alterio, D.; Marvaso, G.; Gandini, S.; Rojas, D.P.; Gobitti, C.; Minatel, E.; Revelant, A.; Caroli, A.; Francia, C.M.; et al. Prognostic significance of neutrophil-to-lymphocyte ratio in HPV status era for oropharyngeal cancer. Oral Dis. 2020, 26, 1384–1392. [Google Scholar] [CrossRef] [PubMed]
- So, Y.K.; Lee, G.; Oh, D.; Byeon, S.; Park, W.; Chung, M.K. Prognostic Role of Neutrophil-to-Lymphocyte Ratio in Patients with Human Papillomavirus-Positive Oropharyngeal Cancer. Otolaryngol. Head Neck Surg. 2018, 159, 303–309. [Google Scholar] [CrossRef] [PubMed]
- Gorphe, P.; Chekkoury Idrissi, Y.; Tao, Y.; Schernberg, A.; Ou, D.; Temam, S.; Casiraghi, O.; Blanchard, P.; Mirghani, H. Anemia and neutrophil-to-lymphocyte ratio are prognostic in p16-positive oropharyngeal carcinoma treated with concurrent chemoradiation. Papillomavirus Res. 2018, 5, 32–37. [Google Scholar] [CrossRef] [PubMed]
- De Felice, F.; Tombolini, M.; Abate, G.; Salerno, F.; Bulzonetti, N.; Tombolini, V.; Musio, D. Prognostic Significance of the Neutrophil/Lymphocyte Ratio in Patients with Non-Human Papilloma Virus-Related Oropharyngeal Cancer: A Retrospective Cohort Study. Oncology 2019, 96, 8–13. [Google Scholar] [CrossRef] [PubMed]
- Ang, K.K.; Harris, J.; Wheeler, R.; Weber, R.; Rosenthal, D.I.; Nguyen-Tân, P.F.; Westra, W.H.; Chung, C.H.; Jordan, R.C.; Lu, C.; et al. Human papillomavirus and survival of patients with oropharyngeal cancer. N. Engl. J. Med. 2010, 363, 24–35. [Google Scholar] [CrossRef]
- Mehanna, H.; Taberna, M.; von Buchwald, C.; Tous, S.; Brooks, J.; Mena, M.; Morey, F.; Grønhøj, C.; Rasmussen, J.H.; Garset-Zamani, M.; et al. Prognostic implications of p16 and HPV discordance in oropharyngeal cancer (HNCIG-EPIC-OPC): A multicentre, multinational, individual patient data analysis. Lancet Oncol. 2023, 24, 239–251. [Google Scholar] [CrossRef]
Characteristics | All Patients N = 148 1 |
---|---|
Age (years) | 64 [58–71] |
Male | 111 (75%) |
Smoking ≥ 10 pack years | 85 (57%) |
Alcohol drinker | 42 (28%) |
ECOG 2 | |
0–1 | 138 (93%) |
2–3 | 10 (7%) |
ACE27 score 3 | |
0–1 | 112 (76%) |
2–3 | 36 (24%) |
Previous head and neck radiotherapy | 21 (14%) |
Tumour subsite | |
Base of tongue | 35 (24%) |
Soft palate | 14 (9%) |
Tonsil | 73 (49%) |
Glossotonsillar sulcus | 5 (3%) |
Pharyngeal wall | 15 (10%) |
Not specified, NOS 4 | 6 (4%) |
p16 status | |
Positive | 64 (43%) |
Negative | 65 (44%) |
Unknown | 19 (13%) |
AJCC 8th Edition Group stage | |
Stage I + II | 59 (40%) |
Stage III + IV | 89 (60%) |
Grade | |
Well-differentiated | 6 (4%) |
Moderately differentiated | 37 (25%) |
