Immunotherapy Responses in Viral Hepatitis-Induced HCC: A Systematic Review and Meta-Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Registration
2.2. Search Strategy and Study Selection
2.3. Eligibility and Inclusion/Exclusion Criteria
2.4. Data Extraction and Management
2.5. Statistical Analysis
2.6. Risk of Bias Assessment
3. Results
3.1. Systematic Review Findings
3.2. Meta-Analytical Findings
3.2.1. Objective Response Rate
3.2.2. Progression-Free Survival
3.2.3. Overall Survival
- Excluding the first arm of the HIMALAYA trial yielded an odds ratio of 1.17 (95% CI: 0.89, 1.53) with a moderate heterogeneity of 76% (Chi2 = 16.71, p = 0.002) and no significant overall effect (p = 0.25).
- Removing the second arm of the HIMALAYA trial resulted in a slightly lower odds ratio of 1.08 (95% CI: 0.83, 1.41), with similar heterogeneity (75%, Chi2 = 15.86, p = 0.003) and an insignificant overall effect (p = 0.57).
- Omitting IMbrave 150 from the analysis also presented an odds ratio of 1.08 (95% CI: 0.83, 1.41), with heterogeneity remaining high at 75% (Chi2 = 16.02, p = 0.003) and no significant impact on overall results (p = 0.57).
- Excluding COSMIC-312 brought about a noticeable increase in the odds ratio to 1.48 (95% CI: 1.12, 1.96), significantly reducing heterogeneity to 0% (Chi2 = 3.32, p = 0.51) and showing a significant overall effect (p = 0.006).
- Leaving out RATIONALE-301 resulted in an odds ratio of 1.04 (95% CI: 0.80, 1.35), with substantial heterogeneity (69%, Chi2 = 12.73, p = 0.01) and a non-significant overall effect (p = 0.76).
- Removing CARES-310 yielded an odds ratio of 1.10 (95% CI: 0.85, 1.41), with high heterogeneity (74%, Chi2 = 15.49, p = 0.004) and an insignificant effect on overall results (p = 0.47).
3.2.4. Risk of Bias Findings
4. Discussion
4.1. Limitations
4.2. Recommendations for Future Research and Clinical Practice
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Grandhi, M.S.; Kim, A.K.; Ronnekleiv-Kelly, S.M.; Kamel, I.R.; Ghasebeh, M.A.; Pawlik, T.M. Hepatocellular carcinoma: From diagnosis to treatment. Surg. Oncol. 2016, 25, 74–85. [Google Scholar] [CrossRef] [PubMed]
- Chidambaranathan-Reghupaty, S.; Fisher, P.B.; Sarkar, D. Hepatocellular carcinoma (HCC): Epidemiology, etiology and molecular classification. Adv. Cancer Res. 2021, 149, 1–61. [Google Scholar] [PubMed]
- Lazarus, J.V.; Picchio, C.A.; Colombo, M. Hepatocellular carcinoma prevention in the era of hepatitis c elimination. Int. J. Mol. Sci. 2023, 24, 14404. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.-s.; El-Serag, H.B. The epidemiology of hepatocellular carcinoma in the USA. Curr. Gastroenterol. Rep. 2019, 21, 1–8. [Google Scholar] [CrossRef] [PubMed]
- El-Serag, H.B.; Kanwal, F. Epidemiology of hepatocellular carcinoma in the United States: Where are we? Where do we go? Hepatology 2014, 60, 1767–1775. [Google Scholar] [CrossRef]
- Akinyemiju, T.; Abera, S.; Ahmed, M.; Alam, N.; Alemayohu, M.A.; Allen, C.; Al-Raddadi, R.; Alvis-Guzman, N.; Amoako, Y.; Artaman, A. The burden of primary liver cancer and underlying etiologies from 1990 to 2015 at the global, regional, and national level: Results from the global burden of disease study 2015. JAMA Oncol. 2017, 3, 1683–1691. [Google Scholar]
