Antibody–Drug Conjugates: A Start of a New Era in Gynecological Cancers
Abstract
:1. Introduction
2. ADCs: Mechanism of Action
2.1. Structure
2.1.1. Antibody
2.1.2. Payload
2.1.3. Linker
2.1.4. Conjugation
2.2. Mechanism of Action
3. ADCs in Gynecological Malignancies
3.1. ADCs in Ovarian Cancer
3.1.1. Folate Receptor ADCs
3.1.2. Other ADCs
MUC 16
Mesothelin
CDH6
3.2. ADCs in Cervical Cancer
Tisotumab Vedotin
3.3. ADCs in Endometrial Cancer
3.4. HER2 ADCs in Gynecologic Cancers
3.4.1. Trastuzumab Deruxtecan (T-DXd)
3.4.2. Trastuzumab Duocarmazine
3.5. Miscellaneous ADCs
3.6. Next Generation ADCs
4. Beyond ADCs in Gynecological Cancers
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Statistics Canada. Leading Causes of Death, Total Population, by Age Group; Statistics Canada: Ottawa, ON, USA, 2024. [CrossRef]
- Canadian Cancer Society. Canadian Cancer Statistics: A 2022 Special Report on Cancer Prevalence; Canadian Cancer Society: Toronto, ON, Canada, 2022; Available online: https://cdn.cancer.ca/-/media/files/research/cancer-statistics/2022-statistics/2022-special-report/2022_prevalence_report_final_en.pdf?rev=7755f9f350e845d58e268a59e3be608e&hash=3F3F30CADD8CAF0049636B5A41EDBB13&_gl=1*1pf6nrr*_gcl_au*ODgwMjcwNTE2LjE2OTU4MjkyNjg.*_ga*Njg1NjY1MDEzLjE2OTU4MjkyNjg.*_ga_23YMKBE2C3*MTY5NTgyOTI2Ny4xLjEuMTY5NTgyOTYxOS4xNS4wLjA.#_ga=2.169392937.907078724.1695829268-685665013.1695829268 (accessed on 27 September 2023).
- SEER*Explorer Application. Available online: https://seer.cancer.gov/statistics-network/explorer/application.html?site=58&data_type=4&graph_type=5&compareBy=stage&chk_stage_101=101&chk_stage_106=106&series=9&hdn_sex=3&race=1&age_range=1&advopt_precision=1&advopt_show_ci=on&hdn_view=0 (accessed on 27 September 2023).
- SEER*Explorer Application. Available online: https://seer.cancer.gov/statistics-network/explorer/application.html?site=61&data_type=1&graph_type=4&compareBy=age_range&chk_age_range_1=1&hdn_sex=3&race=1&advopt_precision=1&hdn_view=0&advopt_show_apc=on&advopt_display=2#resultsRegion0 (accessed on 27 September 2023).
- Salani, R.; Backes, F.J.; Fung, M.F.K.; Holschneider, C.H.; Parker, L.P.; Bristow, R.E.; Goff, B.A. Posttreatment Surveillance and Diagnosis of Recurrence in Women with Gynecologic Malignancies: Society of Gynecologic Oncologists Recommendations. Am. J. Obstet. Gynecol. 2011, 204, 466–478. [Google Scholar] [CrossRef] [PubMed]
- Dyer, B.A.; Feng, C.H.; Eskander, R.; Sharabi, A.B.; Mell, L.K.; McHale, M.; Mayadev, J.S. Current Status of Clinical Trials for Cervical and Uterine Cancer Using Immunotherapy Combined with Radiation. Int. J. Radiat. Oncol. 2021, 109, 396–412. [Google Scholar] [CrossRef] [PubMed]
- Kandalaft, L.E.; Odunsi, K.; Coukos, G. Immunotherapy in Ovarian Cancer: Are We There Yet? J. Clin. Oncol. 2019, 37, 2460–2471. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.; Xia, B.-R.; Zhang, Z.-C.; Zhang, Y.-J.; Lou, G.; Jin, W.-L. Immunotherapy for Ovarian Cancer: Adjuvant, Combination, and Neoadjuvant. Front. Immunol. 2020, 11, 577869. [Google Scholar] [CrossRef] [PubMed]
- Sievers, E.L.; Larson, R.A.; Stadtmauer, E.A.; Estey, E.; Löwenberg, B.; Dombret, H.; Karanes, C.; Theobald, M.; Bennett, J.M.; Sherman, M.L.; et al. Efficacy and Safety of Gemtuzumab Ozogamicin in Patients with CD33-Positive Acute Myeloid Leukemia in First Relapse. J. Clin. Oncol. 2001, 19, 3244–3254. [Google Scholar] [CrossRef]
- Younes, A.; Bartlett, N.L.; Leonard, J.P.; Kennedy, D.A.; Lynch, C.M.; Sievers, E.L.; Forero-Torres, A. Brentuximab Vedotin (SGN-35) for Relapsed CD30-Positive Lymphomas. N. Engl. J. Med. 2010, 363, 1812–1821. [Google Scholar] [CrossRef]
- Fu, Z.; Li, S.; Han, S.; Shi, C.; Zhang, Y. Antibody Drug Conjugate: The “Biological Missile” for Targeted Cancer Therapy. Signal Transduct. Target. Ther. 2022, 7, 93. [Google Scholar] [CrossRef]
- Martín-Sabroso, C.; Lozza, I.; Torres-Suárez, A.I.; Fraguas-Sánchez, A.I. Antibody-Antineoplastic Conjugates in Gynecological Malignancies: Current Status and Future Perspectives. Pharmaceutics 2021, 13, 1705. [Google Scholar] [CrossRef]
- Damelin, M.; Zhong, W.; Myers, J.; Sapra, P. Evolving Strategies for Target Selection for Antibody-Drug Conjugates. Pharm. Res. 2015, 32, 3494–3507. [Google Scholar] [CrossRef]
- Vankemmelbeke, M.; Durrant, L. Third-Generation Antibody Drug Conjugates for Cancer Therapy—A Balancing Act. Ther. Deliv. 2016, 7, 141–144. [Google Scholar] [CrossRef]
- Yu, J.; Song, Y.; Tian, W. How to Select IgG Subclasses in Developing Anti-Tumor Therapeutic Antibodies. J. Hematol. Oncol. 2020, 13, 45. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Li, H.; Gou, L.; Li, W.; Wang, Y. Antibody–Drug Conjugates: Recent Advances in Payloads. Acta Pharm. Sin. B 2023, 13, 4025–4059. [Google Scholar] [CrossRef] [PubMed]
- Gutman, H.; Bazylevich, A.; Prasad, C.; Dorfman, O.; Hesin, A.; Marks, V.; Patsenker, L.; Gellerman, G. Discovery of Dolastatinol: A Synthetic Analog of Dolastatin 10 and Low Nanomolar Inhibitor of Tubulin Polymerization. ACS Med. Chem. Lett. 2021, 12, 1596–1604. [Google Scholar] [CrossRef] [PubMed]
- Lopus, M.; Oroudjev, E.; Wilson, L.; Wilhelm, S.; Widdison, W.; Chari, R.; Jordan, M.A. Maytansine and Cellular Metabolites of Antibody-Maytansinoid Conjugates Strongly Suppress Microtubule Dynamics by Binding to Microtubules. Mol. Cancer Ther. 2010, 9, 2689–2699. [Google Scholar] [CrossRef] [PubMed]
- Cellular-Resolution Imaging of Bystander Payload Tissue Penetration from Antibody-Drug Conjugates—PubMed. Available online: https://pubmed.ncbi.nlm.nih.gov/34911819/ (accessed on 25 October 2024).