Poorly differentiated | 47 (32%) |
Undifferentiated | 2 (1%) |
Not specified, NOS 4 | 56 (38%) |
Treatment modality breakdown | |
Surgery alone | 23 (16%) |
Surgery + adjuvant RT 5/CRT 6 | 18 (12%) |
Radiotherapy alone | 27 (18%) |
Concurrent chemoradiotherapy | 80 (54%) |
Treatment modality | |
Surgery ± adjuvant RT/CRT | 41 (28%) |
Radical RT/CRT | 107 (72%) |
NLR 7 | 2.76 [2.10–4.12] Range 0.54–26.10 N = 139 |
Characteristics | p16-Positive N = 64 1 | p16-Negative N = 65 1 | p-Value 2 |
---|---|---|---|
Age (years) | 62 [58–70] | 67 [59–71] | 0.18 |
Male | 43 (67%) | 54 (83%) | 0.04 |
Smoking ≥ 10 pack years | 30 (47%) | 45 (69%) | 0.01 |
Alcohol drinker | 9 (14%) | 28 (43%) | <0.001 |
ECOG 3 | 0.03 | ||
0–1 | 63 (98%) | 58 (89%) | |
2–3 | 1 (2%) | 7 (11%) | |
ACE27 score 4 | 0.03 | ||
0–1 | 54 (84%) | 44 (68%) | |
2–3 | 10 (16%) | 21 (32%) | |
Previous head and neck radiotherapy | 2 (3%) | 17 (26%) | <0.001 |
Tumour subsite | 0.007 | ||
Base of tongue | 14 (22%) | 17 (26%) | |
Pharyngeal wall | 0 (0%) | 11 (17%) | |
Soft palate | 40 (62%) | 26 (40%) | |
Tonsil | 2 (3%) | 3 (5%) | |
Glossotonsillar sulcus | 5 (8%) | 7 (11%) | |
Not specified, NOS 5 | 3 (5%) | 1 (2%) | |
AJCC 8th T-stage | 0.23 | ||
T0–2 | 42 (66%) | 36 (55%) | |
T3–4 | 22 (34%) | 29 (45%) | |
AJCC 8th N-stage | <0.001 | ||
N0 | 9 (14%) | 25 (38%) | |
N1 | 44 (69%) | 11 (17%) | |
N2 | 9 (14%) | 25 (38%) | |
N3 | 2 (3%) | 4 (6%) | |
AJCC 8th Edition Group stage | <0.001 | ||
Stage I + II | 38 (59%) | 17 (26%) | |
Stage III + IV | 26 (41%) | 48 (74%) | |
Grade | 0.02 | ||
Well-differentiated | 1 (2%) | 2 (3%) | |
Moderately differentiated | 10 (16%) | 26 (40%) | |
Poorly differentiated | 21 (33%) | 18 (28%) | |
Undifferentiated | 2 (3%) | 0 (0%) | |
Not specified, NOS 5 | 30 (47%) | 19 (29%) | |
Treatment modality breakdown | <0.001 | ||
Surgery | 6 (9%) | 15 (23%) | |
Surgery + adjuvant RT 6/CRT 7 | 8 (12%) | 7 (11%) | |
Radiotherapy alone | 5 (8%) | 19 (29%) | |
Concurrent chemoradiotherapy | 45 (70%) | 24 (37%) | |
Second Malignancy | 0.03 | ||
Synchronous | 3 (5%) | 3 (5%) | |
Metachronous | 4 (6%) | 15 (23%) | |
No | 57 (89%) | 47 (72%) | |
Second Malignancy | 7 (11%) | 18 (28%) | 0.02 |
ANC (×109/L) 8 | 4.36 [3.65–5.72] N = 60 | 5.33 [4.03–6.72] N = 63 | 0.09 |
ALC (×109/L) 9 | 1.87 [1.47–2.18] N = 60 | 1.57 [1.17–2.15] N = 63 | 0.07 |
NLR 10 | 2.49 [1.78–3.74] N = 60 | 2.91 [2.42–4.51] N = 63 | 0.02 |
Characteristics | Overall Survival, OS | Disease-Specific Survival, DSS | Locoregional Recurrence-Free Survival, LRFS | |||
---|---|---|---|---|---|---|