- Gnyawali, B.; Pusateri, A.; Nickerson, A.; Jalil, S.; Mumtaz, K. Epidemiologic and socioeconomic factors impacting hepatitis B virus and related hepatocellular carcinoma. World J. Gastroenterol. 2022, 28, 3793. [Google Scholar] [CrossRef]
- Fattovich, G.; Stroffolini, T.; Zagni, I.; Donato, F. Hepatocellular carcinoma in cirrhosis: Incidence and risk factors. Gastroenterology 2004, 127, S35–S50. [Google Scholar] [CrossRef]
- Garrido, A.; Djouder, N. Cirrhosis: A questioned risk factor for hepatocellular carcinoma. Trends Cancer 2021, 7, 29–36. [Google Scholar] [CrossRef]
- Sukowati, C.H.C.; El-Khobar, K.E.; Ie, S.I.; Anfuso, B.; Muljono, D.H.; Tiribelli, C. Significance of hepatitis virus infection in the oncogenic initiation of hepatocellular carcinoma. World J. Gastroenterol. 2016, 22, 1497. [Google Scholar] [CrossRef]
- Ejaz, S.; Abdullah, I.; Malik, W.N.; Anjum, S.; Ashraf, M.; Akhtar, N.; Khan, A.; Hameed, Y.; Usman, M.; Cheema, U. Screening of hepatitis B and C viral infection, recognition of risk factors, and immunization of patients against hepatitis B virus: A module developed for effective hepatitis control. Front. Public Health 2023, 11, 1269209. [Google Scholar] [CrossRef] [PubMed]
- El-Serag, H.B. Epidemiology of hepatocellular carcinoma. Liver Biol. Pathobiol. 2020, 2020, 758–772. [Google Scholar]
- Bruix, J.; Gores, G.J.; Mazzaferro, V. Hepatocellular carcinoma: Clinical frontiers and perspectives. Gut 2014, 63, 844–855. [Google Scholar] [CrossRef] [PubMed]
- McGuigan, A.; Kelly, P.; Turkington, R.C.; Jones, C.; Coleman, H.G.; McCain, R.S. Pancreatic cancer: A review of clinical diagnosis, epidemiology, treatment and outcomes. World J. Gastroenterol. 2018, 24, 4846. [Google Scholar] [CrossRef]
- Yang, J.D.; Hainaut, P.; Gores, G.J.; Amadou, A.; Plymoth, A.; Roberts, L.R. A global view of hepatocellular carcinoma: Trends, risk, prevention and management. Nat. Rev. Gastroenterol. Hepatol. 2019, 16, 589–604. [Google Scholar] [CrossRef]
- Mak, L.-Y.; Cruz-Ramón, V.; Chinchilla-López, P.; Torres, H.A.; LoConte, N.K.; Rice, J.P.; Foxhall, L.E.; Sturgis, E.M.; Merrill, J.K.; Bailey, H.H. Global epidemiology, prevention, and management of hepatocellular carcinoma. Am. Soc. Clin. Oncol. Educ. Book 2018, 38, 262–279. [Google Scholar] [CrossRef]
- Ozakyol, A. Global epidemiology of hepatocellular carcinoma (HCC epidemiology). J. Gastrointest. Cancer 2017, 48, 238–240. [Google Scholar] [CrossRef]
- de Martel, C.; Maucort-Boulch, D.; Plummer, M.; Franceschi, S. World-wide relative contribution of hepatitis B and C viruses in hepatocellular carcinoma. Hepatology 2015, 62, 1190–1200. [Google Scholar] [CrossRef]
- Ginzberg, D.; Wong, R.J.; Gish, R. Global HBV burden: Guesstimates and facts. Hepatol. Int. 2018, 12, 315–329. [Google Scholar] [CrossRef]
- Paladini, S.; Van Damme, P.; Zanetti, A.R. The worldwide impact of vaccination on the control and protection of viral hepatitis B. Dig. Liver Dis. 2011, 43, S2–S7. [Google Scholar]
- Lavanchy, D.; Kane, M. Global epidemiology of hepatitis B virus infection. In Hepatitis B Virus in Human Diseases; Humana: Cham, Switzerland, 2016; pp. 187–203. [Google Scholar]