- Antibody Drug Conjugates and Bystander Killing: Is Antigen-Dependent Internalisation Required?—PubMed. Available online: https://pubmed.ncbi.nlm.nih.gov/29065110/ (accessed on 25 October 2024).
- Modulation of Macropinocytosis-Mediated Internalization Decreases Ocular Toxicity of Antibody-Drug Conjugates—PubMed. Available online: https://pubmed.ncbi.nlm.nih.gov/29382707/ (accessed on 25 October 2024).
- Zhao, H.; Gulesserian, S.; Ganesan, S.K.; Ou, J.; Morrison, K.; Zeng, Z.; Robles, V.; Snyder, J.; Do, L.; Aviña, H.; et al. Inhibition of Megakaryocyte Differentiation by Antibody–Drug Conjugates (ADCs) is Mediated by Macropinocytosis: Implications for ADC-induced Thrombocytopenia|Molecular Cancer Therapeutics. Am. Assoc. Cancer Res. 2017, 16, 1877–1886. Available online: https://aacrjournals.org/mct/article/16/9/1877/147253/Inhibition-of-Megakaryocyte-Differentiation-by (accessed on 25 October 2024).
- Guffroy, M.; Falahatpisheh, H.; Biddle, K.; Kreeger, J.; Obert, L.; Walters, K.; Goldstein, R.; Boucher, G.; Coskran, T.; Reagan, W.; et al. Liver Microvascular Injury and Thrombocytopenia of Antibody-Calicheamicin Conjugates in Cynomolgus Monkeys-Mechanism and Monitoring. Clin. Cancer Res. 2017, 23, 1760–1770. [Google Scholar] [CrossRef]
- Tsuchikama, K.; Anami, Y.; Ha, S.Y.Y. Exploring the Next Generation of Antibody—Drug Conjugates. Nat. Rev. Clin. Oncol. 2024, 21, 203–223. [Google Scholar] [CrossRef]
- Immune-Stimulating Antibody Conjugates Elicit Robust Myeloid Activation and Durable Antitumor Immunity—PubMed. Available online: https://pubmed.ncbi.nlm.nih.gov/35121890/ (accessed on 25 October 2024).
- Hong, K.B.; An, H. Degrader-Antibody Conjugates: Emerging New Modality. J. Med. Chem. 2023, 66, 140–148. [Google Scholar] [CrossRef]
- Birrer, M.J.; Moore, K.N.; Betella, I.; Bates, R.C. Antibody-Drug Conjugate-Based Therapeutics: State of the Science. J. Natl. Cancer Inst. 2019, 111, 538–549. [Google Scholar] [CrossRef]
- Adhikari, P.; Zacharias, N.; Ohri, R.; Sadowsky, J. Site-Specific Conjugation to Cys-Engineered THIOMABTM Antibodies. Methods Mol. Biol. 2020, 2078, 51–69. [Google Scholar] [CrossRef]
- Zimmerman, E.S.; Heibeck, T.H.; Gill, A.; Li, X.; Murray, C.J.; Madlansacay, M.R.; Tran, C.; Uter, N.T.; Yin, G.; Rivers, P.J.; et al. Production of Site-Specific Antibody-Drug Conjugates Using Optimized Non-Natural Amino Acids in a Cell-Free Expression System. Bioconjugate Chem. 2014, 25, 351–361. [Google Scholar] [CrossRef] [PubMed]
- Synthesis of Site-Specific Antibody-Drug Conjugates Using Unnatural Amino Acids—PubMed. Available online: https://pubmed.ncbi.nlm.nih.gov/22988081/ (accessed on 25 October 2024).
- Schumacher, F.F.; Nunes, J.P.M.; Maruani, A.; Chudasama, V.; Smith, M.E.B.; Chester, K.A.; Baker, J.R.; Caddick, S. Next Generation Maleimides Enable the Controlled Assembly of Antibody-Drug Conjugates via Native Disulfide Bond Bridging. Org. Biomol. Chem. 2014, 12, 7261–7269. [Google Scholar] [CrossRef] [PubMed]
- Homogeneous Antibody-Drug Conjugates via Site-Selective Disulfide Bridging—PubMed. Available online: https://pubmed.ncbi.nlm.nih.gov/30553515/ (accessed on 26 October 2024).
- Fujii, T.; Matsuda, Y.; Seki, T.; Shikida, N.; Iwai, Y.; Ooba, Y.; Takahashi, K.; Isokawa, M.; Kawaguchi, S.; Hatada, N.; et al. AJICAP Second Generation: Improved Chemical Site-Specific Conjugation Technology for Antibody–Drug Conjugate Production. Bioconjugate Chem. 2023, 34, 728–738. [Google Scholar] [CrossRef] [PubMed]
- Site-Specific Antibody-Drug Conjugation Through Glycoengineering—PubMed. Available online: https://pubmed.ncbi.nlm.nih.gov/24533768/ (accessed on 26 October 2024).
