Soft Tissue Reconstruction and Integration to Implant After Bone-Tumor Resection: A Current Concept Review
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Mesh Augmentation with Biological Enhancements
3.2. Biological Reconstruction
3.3. Implant Coatings Metals
3.4. Synthetic Meshes and Tubes
3.5. Prosthesis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gosheger, G.; Hillmann, A.; Lindner, N.; Rödl, R.; Hoffmann, C.; Bürger, H.; Winkelmann, W. Soft tissue reconstruction of megaprostheses using a trevira tube. Clin. Orthop. Relat. Res. 2001, 393, 264–271. [Google Scholar] [CrossRef] [PubMed]
- Manfrini, M.; Tiwari, A.; Ham, J.; Colangeli, M.; Mercuri, M. Evolution of surgical treatment for sarcomas of proximal humerus in children: Retrospective review at a single institute over 30 years. J. Pediatr. Orthop. 2011, 31, 56–64. [Google Scholar] [CrossRef]
- Malawer, M.M.; Chou, L.B. Prosthetic survival and clinical results with use of large-segment replacements in the treatment of high-grade bone sarcomas. J. Bone Jt. Surg. 1995, 77, 1154–1165. [Google Scholar] [CrossRef]
- Sirveaux, F. Reconstruction techniques after proximal humerus tumour resection. Orthop. Traumatol. Surg. Res. 2019, 105, S153–S164. [Google Scholar] [CrossRef]
- Holzapfel, B.M.; Chhaya, M.P.; Melchels, F.P.W.; Holzapfel, N.P.; Prodinger, P.M.; Von Eisenhart-Rothe, R.; van Griensven, M.; Schantz, J.-T.; Rudert, M.; Hutmacher, D.W. Can bone tissue engineering contribute to therapy concepts after resection of musculoskeletal sarcoma? Sarcoma 2013, 2013, 153640. [Google Scholar] [CrossRef]
- Burke, Z.D.C.; Blumstein, G.W.; Zoller, S.D.; Park, H.Y.; Bernthal, N.M. Reconstructive Science in Orthopedic Oncology. Tech. Orthop. 2018, 33, 175–182. [Google Scholar] [CrossRef]
- Zhang, H.R. Application and Development of Megaprostheses in Limb Salvage for Bone Tumors Around the Knee Joint. Cancer Control 2022, 29, 10732748221099219. [Google Scholar] [CrossRef]
- Ahrens, H.; Theil, C.; Gosheger, G.; Rödl, R.; Deventer, N.; Rickert, C.; Ackmann, T.; Schwarze, J.; Klingebiel, S.; Schneider, K.N. The bateman-type soft tissue reconstruction around proximal or total humeral megaprostheses in patients with primary malignant bone tumors—Functional outcome and endoprosthetic complications. Cancers 2021, 13, 3971. [Google Scholar] [CrossRef]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; The PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. PLoS Med. 2009, 6, e1000097. [Google Scholar] [CrossRef]
- Sundar, S.; Pendegrass, C.J.; Oddy, M.J.; Blunn, G.W. Tendon re-attachment to metal prostheses in an in vivo animal model using demineralised bone matrix. J. Bone Jt. Surg. Ser. B 2009, 91, 1257–1262. [Google Scholar] [CrossRef]
- Higuera, C.A.; Inoue, N.; Lim, J.S.; Zhang, R.; Dimaano, N.; Frassica, F.J.; Chao, E.Y.S. Tendon reattachment to a metallic implant using an allogenic bone plate augmented with rhOP-1 vs. autogenous cancellous bone and marrow in a canine model. J. Orthop. Res. 2005, 23, 1091–1099. [Google Scholar] [CrossRef]
- Pendegrass, C.J.; Sundar, S.; Oddy, M.J.; Cannon, S.R.; Briggs, T.; Blunn, G.W. A comparison of augmentation techniques for reconstruction of the extensor mechanism following proximal tibial replacement in an experimental animal model. J. Bone Jt. Surg. Ser. B 2008, 90, 535–541. [Google Scholar] [CrossRef] [PubMed]
- Ichikawa, J.; Matsumoto, S.; Shimoji, T.; Ae, K.; Tanizawa, T.; Gokita, T. A new technique using mesh for extensor reconstruction after proximal tibial resection. Knee 2015, 22, 659–663. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Wu, Q.; Liu, J.; Yang, S.; Shao, Z. Endoprosthetic reconstruction of the proximal humerus after tumour resection with polypropylene mesh. Int. Orthop. 2015, 39, 501–506. [Google Scholar] [CrossRef] [PubMed]