- Schweitzer, A.; Horn, J.; Mikolajczyk, R.T.; Krause, G.; Ott, J.J. Estimations of worldwide prevalence of chronic hepatitis B virus infection: A systematic review of data published between 1965 and 2013. Lancet 2015, 386, 1546–1555. [Google Scholar] [CrossRef]
- Kaladhar, D.S.; Srinivasan, T. Comparative genomics and molecular epidemiology on hepatitis virus–induced hepatocellular carcinoma. In Theranostics and Precision Medicine for the Management of Hepatocellular Carcinoma; Elsevier: Amsterdam, The Netherlands, 2022; pp. 257–285. [Google Scholar]
- Kaur, S.P.; Talat, A.; Karimi-Sari, H.; Grees, A.; Chen, H.W.; Lau, D.T.Y.; Catana, A.M. Hepatocellular carcinoma in hepatitis B virus-infected patients and the role of hepatitis B surface antigen (HBsAg). J. Clin. Med. 2022, 11, 1126. [Google Scholar] [CrossRef] [PubMed]
- Poh, Z.; Goh, B.-B.G.; Chang, P.-E.J.; Tan, C.-K. Rates of cirrhosis and hepatocellular carcinoma in chronic hepatitis B and the role of surveillance: A 10-year follow-up of 673 patients. Eur. J. Gastroenterol. Hepatol. 2015, 27, 638–643. [Google Scholar] [CrossRef] [PubMed]
- Poulou, L.S.; Botsa, E.; Thanou, I.; Ziakas, P.D.; Thanos, L. Percutaneous microwave ablation vs radiofrequency ablation in the treatment of hepatocellular carcinoma. World J. Hepatol. 2015, 7, 1054. [Google Scholar] [CrossRef] [PubMed]
- Yau, T.; Chan, P.; Epstein, R.; Poon, R.T.P. Management of advanced hepatocellular carcinoma in the era of targeted therapy. Liver Int. 2009, 29, 10–17. [Google Scholar] [CrossRef] [PubMed]
- Limeres, M.J.; Moretton, M.A.; Bernabeu, E.; Chiappetta, D.A.; Cuestas, M.L. Thinking small, doing big: Current success and future trends in drug delivery systems for improving cancer therapy with special focus on liver cancer. Mater. Sci. Eng. C 2019, 95, 328–341. [Google Scholar] [CrossRef]
- Rimassa, L.; Finn, R.S.; Sangro, B. Combination immunotherapy for hepatocellular carcinoma. J. Hepatol. 2023, 79, 506–515. [Google Scholar] [CrossRef]
- Kotsari, M.; Dimopoulou, V.; Koskinas, J.; Armakolas, A. Immune System and Hepatocellular Carcinoma (HCC): New Insights into HCC Progression. Int. J. Mol. Sci. 2023, 24, 11471. [Google Scholar] [CrossRef]
- Postow, M.A.; Callahan, M.K.; Wolchok, J.D. Immune checkpoint blockade in cancer therapy. J. Clin. Oncol. 2015, 33, 1974. [Google Scholar] [CrossRef]
- Yin, X.; Wu, T.; Lan, Y.; Yang, W. Current progress of immune checkpoint inhibitors in the treatment of advanced hepatocellular carcinoma. Biosci. Rep. 2022, 42, BSR20212304. [Google Scholar] [CrossRef]
- Aggeletopoulou, I.; Kalafateli, M.; Triantos, C. Chimeric Antigen Receptor T Cell Therapy for Hepatocellular Carcinoma: Where Do We Stand? Int. J. Mol. Sci. 2024, 25, 2631. [Google Scholar] [CrossRef] [PubMed]
- Qin, S.; Kudo, M.; Meyer, T.; Bai, Y.; Guo, Y.; Meng, Z.; Satoh, T.; Marino, D.; Assenat, E.; Li, S. Tislelizumab vs sorafenib as first-line treatment for unresectable hepatocellular carcinoma: A phase 3 randomized clinical trial. JAMA Oncol. 2023, 9, 1651–1659. [Google Scholar] [CrossRef] [PubMed]
- Qin, S.; Chan, S.L.; Gu, S.; Bai, Y.; Ren, Z.; Lin, X.; Chen, Z.; Jia, W.; Jin, Y.; Guo, Y. Camrelizumab plus rivoceranib versus sorafenib as first-line therapy for unresectable hepatocellular carcinoma (CARES-310): A randomised, open-label, international phase 3 study. Lancet 2023, 402, 1133–1146. [Google Scholar] [CrossRef] [PubMed]