- Manabe, S.; Yamaguchi, Y.; Matsumoto, K.; Fuchigami, H.; Kawase, T.; Hirose, K.; Mitani, A.; Sumiyoshi, W.; Kinoshita, T.; Abe, J.; et al. Characterization of Antibody Products Obtained through Enzymatic and Nonenzymatic Glycosylation Reactions with a Glycan Oxazoline and Preparation of a Homogeneous Antibody–Drug Conjugate via Fc N-Glycan. Bioconjugate Chem. 2019, 30, 1343–1355. [Google Scholar] [CrossRef] [PubMed]
- Jeger, S.; Zimmermann, K.; Blanc, A.; Grünberg, J.; Honer, M.; Hunziker, P.; Struthers, H.; Schibli, R. Site-Specific and Stoichiometric Modification of Antibodies by Bacterial Transglutaminase. Angew. Chem. Int. Ed. Engl. 2010, 49, 9995–9997. [Google Scholar] [CrossRef]
- Transglutaminase-Based Chemo-Enzymatic Conjugation Approach Yields Homogeneous Antibody-Drug Conjugates—PubMed. Available online: https://pubmed.ncbi.nlm.nih.gov/24483299/ (accessed on 26 October 2024).
- Rabuka, D.; Rush, J.S.; de Hart, G.W.; Wu, P.; Bertozzi, C.R. Site-Specific Chemical Protein Conjugation Using Genetically Encoded Aldehyde Tags. Nat. Protoc. 2012, 7, 1052–1067. [Google Scholar] [CrossRef]
- Drake, P.M.; Albers, A.E.; Baker, J.; Banas, S.; Barfield, R.M.; Bhat, A.S.; de Hart, G.W.; Garofalo, A.W.; Holder, P.; Jones, L.C.; et al. Aldehyde Tag Coupled with HIPS Chemistry Enables the Production of ADCs Conjugated Site-Specifically to Different Antibody Regions with Distinct in Vivo Efficacy and PK Outcomes. Bioconjugate Chem. 2014, 25, 1331–1341. [Google Scholar] [CrossRef]
- Matsuda, Y.; Shikida, N.; Hatada, N.; Yamada, K.; Seki, T.; Nakahara, Y.; Endo, Y.; Shimbo, K.; Takahashi, K.; Nakayama, A.; et al. AJICAP-M: Traceless Affinity Peptide Mediated Conjugation Technology for Site-Selective Antibody-Drug Conjugate Synthesis. Org. Lett. 2024, 26, 5597–5601. [Google Scholar] [CrossRef]
- Site-Specific Protein Labeling via Sortase-Mediated Transpeptidation—PubMed. Available online: https://pubmed.ncbi.nlm.nih.gov/28762490/ (accessed on 26 October 2024).
- Sortase Enzyme-Mediated Generation of Site-Specifically Conjugated Antibody Drug Conjugates with High In Vitro and In Vivo Potency—PubMed. Available online: https://pubmed.ncbi.nlm.nih.gov/26132162/ (accessed on 26 October 2024).
- Ritchie, M.; Tchistiakova, L.; Scott, N. Implications of Receptor-Mediated Endocytosis and Intracellular Trafficking Dynamics in the Development of Antibody Drug Conjugates. mAbs 2013, 5, 13–21. [Google Scholar] [CrossRef]
- Verma, S.; Breadner, D.; Raphael, J. ‘Targeting’ Improved Outcomes with Antibody-Drug Conjugates in Non-Small Cell Lung Cancer—An Updated Review. Curr. Oncol. 2023, 30, 4329–4350. [Google Scholar] [CrossRef]
- Chau, C.H.; Steeg, P.S.; Figg, W.D. Antibody–Drug Conjugates for Cancer. Lancet 2019, 394, 793–804. [Google Scholar] [CrossRef] [PubMed]
- Coleman, R.L.; Lorusso, D.; Gennigens, C.; González-Martín, A.; Randall, L.; Cibula, D.; Lund, B.; Woelber, L.; Pignata, S.; Forget, F.; et al. Efficacy and Safety of Tisotumab Vedotin in Previously Treated Recurrent or Metastatic Cervical Cancer (innovaTV 204/GOG-3023/ENGOT-Cx6): A Multicentre, Open-Label, Single-Arm, Phase 2 Study. Lancet Oncol. 2021, 22, 609–619. [Google Scholar] [CrossRef] [PubMed]
- Matulonis, U.A.; Lorusso, D.; Oaknin, A.; Pignata, S.; Dean, A.; Denys, H.; Colombo, N.; Van Gorp, T.; Konner, J.A.; Marin, M.R.; et al. Efficacy and Safety of Mirvetuximab Soravtansine in Patients with Platinum-Resistant Ovarian Cancer with High Folate Receptor Alpha Expression: Results From the SORAYA Study. J. Clin. Oncol. 2023, 41, 2436–2445. [Google Scholar] [CrossRef] [PubMed]
- Oza, A.M.; Cook, A.D.; Pfisterer, J.; Embleton, A.; Ledermann, J.A.; Pujade-Lauraine, E.; Kristensen, G.; Carey, M.S.; Beale, P.; Cervantes, A.; et al. Standard Chemotherapy with or without Bevacizumab for Women with Newly Diagnosed Ovarian Cancer (ICON7): Overall Survival Results of a Phase 3 Randomised Trial. Lancet Oncol. 2015, 16, 928–936. [Google Scholar] [CrossRef]
- Tewari, K.S.; Burger, R.A.; Enserro, D.; Norquist, B.M.; Swisher, E.M.; Brady, M.F.; Bookman, M.A.; Fleming, G.F.; Huang, H.; Homesley, H.D.; et al. Final Overall Survival of a Randomized Trial of Bevacizumab for Primary Treatment of Ovarian Cancer. J. Clin. Oncol. 2019, 37, 2317–2328. [Google Scholar] [CrossRef]
- Suh, Y.J.; Lee, B.; Kim, K.; Jeong, Y.; Choi, H.Y.; Hwang, S.O.; Kim, Y.B. Bevacizumab versus PARP-Inhibitors in Women with Newly Diagnosed Ovarian Cancer: A Network Meta-Analysis. BMC Cancer 2022, 22, 346. [Google Scholar] [CrossRef]