- Brink, O. The choice between allograft or demineralized bone matrix is not unambiguous in trauma surgery. Injury 2021, 52, S23–S28. [Google Scholar] [CrossRef] [PubMed]
- Abdeen, A.; Hoang, B.H.; Athanasian, E.A.; Morris, C.D.; Boland, P.J.; Healey, J.H. Allograft-prosthesis composite reconstruction of the proximal part of the humerus. Functional outcome and survivorship. J. Bone Jt. Surg. 2009, 91, 2406–2415. [Google Scholar] [CrossRef]
- Gautam, D.; Malhotra, R. Megaprosthesis versus Allograft Prosthesis Composite for massive skeletal defects. J. Clin. Orthop. Trauma 2018, 9, 63–80. [Google Scholar] [CrossRef]
- Muscolo, D.L.; Ayerza, M.A.; Aponte-Tinao, L.A. Massive allograft use in orthopedic oncology. Orthop. Clin. North Am. 2006, 37, 65–74. [Google Scholar] [CrossRef]
- Cartiaux, O.; Docquier, P.-L.; Paul, L.; Francq, B.G.; Cornu, O.H.; Delloye, C.; Raucent, B.; Dehez, B.; Banse, X. Surgical inaccuracy of tumor resection and reconstruction within the pelvis An experimental study. Acta Orthop. 2008, 79, 695–702. [Google Scholar] [CrossRef]
- Paul, L.; Docquier, P.L.; Cartiaux, O.; Cornu, O.; Delloye, C.; Banse, X. Selection of massive bone allografts using shape-matching 3-dimensional registration. Acta Orthop. 2010, 81, 250–255. [Google Scholar] [CrossRef]
- Xu, M.; Wang, Z.; Yu, X.; Lin, J.; Hu, Y. Guideline for Limb-Salvage Treatment of Osteosarcoma. Orthop. Surg. 2020, 12, 1021–1029. [Google Scholar] [CrossRef] [PubMed]
- Gautam, D.; Arora, N.; Gupta, S.; George, J.; Malhotra, R. Megaprosthesis Versus Allograft Prosthesis Composite for the Management of Massive Skeletal Defects: A Meta-Analysis of Comparative Studies. Curr. Rev. Musculoskelet. Med. 2021, 14, 255–270. [Google Scholar] [CrossRef] [PubMed]
- Aurégan, J.C.; Pietton, R.; Bégué, T.; Anract, P.; Biau, D. Effect of anatomic site and irradiation on the rates of revision and infection of allograft-prosthesis composites after resection of a primary bone tumor: A meta-analysis. Arch. Orthop. Trauma Surg. 2016, 136, 1371–1380. [Google Scholar] [CrossRef] [PubMed]
- Ruggieri, P.; Mavrogenis, A.F.; Guerra, G.; Mercuri, M. Preliminary results after reconstruction of bony defects of the proximal humerus with an allograft-resurfacing composite. J. Bone Jt. Surg. Ser. B 2011, 93-B, 1098–1103. [Google Scholar] [CrossRef]
- Fan, H.; Deng, S.; Tang, W.; Muheremu, A.; Wu, X.; He, P.; Tan, C.; Wang, G.; Tang, J.; Guo, K.; et al. Highly Porous 3D Printed Tantalum Scaffolds Have Better Biomechanical and Microstructural Properties than Titanium Scaffolds. Biomed. Res. Int. 2021, 2021, 2899043. [Google Scholar] [CrossRef]
- Gee, E.C.A.; Eleotério, R.; Bowker, L.M.; Saithna, A.; Hunt, J.A. The influence of tantalum on human cell lineages important for healing in soft-tissue reattachment surgery: An in-vitro analysis. J. Exp. Orthop. 2019, 6, 40. [Google Scholar] [CrossRef]
- Reach, J.S.; Dickey, I.D.; Zobitz, M.E.; Adams, J.E.; Scully, S.P.; Lewallen, D.G. Direct tendon attachment and healing to porous tantalum: An experimental animal study. J. Bone Jt. Surg. 2007, 89, 1000–1009. [Google Scholar] [CrossRef]
- Tucker, J.J.; Gordon, J.A.; Zanes, R.C.; Zuskov, A.; Vinciguerra, J.D.; Bloebaum, R.D.; Soslowsky, L.J. P2 porous titanium implants improve tendon healing in an acute rat supraspinatus repair model. J. Shoulder Elb. Surg. 2017, 26, 529–535. [Google Scholar] [CrossRef]