- Abou-Alfa, G.K.; Lau, G.; Kudo, M.; Chan, S.L.; Kelley, R.K.; Furuse, J.; Sukeepaisarnjaroen, W.; Kang, Y.-K.; Van Dao, T.; De Toni, E.N. Tremelimumab plus durvalumab in unresectable hepatocellular carcinoma. NEJM Evid. 2022, 1, EVIDoa2100070. [Google Scholar] [CrossRef] [PubMed]
- Cheng, A.-L.; Qin, S.; Ikeda, M.; Galle, P.R.; Ducreux, M.; Kim, T.-Y.; Lim, H.Y.; Kudo, M.; Breder, V.; Merle, P. Updated efficacy and safety data from IMbrave150: Atezolizumab plus bevacizumab vs. sorafenib for unresectable hepatocellular carcinoma. J. Hepatol. 2022, 76, 862–873. [Google Scholar] [CrossRef]
- Kelley, R.K.; Rimassa, L.; Cheng, A.-L.; Kaseb, A.; Qin, S.; Zhu, A.X.; Chan, S.L.; Melkadze, T.; Sukeepaisarnjaroen, W.; Breder, V. Cabozantinib plus atezolizumab versus sorafenib for advanced hepatocellular carcinoma (COSMIC-312): A multicentre, open-label, randomised, phase 3 trial. Lancet Oncol. 2022, 23, 995–1008. [Google Scholar] [CrossRef]
- Yau, T.; Park, J.-W.; Finn, R.S.; Cheng, A.-L.; Mathurin, P.; Edeline, J.; Kudo, M.; Harding, J.J.; Merle, P.; Rosmorduc, O. Nivolumab versus sorafenib in advanced hepatocellular carcinoma (CheckMate 459): A randomised, multicentre, open-label, phase 3 trial. Lancet Oncol. 2022, 23, 77–90. [Google Scholar] [CrossRef]
- Ren, Z.; Xu, J.; Bai, Y.; Xu, A.; Cang, S.; Du, C.; Li, Q.; Lu, Y.; Chen, Y.; Guo, Y. Sintilimab plus a bevacizumab biosimilar (IBI305) versus sorafenib in unresectable hepatocellular carcinoma (ORIENT-32): A randomised, open-label, phase 2–3 study. Lancet Oncol. 2021, 22, 977–990. [Google Scholar] [CrossRef]
- Yau, T.; Kang, Y.-K.; Kim, T.-Y.; El-Khoueiry, A.B.; Santoro, A.; Sangro, B.; Melero, I.; Kudo, M.; Hou, M.-M.; Matilla, A. Efficacy and safety of nivolumab plus ipilimumab in patients with advanced hepatocellular carcinoma previously treated with sorafenib: The CheckMate 040 randomized clinical trial. JAMA Oncol. 2020, 6, e204564. [Google Scholar] [CrossRef]
- Zhu, A.X.; Finn, R.S.; Edeline, J.; Cattan, S.; Ogasawara, S.; Palmer, D.; Verslype, C.; Zagonel, V.; Fartoux, L.; Vogel, A. Pembrolizumab in patients with advanced hepatocellular carcinoma previously treated with sorafenib (KEYNOTE-224): A non-randomised, open-label phase 2 trial. Lancet Oncol. 2018, 19, 940–952. [Google Scholar] [CrossRef]
- Ding, Z.; Dong, Z.; Chen, Z.; Hong, J.; Yan, L.; Li, H.; Yao, S.; Yan, Y.; Yang, Y.; Yang, C. Viral status and efficacy of immunotherapy in hepatocellular carcinoma: A systematic review with meta-analysis. Front. Immunol. 2021, 12, 733530. [Google Scholar] [CrossRef] [PubMed]
- Du, S.; Cao, K.; Wang, Z.; Lin, D. Clinical efficacy and safety of atezolizumab plus bevacizumab versus lenvatinib in the treatment of advanced hepatocellular carcinoma: A systematic review and meta-analysis. Medicine 2023, 102, e33852. [Google Scholar] [CrossRef] [PubMed]
- Albarrak, J.; Al-Shamsi, H. Current status of management of hepatocellular carcinoma in the Gulf region: Challenges and recommendations. Cancers 2023, 15, 2001. [Google Scholar] [CrossRef] [PubMed]
- Vo Quang, E.; Shimakawa, Y.; Nahon, P. Epidemiological projections of viral-induced hepatocellular carcinoma in the perspective of WHO global hepatitis elimination. Liver Int. 2021, 41, 915–927. [Google Scholar] [CrossRef]