- Kemp, Z.; Ledermann, J. Update on First-Line Treatment of Advanced Ovarian Carcinoma. Int. J. Women’s Health 2013, 5, 45–51. [Google Scholar] [CrossRef]
- Matulonis, U.A. Ovarian Cancer. Hematol. Oncol. Clin. N. Am. 2018, 32, XIII–XIV. [Google Scholar] [CrossRef]
- O’Malley, D.M.; Matulonis, U.A.; Birrer, M.J.; Castro, C.M.; Gilbert, L.; Vergote, I.; Martin, L.P.; Mantia-Smaldone, G.M.; Martin, A.G.; Bratos, R.; et al. Phase Ib Study of Mirvetuximab Soravtansine, a Folate Receptor Alpha (FRα)-Targeting Antibody-Drug Conjugate (ADC), in Combination with Bevacizumab in Patients with Platinum-Resistant Ovarian Cancer. Gynecol. Oncol. 2020, 157, 379–385. [Google Scholar] [CrossRef]
- Moore, K.N.; Angelergues, A.; Konecny, G.E.; García, Y.; Banerjee, S.; Lorusso, D.; Lee, J.-Y.; Moroney, J.W.; Colombo, N.; Roszak, A.; et al. Mirvetuximab Soravtansine in FRα-Positive, Platinum-Resistant Ovarian Cancer. N. Engl. J. Med. 2023, 389, 2162–2174. [Google Scholar] [CrossRef]
- Martin, J.; Zacholski, E.; O’Cearbhaill, R.; Matulonis, U.; Chen, L. Society of Gynecologic Oncology Journal Club: Controversial Conversations in Gynecologic Cancer—The ABCs of ADCs (Antibody Drug Conjugates). Gynecol. Oncol. Rep. 2023, 45, 101141. [Google Scholar] [CrossRef] [PubMed]
- Secord, A.A.; Lewin, S.; Murphy, C.; Method, M. PICCOLO: An Open-Label, Single Arm, Phase 2 Study of Mirvetuximab Soravtansine in Recurrent Platinum Sensitive, High-Grade Epithelial Ovarian, Primary Peritoneal, or Fallopian Tube Cancers with High Folate-Alpha (FRα) Expression (300). Gynecol. Oncol. 2022, 166, S157–S158. [Google Scholar] [CrossRef]
- O’Malley, D.M.; Myers, T.K.N.; Zamagni, C.; Diver, E.; Lorusso, D. GLORIOSA: A Randomized, Open-Label, Phase 3 Study of Mirvetuximab Soravtansine with Bevacizumab vs. Bevacizumab as Maintenance in Platinum-Sensitive Ovarian, Fallopian Tube, or Primary Peritoneal Cancer. J. Clin. Oncol. 2023, 41 (Suppl. S16), TPS5622. [Google Scholar] [CrossRef]
- Moore, K.; O’Malley, D.; Vergote, I.; Martin, L.; Gonzalez-Martin, A.; Wang, J.; Method, M.; Birrer, M. 18/#499 Mirvetuximab Soravtansine and Carboplatin for Treatment of Patients with Recurrent Folate Receptor Alpha-Positive Platinum-Sensitive Ovarian Cancer: A Final Analysis. Int. J. Gynecol. Cancer 2022, 32 (Suppl. S3), A33–A34. [Google Scholar] [CrossRef]
- Mirvetuximab Soravtansine (IMGN853), in Folate Receptor Alpha (FRα) High Recurrent Ovarian Cancer—Full Text View—ClinicalTrials.gov. Available online: https://clinicaltrials.gov/ct2/show/NCT04274426 (accessed on 20 December 2023).
- Moore, K.N.; Oza, A.M.; Colombo, N.; Oaknin, A.; Scambia, G.; Lorusso, D.; Konecny, G.E.; Banerjee, S.; Murphy, C.G.; Tanyi, J.L.; et al. Phase III, Randomized Trial of Mirvetuximab Soravtansine versus Chemotherapy in Patients with Platinum-Resistant Ovarian Cancer: Primary Analysis of FORWARD I. Ann. Oncol. 2021, 32, 757–765. [Google Scholar] [CrossRef]
- Study of Carboplatin and Mirvetuximab Soravtansine in First-Line Treatment of Patients Receiving Neoadjuvant Chemotherapy with Advanced-Stage Ovarian, Fallopian Tube Primary Peritoneal Cancer—Full Text View—ClinicalTrials.gov. Available online: https://classic.clinicaltrials.gov/ct2/show/NCT04606914 (accessed on 20 December 2023).
- Angelergues, A.; Konecny, G.E.; Banerjee, S.N.; Pignata, S.; Colombo, N.; Moroney, J.W.; Cosgrove, C.; Lee, J.-Y.; Roszak, A.; Breuer, S.; et al. Phase III MIRASOL (GOG 3045/ENGOT-Ov55) Study: Initial Report of Mirvetuximab Soravtansine vs. Investigator’s Choice of Chemotherapy in Platinum-Resistant, Advanced High-Grade Epithelial Ovarian, Primary Peritoneal, or Fallopian Tube Cancers with High Folate Receptor-Alpha Expression. J. Clin. Oncol. 2023, 41, LBA5507. [Google Scholar] [CrossRef]
- Li, X.; Zhou, S.; Abrahams, C.L.; Krimm, S.; Smith, J.; Bajjuri, K.; Stephenson, H.T.; Henningsen, R.; Hanson, J.; Heibeck, T.H.; et al. Discovery of STRO-002, a Novel Homogeneous ADC Targeting Folate Receptor Alpha, for the Treatment of Ovarian and Endometrial Cancers. Mol. Cancer Ther. 2023, 22, 155–167. [Google Scholar] [CrossRef]
- Sutro Biopharma, Inc. Sutro Biopharma Announces Update from STRO-002, Luveltamab Tazevibulin (Luvelta), Phase 1 Dose-Expansion Study and Registrational Plans in Advanced Ovarian Cancer; Sutro Biopharma, Inc.: South San Francisco, CA, USA, 2023; Available online: https://www.sutrobio.com/sutro-biopharma-announces-update-from-stro-002-luveltamab-tazevibulin-luvelta-phase-1-dose-expansion-study-and-registrational-plans-in-advanced-ovarian-cancer/ (accessed on 3 January 2024).