- Oliva, M.S.; Masci, G.; Vitiello, R.; De Santis, V.; Liuzza, F.; Grasso, A.; Minutillo, F.; Maccauro, G.; Cazzato, G. Hip megaprosthesis in oncological surgery: Open questions. J. Biol. Regul. Homeost. Agents 2019, 33 (Suppl. S1), 45–49. [Google Scholar] [PubMed]
- Sambri, A.; Zucchini, R.; Giannini, C.; Zamparini, E.; Viale, P.; Donati, D.M.; De Paolis, M. Silver-coated (PorAg®) endoprosthesis can be protective against reinfection in the treatment of tumor prostheses infection. Eur. J. Orthop. Surg. Traumatol. 2020, 30, 1345–1353. [Google Scholar] [CrossRef]
- Schmolders, J.; Koob, S.; Schepers, P.; Kehrer, M.; Frey, S.P.; Wirtz, D.C.; Pennekamp, P.H.; Strauss, A.C. Silver-coated endoprosthetic replacement of the proximal humerus in case of tumour—Is there an increased risk of periprosthetic infection by using a trevira tube? Int. Orthop. 2017, 41, 423–428. [Google Scholar] [CrossRef]
- Bischel, O.E.; Suda, A.J.; Böhm, P.M.; Lehner, B.; Bitsch, R.G.; Seeger, J.B. En-bloc resection of metastases of the proximal femur and reconstruction by modular arthroplasty is not only justified in patients with a curative treatment option—An observational study of a consecutive series of 45 patients. J. Clin. Med. 2020, 9, 758. [Google Scholar] [CrossRef] [PubMed]
- Puetzler, J.; Deventer, N.; Gosheger, G.; Goesling, T.; Winkelmann, W.; Budny, T. Hip transposition procedure due to osteosarcoma metastasis of the ilium in a patient with preexisting rotationplasty leads to satisfactory functional result: A case report. Int. J. Surg. Case Rep. 2020, 77, 739–742. [Google Scholar] [CrossRef] [PubMed]
- El Motassime, A.; Meschini, C.; Di Costa, D.; Rovere, G.; Matrangolo, M.R.; De Maio, F.; Farsetti, P.; Ziranu, A.; Maccauro, G.; Vitiello, R. Functional Outcomes and Shoulder Instability in Reconstruction of Proximal Humerus Metastases. Curr. Oncol. 2023, 30, 3571–3579. [Google Scholar] [CrossRef]
- Apostolopoulos, V.; Tomáš, T.; Pazourek, L.; Mahdal, M. Total elbow replacement for giant-cell tumor of bone after denosumab treatment: A case report. JSES Int. 2023, 7, 511–515. [Google Scholar] [CrossRef]
- Ham, S.J.; Koops, H.S.; Veth, R.P.H.; Van Horn, J.R.; Molenaar, W.M.; Hoekstra, H.J. Limb salvage surgery for primary bone sarcoma of the lower extremities: Long-term consequences of endoprosthetic reconstructions. Ann. Surg. Oncol. 1998, 5, 423–436. [Google Scholar] [CrossRef]
- Carroll, M.J.; Athwal, G.S.; King, G.J.W.; Faber, K.J. Capitellar and Trochlear Fractures. Hand Clin. 2015, 31, 615–630. [Google Scholar] [CrossRef]
- Li, J.; Zheng, Y.; Yu, Z.; Kankala, R.K.; Lin, Q.; Shi, J.; Chen, C.; Luo, K.; Chen, A.; Zhong, Q. Surface-modified titanium and titanium-based alloys for improved osteogenesis: A critical review. Heliyon 2024, 10, e23779. [Google Scholar] [CrossRef]
- Lu, M.M.; Wu, P.S.; Guo, X.J.; Yin, L.L.; Cao, H.L.; Zou, D. Osteoinductive effects of tantalum and titanium on bone mesenchymal stromal cells and bone formation in ovariectomized rats. Eur. Rev. Med. Pharmacol. Sci. 2018, 22, 7087–7104. [Google Scholar] [CrossRef]
- Zheng, Y.; Han, Q.; Li, D.; Sheng, F.; Song, Z.; Wang, J. Promotion of tendon growth into implant through pore-size design of a Ti-6Al-4 V porous scaffold prepared by 3D printing. Mater. Des. 2021, 197, 109219. [Google Scholar] [CrossRef]
Authors | Title | Type of Study | Year |
---|---|---|---|
Mesh augmentation with biological enhancements | |||
Sundar et al. [10] | Tendon re-attachment to metal prostheses in an in vivo animal model using demineralised bone matrix. | In vivo animal model | 2009 |