- Suresh, D.; Srinivas, A.N.; Kumar, D.P. Etiology of hepatocellular carcinoma: Special focus on fatty liver disease. Front. Oncol. 2020, 10, 601710. [Google Scholar] [CrossRef]
- Pocha, C.; Kolly, P.; Dufour, J.-F. Nonalcoholic fatty liver disease-related hepatocellular carcinoma: A problem of growing magnitude. Semin. Liver Dis. 2015, 35, 304–317. [Google Scholar] [CrossRef]
- Wang, F.S.; Fan, J.G.; Zhang, Z.; Gao, B.; Wang, H.Y. The global burden of liver disease: The major impact of China. Hepatology 2014, 60, 2099–2108. [Google Scholar] [CrossRef]
- Shariff, M.I.; Cox, I.J.; Gomaa, A.I.; Khan, S.A.; Gedroyc, W.; Taylor-Robinson, S.D. Hepatocellular carcinoma: Current trends in worldwide epidemiology, risk factors, diagnosis and therapeutics. Expert Rev. Gastroenterol. Hepatol. 2009, 3, 353–367. [Google Scholar] [CrossRef]
- Kim, E.; Viatour, P. Hepatocellular carcinoma: Old friends and new tricks. Exp. Mol. Med. 2020, 52, 1898–1907. [Google Scholar] [CrossRef]
Author-Year | Trial Name | Phase | N | Age (Median) | Male (%) | HBV Viral Load (IU/mL) | HBsAg | Prior Anti-Viral Therapy | HDV Coinfection | Intervention | Dosage | Follow-Up Duration | Outcomes: Group A—Viral Hepatitis | Outcomes: Group B—Non-Infected |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Qin-2023 (1) [34] | RATIONALE-301 | 3 | 674 | 61 (23–86) | 84.60% | NR | NR | NR | NR | Tislelizumab versus sorafenib | Tislelizumab, 200 mg IV every 3 weeks | 4 years and 7 months | OS: HBV: 158/214 HCV: 26/46 | OS: Non-Viral: 58/82 |
Qin-2023 (2) [35] | CARES-310 | 3 | 543 | 58 (46–56) | 83% | NR | NR | NR | NR | Camrelizumab (PDL1) + rivoceranib (VEGFR) vs. sorafenib | Camrelizumab 200 mg Q2W and rivoceranib 250 mg PO QDS | PFS: 7.8 months (IQR: 4.1–10.6) OS: 14.5 months (IQR: 9.1–18.7) | PFS: HBV: 155/208 HCV: 9/22 OS: HBV: 90/208 HCV: 6/22 | PFS: 25/42 OS: 15/42 |
Abou-Alfa-2022 [36] | HIMALAYA trial | 3 | 1171 | 65 (22–86) | 83.2 | NR | Detectable | Yes | No | Tremelimumab + durvalumab versus sorafenib | Group A: tremelimumab (300 mg, one dose) plus durvalumab (1500 mg every 4 weeks) Group B: durvalumab (1500 mg every 4 weeks) | 37.5 months | OS: Group A: HBV: 82/122 HCV: 73/110 Group B: HBV: 91/119 HCV: 73/107 | OS: Group A: Non-Viral: 107/161 Group B: 116/163 |
Cheng-2022 [37] | IMbrave 150 | 3 | 501 | NR | 82.6 | <500 | Detectable | Yes | N/R | Atezolizumab + bevacizumab vs. sorafenib | 1200 mg atezolizumab plus 15 mg/kg bevacizumab intravenously every 3 weeks or 400 mg sorafenib orally twice daily | 10 months | RR: HBV: 50/158 HCV: 21/70 PFS: HBV: 129/164; 6.7 (5.4–9.5) HCV: 48/72; 8.8 (6.0–13.5) OS: HBV: 86/164; 19.0 (16.1-NE) HCV: 31/72; 24.6 (19.8-NE) | RR: 26/98 PFS: 80/100; 7.1 (5.6–9.6) OS: 63/100; 17.0 (11.7–22.8) |
Kelley-2022 [38] | COSMIC-312 | 3 | 837 | 64 (58–70) | 83 | <500 | Detectable | Yes | N/R | Atezolizumab (PDL1) + cabozantinib versus sorafenib | Cabozantinib 40 mg orally once daily plus atezolizumab 1200 mg intravenously every 3 weeks | Overall ITT: 13.3 months (IQR: 10.5–16) PFS ITT: 15.8 months (IQR: 14.5–17.2) | PFS: cabozantinib + atezolizumab: HBV: (52/74); 6.7 (5.6–8.3) HCV without HBV: (43/71); 7.9 (5.8–11) OS: cabozantinib + atezolizumab: HBV: (41/127); 18.2 (15.4-NE) HCV without HBV: (66/136); 13.6 (10.8–17) | PFS: cabozantinib + atezplizumab: (79/105); 5.8 (4.3–9.3) OS: cabozantinib + atezplizumab: (76/169); 15.2 (12.5-NE) |