- Naumann, R.W.; Martin, L.P.; Oaknin, A.; Spira, A.I.; Hamilton, E.P.; Schilder, R.J.; Lu, L.; Kuriakose, J.; Berman, C.J.; Molina, A. STRO-002-GM2: A phase 1, open-label, safety, pharmacokinetic, and preliminary efficacy study of STRO-002, an anti-folate receptor alpha (FolRα) antibody-drug conjugate (ADC), in combination with bevacizumab in patients with advanced epithelial ovarian cancer (EOC, including fallopian tube or primary peritoneal cancers). J. Clin. Oncol. 2022, 40, TPS5622. [Google Scholar] [CrossRef]
- Sutro Biopharma, Inc. REFRaME-O1: A Phase 2 Open-Label Study Evaluating the Efficacy and Safety of Luveltamab Tazevibulin (STRO-002) in Women with Relapsed Platinum-Resistant Epithelial Ovarian Cancer (Including Fallopian Tube or Primary Peritoneal Cancers) Expressing Folate Receptor Alpha (FOLR1); Clinical Trial Registration NCT05870748; Clinicaltrials.gov. 2023. Available online: https://clinicaltrials.gov/study/NCT05870748 (accessed on 1 January 2024).
- Shimizu, T.; Fujiwara, Y.; Yonemori, K.; Koyama, T.; Sato, J.; Tamura, K.; Shimomura, A.; Ikezawa, H.; Nomoto, M.; Furuuchi, K.; et al. First-in-Human Phase 1 Study of MORAb-202, an Antibody-Drug Conjugate Comprising Farletuzumab Linked to Eribulin Mesylate, in Patients with Folate Receptor-α-Positive Advanced Solid Tumors. Clin. Cancer Res. 2021, 27, 3905–3915. [Google Scholar] [CrossRef]
- Bristol-Myers Squibb. A Phase 2 Open-Label Randomized Study of Farletuzumab Ecteribulin (MORAb-202), a Folate Receptor Alpha-Targeting Antibody-Drug Conjugate, Versus Investigator’s Choice Chemotherapy in Women with Platinum-Resistant High-Grade Serous (HGS) Ovarian, Primary Peritoneal, or Fallopian Tube Cancer; Clinical Trial Registration NCT05613088; Clinicaltrials.gov. 2023. Available online: https://clinicaltrials.gov/study/NCT05613088 (accessed on 1 January 2024).
- Meric-Bernstam, F.; Song, M.; Westin, S.N.; Au-Yeung, G.; Mitchell, P.; Myers, C.; Gymnopoulos, M.; Fraenkel, P.G.; Nawinne, M.; Brier, T.; et al. 819TiP FONTANA: A Phase I/IIa Study of AZD5335 as Monotherapy and in Combination with Anti-Cancer Agents in Patients with Solid Tumours. Ann. Oncol. 2023, 34, S541. [Google Scholar] [CrossRef]
- Gymnopoulos, M.; Thomas, T.; Gasper, D.; Anderton, J.; Tammali, R.; Rosfjord, E.; Durham, N.; Ward, C.; Myers, C.; Wang, J.; et al. Abstract LB025: First Disclosure of AZD5335, a TOP1i-ADC Targeting Low and High FRα-Expressing Ovarian Cancer with Superior Preclinical Activity vs FRα-MTI ADC. Cancer Res. 2023, 83 (Suppl. S8), LB025. [Google Scholar] [CrossRef]
- Study Details|Phase I/IIa Study for AZD5335 as Monotherapy and in Combination with Anti-Cancer Agents in Participants with Solid Tumors|ClinicalTrials.gov. Available online: https://www.clinicaltrials.gov/study/NCT05797168?term=fontana&rank=1 (accessed on 21 May 2024).
- Liu, J.; Burris, H.; Wang, J.S.; Barroilhet, L.; Gutierrez, M.; Wang, Y.; Vaze, A.; Commerford, R.; Royer-Joo, S.; Choeurng, V.; et al. An Open-Label Phase I Dose-Escalation Study of the Safety and Pharmacokinetics of DMUC4064A in Patients with Platinum-Resistant Ovarian Cancer. Gynecol. Oncol. 2021, 163, 473–480. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.; Yuan, X.; Tian, Q.; Huang, X.; Chen, Y.; Pu, Y.; Long, H.; Xu, M.; Ji, Y.; Xie, J.; et al. Preclinical Profiles of SKB264, a Novel Anti-TROP2 Antibody Conjugated to Topoisomerase Inhibitor, Demonstrated Promising Antitumor Efficacy Compared to IMMU-132. Front. Oncol. 2022, 12, 951589. [Google Scholar] [CrossRef]
- Assaraf, Y.G.; Leamon, C.P.; Reddy, J.A. The Folate Receptor as a Rational Therapeutic Target for Personalized Cancer Treatment. Drug Resist. Updates 2014, 17, 89–95. [Google Scholar] [CrossRef]
- Klus Pharma Inc. A Multicenter, Open-Label, Phase 2, Basket Study to Evaluate the Efficacy and Safety of SKB264 in Combination with Pembrolizumab in Subjects with Selected Solid Tumors; Clinical Trial Registration NCT05642780; Clinicaltrials.gov. 2023. Available online: https://clinicaltrials.gov/study/NCT05642780 (accessed on 1 January 2024).
- Pang, L.; Ren, F.; Xu, X.; Fu, L.; Wang, T.; Guo, Z. Construction and Characterization of Cadherin 6 (CDH6)-Targeting Chimeric Antigen Receptor (CAR) Modified T Cells. J. Environ. Pathol. Toxicol. Oncol. 2022, 41, 55–71. [Google Scholar] [CrossRef]
- Pommier, Y. Topoisomerase I Inhibitors: Camptothecins and Beyond. Nat. Rev. Cancer 2006, 6, 789–802. [Google Scholar] [CrossRef]
- Moore, K.N.; Philipovskiy, A.; Harano, K.; Rini, B.I.; Sudo, K.; Kitano, S.; Spigel, D.R.; Lin, J.; Kundu, M.; Bensmaine, A.; et al. 745MO Raludotatug Deruxtecan (R-DXd; DS-6000) Monotherapy in Patients with Previously Treated Ovarian Cancer (OVC): Subgroup Analysis of a First-in-Human Phase I Study. Ann. Oncol. 2023, 34, S510. [Google Scholar] [CrossRef]
- Cervical Cancer—Statistics. Cancer.Net. Available online: https://www.cancer.net/cancer-types/cervical-cancer/statistics (accessed on 3 January 2024).