HR (95% CI) 1 | p-Value | HR (95% CI) 1 | p-Value | HR (95% CI) 1 | p-Value | |
Age (per year increase) | 1.05 (1.02, 1.08) | 0.003 | 1.04 (1.01, 1.08) | 0.02 | 1.04 (1.01, 1.07) | 0.02 |
Male | 3.13 (1.41, 6.96) | 0.005 | 4.16 (1.48, 11.7) | 0.007 | 2.59 (1.21, 5.56) | 0.01 |
Smoking ≥ 10 pack years | 3.58 (1.84, 6.95) | <0.001 | 5.15 (2.16, 12.3) | <0.001 | 2.06 (1.13, 3.77) | 0.02 |
Alcohol drinker | 2.30 (1.34, 3.97) | 0.003 | 2.50 (1.34, 4.68) | 0.004 | 1.32 (0.71, 2.48) | 0.38 |
ECOG 2 | ||||||
0–1 | - | - | - | - | - | - |
2–3 | 12.3 (5.33, 28.2) | <0.001 | 13.0 (4.71, 36.1) | <0.001 | 0.00 (0.00, Inf) | >0.99 |
ACE27 score 3 | ||||||
0–1 | - | - | - | - | - | - |
2–3 | 1.57 (0.87, 2.82) | 0.13 | 1.81 (0.93, 3.51) | 0.08 | 1.12 (0.57, 2.20) | 0.74 |
Previous head and neck radiotherapy | 3.30 (1.77, 6.14) | <0.001 | 4.24 (2.12, 8.45) | <0.001 | 2.32 (1.15, 4.68) | 0.02 |
Tumour subsite | ||||||
Base of tongue | - | - | - | - | - | - |
Soft palate | 0.62 (0.22, 1.75) | 0.37 | 0.69 (0.22, 2.21) | 0.54 | 0.91 (0.33, 2.51) | 0.85 |
Tonsil | 0.49 (0.25, 0.99) | 0.05 | 0.44 (0.19, 0.99) | 0.05 | 0.72 (0.35, 1.50) | 0.38 |
Glossotonsillar sulcus | 1.96 (0.64, 5.99) | 0.24 | 2.47 (0.78, 7.81) | 0.12 | 2.15 (0.60, 7.76) | 0.24 |
Pharyngeal wall | 1.43 (0.65, 3.17) | 0.38 | 1.23 (0.48, 3.17) | 0.67 | 0.65 (0.20, 2.05) | 0.46 |
Not specified, NOS 4 | 0.18 (0.02, 1.42) | 0.11 | 0.24 (0.03, 1.92) | 0.18 | 0.53 (0.11, 2.42) | 0.41 |
AJCC 8th T-stage | ||||||
T0–2 | - | - | - | - | - | - |
T3–4 | 1.71 (1.00, 2.92) | 0.05 | 1.17 (0.62, 2.21) | 0.62 | 0.76 (0.41, 1.41) | 0.39 |
AJCC 8th N-stage | ||||||
N0 | - | - | - | - | - | - |
N1 | 0.18 (0.07, 0.46) | <0.001 | 0.22 (0.08, 0.56) | 0.001 | 0.55 (0.27, 1.12) | 0.10 |
N2 | 0.69 (0.38, 1.28) | 0.24 | 0.63 (0.31, 1.26) | 0.19 | 0.56 (0.27, 1.15) | 0.11 |
N3 | 2.99 (0.99, 9.04) | 0.05 | 1.05 (0.14, 8.13) | 0.96 | 2.95 (0.66, 13.3) | 0.16 |
N4 | 0.00 (0.00, Inf) | >0.99 | 0.00 (0.00, Inf) | >0.99 | 0.00 (0.00, Inf) | >0.99 |
AJCC 8th Edition Group stage | ||||||
Stage I + II | - | - | - | - | - | - |
Stage III + IV | 2.87 (1.44, 5.73) | 0.003 | 2.34 (1.11, 4.93) | 0.03 | 1.05 (0.58, 1.87) | 0.88 |
Grade | ||||||
Well-differentiated | - | - | - | - | - | - |
Moderately differentiated | 6.88 (0.91, 52.2) | 0.06 | 4.86 (0.63, 37.4) | 0.13 | 1.43 (0.40, 5.11) | 0.58 |
Poorly differentiated | 3.43 (0.45, 26.0) | 0.23 | 2.47 (0.32, 19.0) | 0.38 | 1.07 (0.31, 3.70) | 0.92 |
Undifferentiated | 0.00 (0.00, Inf) | >0.99 | 0.00 (0.00, Inf) | >0.99 | 1.32 (0.13, 12.9) | 0.81 |