Yau-2022 [39] | CheckMate-459 | 3 | 743 | 65 (57–71) | 85% | <100 | Detectable | Yes | No | Nivolumab versus sorafenib | Nivolumab (240 mg intravenous every 2 weeks; n = 371) or sorafenib (400 mg oral twice daily; n = 372) | 15.2 months (IQR: 5.7–28) | OS: nivolumab versus sorafenib, HBV: 16.1 vs. 10.4 months; HR 0.79 [95% CI, 0.59e1. 07] HCV: (17.5 vs. 12.7; HR, 0.72 [95% CI, 0.51e1. 02] | NR |
Ren-2021 [40] | ORIENT-32 | 2–3 | 595 | 53 (21–82) | 88% | less than 2000 | Undetectable | N/R | N/R | Sintilimab + IBI305 versus sorafenib | Phase 2: IV sintilimab (200 mg every 3 weeks) plus IV IBI305 (15 mg/kg every 3 weeks) Phase 3: either sintilimab plus IBI305 (sintilimab–bevacizumab biosimilar group) or sorafenib (400 mg orally twice daily; sorafenib group), until disease progression or unacceptable toxicity | 10 months (IQR: 8.5–11.7) | PFS: 179/359-HBV OS: 179/359-HBV | PFS: 12/21-non-infected OS: 12/21-non-infected |
Yau-2020 [41] | CheckMate 040 | 2 | 148 | 60 (52–66) | 81 | <100 | Detectable | Yes | No | Nivolumab versus sorafenib | Arm A: nivolumab 240 mg every 2 weeks Arm B: nivolumab 3 mg/kg plus ipilimumab 1 mg/kg, every 3 weeks (4 doses), followed by nivolumab 240 mg every 2 weeks Arm C: nivolumab 3 mg/kg every 2 weeks plus ipilimumab 1 mg/kg every 6 weeks | 30.7 months (IQR: 29.9–34.7) | RR: Arm A: 9/28 (HBV), 2/7 (HCV) Arm B: 6/21 (HBV), 6/14 (HCV) Arm C: 8/26 (HBV), 5/12 (HCV) OS: HBV: Arm A: 22.8 (7.2-NE) (n = 50) Arm B: 12.1 (3.9–24.2) (n = 49) Arm C: 9.6 (6.0-NE) (n = 49) HCV: Arm A: 14.9 (0.7-NE) Arm B: 16.1 (6.5-NE) Arm C: 33.0 (3.1-NE) | RR: Arm A: 4/13 Arm B: 1/11 Arm C: 0/9 OS: Arm A: 22.2 (8.5-NE) Arm B: 11.8 (2.1–16.5) Arm C: 7.4 (0.9–14.5) |
Zhu-2018 [42] | KEYNOTE-224 trial | 2 | 104 | 68 (62–73) | 83 | <100 | Undetectable | NR | NR | Pembrolizumab uncontrolled | 200 mg pembrolizumab intravenously every 3 weeks for about 2 years | 12.1 months | RR: 5/39 (HBC/HCV) | RR: Uninfected: 13/64 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Anwar, J.; Arslan, H.M.; Sarfraz, Z.; Shuroog, J.; Abdelhakeem, A.; Saeed, A.; Saeed, A. Immunotherapy Responses in Viral Hepatitis-Induced HCC: A Systematic Review and Meta-Analysis. Curr. Oncol. 2024, 31, 7204-7225. https://doi.org/10.3390/curroncol31110532
Anwar J, Arslan HM, Sarfraz Z, Shuroog J, Abdelhakeem A, Saeed A, Saeed A. Immunotherapy Responses in Viral Hepatitis-Induced HCC: A Systematic Review and Meta-Analysis. Current Oncology. 2024; 31(11):7204-7225. https://doi.org/10.3390/curroncol31110532
Chicago/Turabian StyleAnwar, Junaid, Hafiz Muhammad Arslan, Zouina Sarfraz, Juwairiya Shuroog, Ahmed Abdelhakeem, Ali Saeed, and Anwaar Saeed. 2024. "Immunotherapy Responses in Viral Hepatitis-Induced HCC: A Systematic Review and Meta-Analysis" Current Oncology 31, no. 11: 7204-7225. https://doi.org/10.3390/curroncol31110532
APA StyleAnwar, J., Arslan, H. M., Sarfraz, Z., Shuroog, J., Abdelhakeem, A., Saeed, A., & Saeed, A. (2024). Immunotherapy Responses in Viral Hepatitis-Induced HCC: A Systematic Review and Meta-Analysis. Current Oncology, 31(11), 7204-7225. https://doi.org/10.3390/curroncol31110532