- Available online: https://www.nccn.org/professionals/physician_gls/pdf/cervical.pdf (accessed on 13 February 2024).
- Fujiwara, K.; Slomovitz, B.M.; Martin, A.G.; Kalbacher, E.; Bagameri, A.; Ghamande, S.; Lee, J.-Y.; Banerjee, S.; Maluf, F.C.; Lorusso, D.; et al. 288MO InnovaTV 301/ENGOT-Cx12/GOG-3057: A Global, Randomized, Open-Label, Phase III Study of Tisotumab Vedotin vs Investigator’s Choice of Chemotherapy in 2L or 3L Recurrent or Metastatic Cervical Cancer. Ann. Oncol. 2023, 34, S1586. [Google Scholar] [CrossRef]
- Genmab and Seagen Announce That Tivdak® (Tisotumab Vedotin-Tftv) Met Its Primary Endpoint of Improved Overall Sur-Vival in Patients with Recurrent or Metastatic Cervical Cancer Compared to Chemotherapy—Genmab A/S. Available online: https://ir.genmab.com/news-releases/news-release-details/genmab-and-seagen-announce-tivdakr-tisotumab-vedotin-tftv-met/ (accessed on 4 January 2024).
- Cancer Genome Atlas Research Network; Kandoth, C.; Schultz, N.; Cherniack, A.D.; Akbani, R.; Liu, Y.; Shen, H.; Robertson, A.G.; Pashtan, I.; Shen, R.; et al. Integrated Genomic Characterization of Endometrial Carcinoma. Nature 2013, 497, 67–73. [Google Scholar] [CrossRef]
- Mitric, C.; Bernardini, M.Q. Endometrial Cancer: Transitioning from Histology to Genomics. Curr. Oncol. 2022, 29, 741–757. [Google Scholar] [CrossRef]
- Mirza, M.R.; Chase, D.M.; Slomovitz, B.M.; dePont Christensen, R.; Novák, Z.; Black, D.; Gilbert, L.; Sharma, S.; Valabrega, G.; Landrum, L.M.; et al. Dostarlimab for Primary Advanced or Recurrent Endometrial Cancer. N. Engl. J. Med. 2023, 388, 2145–2158. [Google Scholar] [CrossRef] [PubMed]
- Eskander, R.N.; Sill, M.W.; Beffa, L.; Moore, R.G.; Hope, J.M.; Musa, F.B.; Mannel, R.; Shahin, M.S.; Cantuaria, G.H.; Girda, E.; et al. Pembrolizumab plus Chemotherapy in Advanced Endometrial Cancer. N. Engl. J. Med. 2023, 388, 2159–2170. [Google Scholar] [CrossRef] [PubMed]
- Santin, A.; McNamara, B.; Siegel, E.R.; Harold, J.; Mutlu, L.; Altwerger, G.; Huang, G.S.; Andikyan, V.; Clark, M.B.; Ratner, E.; et al. Preliminary results of a phase II trial with sacituzumab govitecan-hziy in patients with recurrent endometrial carcinoma overexpressing Trop-2. J. Clin. Oncol. 2023, 41, 5599. [Google Scholar] [CrossRef]
- Study Details|Study of Dato-Dxd as Monotherapy and in Combination with Anti-Cancer Agents in Patients with Advanced Solid Tumours (Tropion-Pantumor03)|ClinicalTrials.gov. Available online: https://www.clinicaltrials.gov/study/NCT05489211 (accessed on 14 May 2024).
- Klus Pharma Inc. A Phase I-II, First-in-Human Study of SKB264 in Patients with Locally Advanced Unresectable /Metastatic Solid Tumors Who Are Refractory to Available Standard Therapies; Clinical Trial Registration NCT04152499, Clinicaltrials.gov. 2022. Available online: https://clinicaltrials.gov/study/NCT04152499 (accessed on 1 January 2024).
- Altwerger, G.; Bonazzoli, E.; Bellone, S.; Egawa-Takata, T.; Menderes, G.; Pettinella, F.; Bianchi, A.; Riccio, F.; Feinberg, J.; Zammataro, L.; et al. In Vitro and In Vivo Activity of IMGN853, an Antibody-Drug Conjugate Targeting Folate Receptor Alpha Linked to DM4, in Biologically Aggressive Endometrial Cancers. Mol. Cancer Ther. 2018, 17, 1003–1011. [Google Scholar] [CrossRef] [PubMed]
- Moore, K.N.; Borghaei, H.; O’Malley, D.M.; Jeong, W.; Seward, S.M.; Bauer, T.M.; Perez, R.P.; Matulonis, U.A.; Running, K.L.; Zhang, X.; et al. Phase 1 Dose-Escalation Study of Mirvetuximab Soravtansine (IMGN853), a Folate Receptor α-Targeting Antibody-Drug Conjugate, in Patients with Solid Tumors. Cancer 2017, 123, 3080–3087. [Google Scholar] [CrossRef]
- Konstantinopoulos, P. A Phase 2, Two-Stage, Study of Mirvetuximab Soravtansine (IMGN853) in Combination with Pembrolizumab in Patients with Microsatellite Stable (MSS) Recurrent or Persistent Endometrial Cancer (EC); Clinical Trial Registration NCT03835819, Clinicaltrials.gov. 2023. Available online: https://clinicaltrials.gov/study/NCT03835819 (accessed on 1 January 2024).