Not specified, NOS 4 | 2.22 (0.29, 17.0) | 0.44 | 1.36 (0.17, 10.8) | 0.77 | 0.66 (0.19, 2.33) | 0.52 |
Treatment modality breakdown | ||||||
Surgery | - | - | - | - | - | - |
Surgery + adjuvant RT 5/CRT 6 | 0.63 (0.23, 1.75) | 0.38 | 0.65 (0.21, 2.00) | 0.45 | 0.46 (0.16, 1.34) | 0.16 |
Radiotherapy alone | 1.28 (0.58, 2.79) | 0.54 | 1.36 (0.57, 3.24) | 0.49 | 0.78 (0.34, 1.82) | 0.57 |
Concurrent chemoradiotherapy | 0.42 (0.20, 0.90) | 0.03 | 0.31 (0.13, 0.77) | 0.01 | 0.40 (0.19, 0.84) | 0.02 |
Second Malignancy | 1.87 (1.04, 3.36) | 0.04 | 1.95 (0.99, 3.85) | 0.05 | 1.49 (0.78, 2.87) | 0.23 |
ANC (per 1 × 109/L increase) N = 139 | 1.09 (0.97, 1.23) | 0.15 | 1.13 (0.99, 1.29) | 0.07 | 1.00 (0.87, 1.15) | 0.98 |
ALC (per 1 × 109/L increase) N = 139 | 0.69 (0.45, 1.06) | 0.09 | 0.68 (0.41, 1.13) | 0.13 | 0.80 (0.51, 1.25) | 0.32 |
NLR 7 (per 1-unit increase) N = 139 | 1.05 (0.98, 1.12) | 0.14 | 1.06 (1.00, 1.14) | 0.06 | 1.00 (0.90, 1.10) | 0.93 |
NLR 7 N = 139 | ||||||
Low Risk (NLR < 3.56) | - | - | - | - | - | - |
High Risk (NLR ≥ 3.56) | 1.95 (1.12, 3.39) | 0.02 | 2.59 (1.36, 4.95) | 0.004 | 1.28 (0.69, 2.37) | 0.43 |
(a) | ||||||
Characteristics | Overall Survival, OS | Disease-Specific Survival, DSS | Locoregional Recurrence-Free Survival, LRFS | |||
HR (95% CI) 1 | p-Value | HR (95% CI) 1 | p-Value | HR (95% CI) 1 | p-Value | |
Age (per year increase) | 1.03 (1.00, 1.07) | 0.04 | 1.02 (0.99, 1.06) | 0.18 | 1.02 (0.99, 1.06) | 0.15 |
Smoking ≥ 10 pack years | 1.82 (0.88, 3.77) | 0.11 | 3.18 (1.20, 8.45) | 0.02 | 1.40 (0.70, 2.76) | 0.34 |
NLR 2 N = 139 | ||||||
Low Risk (NLR < 3.56) | - | - | - | - | - | - |
High Risk (NLR ≥ 3.56) | 1.98 (1.08, 3.66) | 0.03 | 2.44 (1.23, 4.84) | 0.01 | 1.08 (0.56, 2.09) | 0.82 |
p16 status | ||||||
Positive | - | - | - | - | - | - |
Negative | 4.60 (1.87, 11.3) | <0.001 | 4.11 (1.51, 11.2) | 0.006 | 2.15 (1.08, 4.29) | 0.03 |
AJCC 8th Edition Group stage | ||||||
Stage I + II | - | - | - | - | - | - |
Stage III + IV | 2.35 (1.05, 5.27) | 0.04 | 1.98 (0.82, 4.81) | 0.13 | 1.14 (0.58, 2.25) | 0.71 |
(b) | ||||||
Characteristics | Overall Survival, OS | Disease-Specific Survival, DSS | Locoregional Recurrence-Free Survival, LRFS | |||
HR (95% CI) 1 | p-Value | HR (95% CI) 1 | p-Value | HR (95% CI) 1 | p-Value | |
Age (per year increase) | 1.08 (0.95, 1.23) | 0.23 | 1.07 (0.93, 1.23) | 0.33 | 1.04 (0.96, 1.12) | 0.36 |
Smoking ≥ 10 pack years | 1,795,672,981 (0.00, Inf) | >0.99 | 1,918,785,642 (0.00, Inf) | >0.99 | 2.93 (0.90, 9.54) | 0.07 |
NLR 2 | ||||||
Low Risk (NLR < 3.56) | - | - | - | - | - | - |