Higuera et al. [11] | Tendon reattachment to a metallic implant using an allogenic bone plate augmented with rhOP-1 vs. autogenous cancellous bone and marrow in a canine model. | In vivo animal model | 2005 |
Pendegrass et al. [12] | A comparison of augmentation techniques for reconstruction of the extensor mechanism following proximal tibial replacement in an experimental animal | In vivo animal model | 2008 |
Ichikawa et al. [13] | A new technique using mesh for extensor reconstruction after proximal tibial resection | Retrospective study | 2015 |
Wang et al. [14] | Endoprosthetic reconstruction of the proximal humerus after tumour resection with polypropylene mesh. | Retrospective study | 2015 |
Brink et al. [15] | The choice between allograft or demineralized bone matrix is not unambiguous in trauma surgery. | Review | 2021 |
Allograft-prosthesis composites (APC) | |||
Abdeen et al. [16] | Allograft-prosthesis composite reconstruction of the proximal part of the humerus. Functional outcome and survivorship. | Clinical trial | 2009 |
Gautam et al. [17] | Megaprosthesis versus Allograft Prosthesis Composite for massive skeletal defects | Review | 2018 |
Muscolo DL et al. [18] | Massive allograft use in orthopedic oncology. | Review | 2006 |
Cartiaux O et al. [19] | Surgical inaccuracy of tumor resection and reconstruction within the pelvis An experimental study. | Experimental model | 2008 |
Paul L et al. [20] | Selection of massive bone allografts using shape-matching 3-dimensional registration. | Experimental model | 2010 |
Xu M et al. [21] | Guideline for Limb-Salvage Treatment of Osteosarcoma. | Review | 2020 |
Gautam et al. [22] | Megaprosthesis Versus Allograft Prosthesis Composite for the Management of Massive Skeletal Defects: A Meta-Analysis of Comparative Studies. | Review | 2021 |
Aurégan et al. [23] | Effect of anatomic site and irradiation on the rates of revision and infection of allograft-prosthesis composites after resection of a primary bone tumor: a meta-analysis. | Meta-Analysis | 2016 |
Ruggieri et al. [24] | Preliminary results after reconstruction of bony defects of the proximal humerus with an allograft-resurfacing composite. | Retrospective study | 2011 |
Implant coatings metals | |||
Fan H. et al. [25] | Highly Porous 3D Printed Tantalum Scaffolds Have Better Biomechanical and Microstructural Properties than Titanium Scaffolds. | Preclinical study | 2021 |
C. A. Gee et al. [26] | The influence of tantalum on human cell lineages important for healing in soft-tissue reattachment surgery: an in-vitro analysis | In vitro- study | 2019 |
Reach et al. [27] | Direct tendon attachment and healing to porous tantalum: An experimental animal study. | In vivo-animal model | 2007 |
Tucker et al. [28] | P2 porous titanium implants improve tendon healing in an acute rat supraspinatus repair model. | In vivo-animal model | 2017 |
Polyethylene terephthalate (PTT) tube | |||
Wang et al. [14] | Endoprosthetic reconstruction of the proximal humerus after tumour resection with polypropylene mesh. | Retrospective study | 2015 |
Gosheger et al. [1] | Soft tissue reconstruction of megaprostheses using a trevira tube | Clinical trial | 2001 |
Oliva et al. [29] | Hip megaprosthesis in oncological surgery: open questions. | Review | 2019 |
Sambri et al. [30] | Silver-coated (PorAg®) endoprosthesis can be protective against reinfection in the treatment of tumor prostheses infection. | Retrospective study | 2020 |
Schmolders et al. [31] | Silver-coated endoprosthetic replacement of the proximal humerus in case of tumour—is there an increased risk of periprosthetic infection by using a trevira tube? | Clinical trial | 2017 |