- Meric-Bernstam, F.; Makker, V.; Oaknin, A.; Oh, D.-Y.; Banerjee, S.; González-Martín, A.; Jung, K.H.; Ługowska, I.; Manso, L.; Manzano, A.; et al. Efficacy and Safety of Trastuzumab Deruxtecan in Patients with HER2-Expressing Solid Tumors: Primary Results From the DESTINY-PanTumor02 Phase II Trial. J. Clin. Oncol. 2024, 42, 47–58. [Google Scholar] [CrossRef]
- Center for Drug Evaluation and Research. FDA Grants Accelerated Approval to Fam-Trastuzumab Deruxtecan-Nxki for Unresectable or Metastatic HER2-Positive Solid Tumors; U.S. Food and Drug Administration: Silver Spring, MD, USA, 2024.
- Nishikawa, T.; Hasegawa, K.; Matsumoto, K.; Mori, M.; Hirashima, Y.; Takehara, K.; Ariyoshi, K.; Kato, T.; Yagishita, S.; Hamada, A.; et al. Trastuzumab Deruxtecan for Human Epidermal Growth Factor Receptor 2–Expressing Advanced or Recurrent Uterine Carcinosarcoma (NCCH1615): The STATICE Trial. J. Clin. Oncol. 2023, 41, 2789–2799. [Google Scholar] [CrossRef]
- Elgersma, R.C.; Coumans, R.G.E.; Huijbregts, T.; Menge, W.M.P.B.; Joosten, J.A.F.; Spijker, H.J.; de Groot, F.M.H.; van der Lee, M.M.C.; Ubink, R.; van den Dobbelsteen, D.J.; et al. Design, Synthesis, and Evaluation of Linker-Duocarmycin Payloads: Toward Selection of HER2-Targeting Antibody-Drug Conjugate SYD985. Mol. Pharm. 2015, 12, 1813–1835. [Google Scholar] [CrossRef]
- Banerji, U.; van Herpen, C.M.L.; Saura, C.; Thistlethwaite, F.; Lord, S.; Moreno, V.; Macpherson, I.R.; Boni, V.; Rolfo, C.; de Vries, E.G.E.; et al. Trastuzumab Duocarmazine in Locally Advanced and Metastatic Solid Tumours and HER2-Expressing Breast Cancer: A Phase 1 Dose-Escalation and Dose-Expansion Study. Lancet Oncol. 2019, 20, 1124–1135. [Google Scholar] [CrossRef]
- Byondis, B.V. A Single-Arm Phase II Trial to Evaluate the Safety and Efficacy of the Antibody-Drug Conjugate (ADC) SYD985 in Patients with Human Epidermal Growth Factor Receptor 2 (HER2)-Expressing Endometrial Carcinoma Who Previously Progressed on or After First Line Platinum-Based Chemotherapy; Clinical Trial Registration NCT04205630; Clinicaltrials.gov. 2023. Available online: https://clinicaltrials.gov/study/NCT04205630 (accessed on 1 January 2023).
- Byondis, B.V. A Two-Part Phase I Study with the Antibody-Drug Conjugate SYD985 in Combination with Niraparib to Evaluate Safety, Pharmacokinetics and Efficacy in Patients with HER2-Expressing Locally Advanced or Metastatic Solid Tumors.; Clinical Trial Registration NCT04235101; Clinicaltrials.gov. 2024. Available online: https://clinicaltrials.gov/study/NCT04235101 (accessed on 1 January 2024).
- Mersana Therapeutics. Upifitamab Rilsodotin (Xmt-1536). An Open-Label, Multicenter, Dose Escalation and Expansion Study of Upifitamab Rilsodotin in Combination with Carboplatin in Participants with High Grade Serous Ovarian Cancer (Upgrade-A); Clinical Trial Registration NCT04907968; Clinicaltrials.gov. 2023. Available online: https://clinicaltrials.gov/study/NCT04907968 (accessed on 31 December 2022).
- Mersana Therapeutics. A Phase 3, Randomized, Double-Blind, Placebo-Controlled, Multicenter Study of Upifitamab Rilsodotin (XMT-1536) as Post-Platinum Maintenance Therapy for Participants with Recurrent, Platinum-Sensitive, Ovarian Cancer (UP-NEXT); Clinical Trial Registration NCT05329545; Clinicaltrials.gov. 2023. Available online: https://clinicaltrials.gov/study/NCT05329545 (accessed on 1 January 2023).
- Mersana Therapeutics. A Phase 1b/2, First-in-Human, Dose Escalation and Expansion Study of XMT-1536 in Patients with Solid Tumors Likely to Express NaPi2b; Clinical Trial Registration NCT03319628; Clinicaltrials.gov. 2023. Available online: https://clinicaltrials.gov/study/NCT03319628 (accessed on 1 January 2023).
- FDA Puts Mersana’s Ovarian Cancer Trials on Partial Clinical Hold. BioSpace. Available online: https://www.biospace.com/fda-puts-mersana-s-ovarian-cancer-trials-on-partial-clinical-hold (accessed on 7 November 2024).
- Beishenaliev, A.; Loke, Y.L.; Goh, S.J.; Geo, H.N.; Mugila, M.; Misran, M.; Chung, L.Y.; Kiew, L.V.; Roffler, S.; Teo, Y.Y. Bispecific Antibodies for Targeted Delivery of Anti-Cancer Therapeutic Agents: A Review. J. Control. Release 2023, 359, 268–286. [Google Scholar] [CrossRef]
- A Biparatopic HER2-Targeting Antibody-Drug Conjugate Induces Tumor Regression in Primary Models Refractory to or Ineligible for HER2-Targeted Therapy. Available online: https://pubmed.ncbi.nlm.nih.gov/26766593/ (accessed on 26 October 2024).
- First-in-Human, Phase 1 Dose-Escalation Study of Biparatopic Anti-HER2 Antibody–Drug Conjugate MEDI4276 in Patients with HER2-positive Advanced Breast or Gastric Cancer|Molecular Cancer Therapeutics|American Association for Cancer Research. Available online: https://aacrjournals.org/mct/article/20/8/1442/673290/First-in-Human-Phase-1-Dose-Escalation-Study-of (accessed on 26 October 2024).