High Risk (NLR ≥ 3.56) | 1.11 (0.17, 7.06) | 0.91 | 1.57 (0.22, 11.4) | 0.66 | 0.44 (0.11, 1.74) | 0.24 |
AJCC 8th Edition Group stage | ||||||
Stage I + II | - | - | - | - | - | - |
Stage III + IV | 3.43 (0.54, 21.6) | 0.19 | 2.77 (0.38, 20.1) | 0.31 | 0.48 (0.14, 1.65) | 0.24 |
(c) | ||||||
Characteristics | Overall Survival, OS | Disease-Specific Survival, DSS | Locoregional Recurrence-Free Survival, LRFS | |||
HR (95% CI) 1 | p-Value | HR (95% CI) 1 | p-Value | HR (95% CI) 1 | p-Value | |
Age (per year increase) | 1.03 (1.00, 1.07) | 0.05 | 1.02 (0.99, 1.06) | 0.23 | 1.03 (0.99, 1.07) | 0.14 |
Smoking ≥ 10 pack years | 1.17 (0.49, 2.77) | 0.72 | 2.37 (0.74, 7.61) | 0.15 | 1.47 (0.54, 4.02) | 0.46 |
Alcohol drinker | 1.68 (0.80, 3.55) | 0.17 | 1.64 (0.70, 3.82) | 0.25 | 0.82 (0.33, 2.03) | 0.67 |
NLR | ||||||
Low Risk (NLR < 3.56) | - | - | - | - | - | - |
High Risk (NLR ≥ 3.56) | 1.44 (0.68, 3.05) | 0.35 | 1.73 (0.74, 4.01) | 0.20 | 0.99 (0.41, 2.42) | 0.99 |
AJCC 8th Edition Group stage | ||||||
Stage I + II | - | - | - | - | - | - |
Stage III + IV | 5.49 (1.92, 15.7) | 0.001 | 5.28 (1.60, 17.5) | 0.006 | 4.58 (1.31, 16.0) | 0.02 |
Previous head and neck radiotherapy | 4.87 (1.87, 12.7) | 0.001 | 7.15 (2.39, 21.4) | <0.001 | 6.13 (1.78, 21.1) | 0.004 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jang, I.J.H.; Abdul Kadir, H.B.; Lim, K.H.; Chew, W.C.D.; Hwang, J.S.G.; Lim, C.M. The Prognostic Role of Pre-Treatment Neutrophil-to-Lymphocyte Ratio in an Asian Cohort of Patients with Oropharyngeal Squamous Cell Carcinoma. Curr. Oncol. 2024, 31, 7074-7087. https://doi.org/10.3390/curroncol31110521
Jang IJH, Abdul Kadir HB, Lim KH, Chew WCD, Hwang JSG, Lim CM. The Prognostic Role of Pre-Treatment Neutrophil-to-Lymphocyte Ratio in an Asian Cohort of Patients with Oropharyngeal Squamous Cell Carcinoma. Current Oncology. 2024; 31(11):7074-7087. https://doi.org/10.3390/curroncol31110521
Chicago/Turabian StyleJang, Isabelle J. H., Hanis B. Abdul Kadir, Kok Hing Lim, Wen Chao Daniel Chew, Jacqueline S. G. Hwang, and Chwee Ming Lim. 2024. "The Prognostic Role of Pre-Treatment Neutrophil-to-Lymphocyte Ratio in an Asian Cohort of Patients with Oropharyngeal Squamous Cell Carcinoma" Current Oncology 31, no. 11: 7074-7087. https://doi.org/10.3390/curroncol31110521
APA StyleJang, I. J. H., Abdul Kadir, H. B., Lim, K. H., Chew, W. C. D., Hwang, J. S. G., & Lim, C. M. (2024). The Prognostic Role of Pre-Treatment Neutrophil-to-Lymphocyte Ratio in an Asian Cohort of Patients with Oropharyngeal Squamous Cell Carcinoma. Current Oncology, 31(11), 7074-7087. https://doi.org/10.3390/curroncol31110521