Bischel et al. [32] | En-bloc resection of metastases of the proximal femur and reconstruction by modular arthroplasty is not only justified in patients with a curative treatment option—an observational study of a consecutive series of 45 patients. | Retrospective study | 2020 |
Puetzler et al. [33] | Hip transposition procedure due to osteosarcoma metastasis of the ilium in a patient with preexisting rotationplasty leads to satisfactory functional result: A case report. | A case report | 2020 |
El Motassime et al. [34] | Functional Outcomes and Shoulder Instability in Reconstruction of Proximal Humerus Metastases. | Retrospective study | 2023 |
Apostolopoulos et al. [35] | Total elbow replacement for giant-cell tumor of bone after denosumab treatment: a case report. | A case report | 2023 |
Prosthesis | |||
Ham et al. [36] | Limb salvage surgery for primary bone sarcoma of the lower extremities: Long-term consequences of endoprosthetic reconstructions. | Retrospective study | 1998 |
Hao-Ran et al. [7] | Application and Development of Megaprostheses in Limb Salvage for Bone Tumors Around the Knee Joint. | Review | 2022 |
Burke et al. [6] | Reconstructive Science in Orthopedic Oncology. | Review | 2018 |
Manfrini et al. [2] | Evolution of surgical treatment for sarcomas of proximal humerus in children: Retrospective review at a single institute over 30 years. | Retrospective study | 2018 |
Sirveaux et al. [4] | Reconstruction techniques after proximal humerus tumour resection | Review | 2019 |
Oliva et al. [29] | Hip megaprosthesis in oncological surgery: open questions. | Review | 2019 |
Bischel et al. [32] | En-bloc resection of metastases of the proximal femur and reconstruction by modular arthroplasty is not only justified in patients with a curative treatment option—an observational study of a consecutive series of 45 patients. | Retrospective study | 2020 |
Puetzler et al. [33] | Hip transposition procedure due to osteosarcoma metastasis of the ilium in a patient with preexisting rotationplasty leads to satisfactory functional result: A case report. | A case report | 2020 |
Mesh augmentation with biological enhancements | Advantages |
|
Disadvantages |
| |
Allograft-prosthesis composites (APC) | Advantages |
|
Disadvantages |
| |
Implant coatings metals | Advantages |
|
Disadvantages |
| |
Polyethylene terephthalate (PTT) tube | Advantages |
|
Disadvantages |
| |
Prosthesis | Advantages |
|
Disadvantages |
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pesare, E.; Vitiello, R.; Greco, T.; Solarino, G.; Maccauro, G.; Ziranu, A. Soft Tissue Reconstruction and Integration to Implant After Bone-Tumor Resection: A Current Concept Review. Curr. Oncol. 2024, 31, 7190-7203. https://doi.org/10.3390/curroncol31110531
Pesare E, Vitiello R, Greco T, Solarino G, Maccauro G, Ziranu A. Soft Tissue Reconstruction and Integration to Implant After Bone-Tumor Resection: A Current Concept Review. Current Oncology. 2024; 31(11):7190-7203. https://doi.org/10.3390/curroncol31110531
Chicago/Turabian StylePesare, Elisa, Raffaele Vitiello, Tommaso Greco, Giuseppe Solarino, Giulio Maccauro, and Antonio Ziranu. 2024. "Soft Tissue Reconstruction and Integration to Implant After Bone-Tumor Resection: A Current Concept Review" Current Oncology 31, no. 11: 7190-7203. https://doi.org/10.3390/curroncol31110531
APA StylePesare, E., Vitiello, R., Greco, T., Solarino, G., Maccauro, G., & Ziranu, A. (2024). Soft Tissue Reconstruction and Integration to Implant After Bone-Tumor Resection: A Current Concept Review. Current Oncology, 31(11), 7190-7203. https://doi.org/10.3390/curroncol31110531