- Weisser, N.E.; Sanches, M.; Escobar-Cabrera, E.; O’Toole, J.; Whalen, E.; Chan, P.W.Y.; Wickman, G.; Abraham, L.; Choi, K.; Harbourne, B.; et al. An Anti-HER2 Biparatopic Antibody That Induces Unique HER2 Clustering and Complement-Dependent Cytotoxicity. Nat. Commun. 2023, 14, 1394. [Google Scholar] [CrossRef] [PubMed]
- Boni, V.; Fidler, M.J.; Arkenau, H.T.; Spira, A.; Meric-Bernstam, F.; Uboha, N.; Sanborn, R.E.; Sweis, R.F.; LoRusso, P.; Nagasaka, M.; et al. Praluzatamab Ravtansine, a CD166-Targeting Antibody-Drug Conjugate, in Patients with Advanced Solid Tumors: An Open-Label Phase I/II Trial. Clin. Cancer Res. 2022, 28, 2020–2029. [Google Scholar] [CrossRef] [PubMed]
ADC | Target | Payload | Mechanism of Action | Gynecologic Cancer Type | Phase | Clinical Trials Identifiers | Key Arms |
---|---|---|---|---|---|---|---|
Mirvetuximab Soravtansine (IMGN853) | FRα | DM4 | Inhibition of tubulin polymerization | Ovarian | III | MIRASOL NCT04209855 | MIRV vs. Investigator choice chemotherapy |
II | MIROVA (NCT04274426) | Carboplatin + MIRV -> MIRV maintenance vs. platinum-based chemotherapy | |||||
II | PICCOLO (NCT05041257) | MIRV monotherapy | |||||
III | GLORIOSA (NCT05445778) | MIRV + bevacizumab vs. bevacizumab monotherapy | |||||
Luveltamab tazide (STRO-002) | FRα | SC209 | Inhibition of tubulin polymerization | Ovarian, Fallopian Tube, Primary Peritoneal, Endometrial | I/II | NCT03748186 NCT05870748 | STRO-002 at escalating doses |
I | NCT05200364 | STRO-002 at escalating doses + Bevacizumab | |||||
Farletuzumab Ecteribulinm (MORAb-202) | FRα | Eribulin | Inhibition of microtubules | Ovarian, Fallopian Tube, Primary Peritonel, Endometrial | I | NCT03386942 | MORAb-202 at escalating doses |
I/II | NCT04300556 | MORAb-202 at escalating doses | |||||
II | NCT05613088 | MORAb-202 at 2 different doses vs. Chemotherapy | |||||
Trastuzumab deruxtecan (DS-8201a) | HER2 | Deruxtecan | Inhibition of topoisomerase I | Endometrial, Ovarian, Cervical | II | DESTINY-PanTumor02 NCT04482309 | DS-8201a monotherapy |
I | NCT04585958 | Trastuzumab Deruxtecan + olaparib | |||||
DB-1303 | HER2 | P1003 | Inhibition of topoisomerase I | Endometrial | I/IIA | NCT05150691 | DB-1303 dose monotherapy |
Trastuzumab Duocarmazine (SYD985) | HER2 | Duocarmycin | DNA alkylation | Endometrial, Ovarian | II | NCT04205630 | SYD985 monotherapy |
I | NCT04235101 | SYD985 + Niraparib at various doses | |||||
Tisotumab vedotin (HuMax-TF-ADC) | TF | MMAE (monomethyl auristatin E) | Inhibition of tubulin polymerization | Cervical | III | NCT04697628 (innovaTV 301) | Tisotumab Vedotin vs. another chemotherapy regimen |
DMUC4064A | MUC16 | MMAE (monomethyl auristatin E) | Inhibition of tubulin polymerization | Ovarian | I | NCT02146313 | DMUC5754A at escalating doses |
Anetumab ravtansine (BAY94-9343) | Mesothelin | DM4 | Inhibition of microtubule polymerization | Ovarian, Fallopian Tube, Primary Peritoneal | I | NCT02751918 | BAY94-9343 + Pegylated Liposomal Doxorubicin |
I | NCT01439152 | BAY94-9343 at escalating doses | |||||
II | NCT03587311 | BAY94-9343 + Bevacizumab vs. Paclitaxel + Bevacizumab | |||||
Upifitamab Rilsodotin (XMT-1536) Discontinued | NaPi2b | Auristatin derivative | Inhibition of tubulin polymerization | Ovarian, Fallopian Tube, Primary Peritoneal | Ib/II | UPLIFT NCT03319628 | UpRi at escalating doses |
I | UPGRADE-A NCT04907968 | UpRi at escalatig doses +Carboplatin | |||||
III | UP-NEXT NCT05329545 | UpRi vs. Placebo | |||||
Sacituzumab govitecan (IMMU-132) | TROP2 | SN-38 (irinotecan metabolite) | Inhibition of topoisomerase I | Endometrial | II | NCT04251416 | IMMU-132 monotherapy |
II | NCT03964727 | IMMU-132 monotherapy | |||||
SKB264 | TROP2 | Proprietary belotecan derivative | Inhibition of topoisomerase I | Ovarian, Endometrial, Cervical | I/II | NCT04152499 | SKB264 at escalating doses |
II | NCT05642780 | SKB264 + Pembrolizumab | |||||
Raludotatug Deruxtecan (R-DXd; DS-6000) | CDH6 | Deruxtecan | Inhibition of topoisomerase I | Ovarian Cancer | I | NCT04707248 | R-DXd, DS-6000 monotherapy |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fasih, S.; Welch, S.; Lohmann, A.E. Antibody–Drug Conjugates: A Start of a New Era in Gynecological Cancers. Curr. Oncol. 2024, 31, 7088-7106. https://doi.org/10.3390/curroncol31110522
Fasih S, Welch S, Lohmann AE. Antibody–Drug Conjugates: A Start of a New Era in Gynecological Cancers. Current Oncology. 2024; 31(11):7088-7106. https://doi.org/10.3390/curroncol31110522
Chicago/Turabian StyleFasih, Samir, Stephen Welch, and Ana Elisa Lohmann. 2024. "Antibody–Drug Conjugates: A Start of a New Era in Gynecological Cancers" Current Oncology 31, no. 11: 7088-7106. https://doi.org/10.3390/curroncol31110522
APA StyleFasih, S., Welch, S., & Lohmann, A. E. (2024). Antibody–Drug Conjugates: A Start of a New Era in Gynecological Cancers. Current Oncology, 31(11), 7088-7106. https://doi.org/10.3390/curroncol31110522