Prehabilitation in Adults Undergoing Cancer Surgery: A Comprehensive Review on Rationale, Methodology, and Measures of Effectiveness
Abstract
:1. Introduction
- What is the rationale behind prehabilitation in cancer patients?
- What are the prehabilitation strategies used in cancer surgical patients?
- How is the effect of a prehabilitation strategy measured?
- What is the suggested effective duration of a prehabilitation cancer program?
2. What Is the Rationale of Prehabilitation in Cancer Patients?
3. What Prehabilitation Strategies Are Used in Cancer Surgical Patients?
3.1. Exercise
3.2. Nutritional
3.3. Psychosocial
3.4. Functional
3.5. Cognitive
4. How Is the Effect of a Prehabilitation Strategy Measured?
5. What Is the Suggested Effective Duration of a Prehabilitation Cancer Program?
6. Discussion
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Perera, S.K.; Jacob, S.; Wilson, B.E.; Ferlay, J.; Bray, F.; Sullivan, R.; Barton, M. Global demand for cancer surgery and an estimate of the optimal surgical and anaesthesia workforce between 2018 and 2040: A population-based modelling study. Lancet Oncol. 2021, 22, 182–189. [Google Scholar] [CrossRef] [PubMed]
- Gultekin, S.C.; Cakir, A.B.; Guc, Z.G.; Ozalp, F.R.; Keskinkilic, M.; Yavuzsen, T.; Yavuzsen, H.T.; Karadibak, D. The comparison of functional status and health-related parameters in ovarian cancer survivors with healthy controls. Support. Care Cancer 2024, 32, 119. [Google Scholar] [CrossRef] [PubMed]
- Khuri, S.F.; Daley, J.; Henderson, W.; Hur, K.; Demakis, J.; Aust, J.B.; Chong, V.; Fabri, P.J.; Gibbs, J.O.; Grover, F.; et al. The Department of Veterans Affairs’ NSQIP: The first national, validated, outcome-based, risk-adjusted, and peer-controlled program for the measurement and enhancement of the quality of surgical care. National VA Surgical Quality Improvement Program. Ann. Surg. 1998, 228, 491–507. [Google Scholar] [CrossRef] [PubMed]
- Ebihara, Y.; Kyogoku, N.; Murakami, Y.; Murakawa, K.; Nakamura, F.; Morita, T.; Okushiba, S.; Hirano, S. Relationship between laparoscopic total gastrectomy-associated postoperative complications and gastric cancer prognosis. Updates Surg. 2023, 75, 149–158. [Google Scholar] [CrossRef] [PubMed]
- Matsuda, S.; Kitagawa, Y.; Okui, J.; Okamura, A.; Kawakubo, H.; Takemura, R.; Muto, M.; Kakeji, Y.; Takeuchi, H.; Watanabe, M.; et al. Old age and intense chemotherapy exacerbate negative prognostic impact of postoperative complication on survival in patients with esophageal cancer who received neoadjuvant therapy: A nationwide study from 85 Japanese esophageal centers. Esophagus 2023, 20, 445–454. [Google Scholar] [CrossRef] [PubMed]
- Savioli, F.; Edwards, J.; McMillan, D.; Stallard, S.; Doughty, J.; Romics, L. The effect of postoperative complications on survival and recurrence after surgery for breast cancer: A systematic review and meta-analysis. Crit. Rev. Oncol. Hematol. 2020, 155, 103075. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Xu, L.; Wang, Q.; Li, J.; Bai, B.; Li, Z.; Wu, X.; Yu, P.; Li, X.; Yin, J. Postoperative complications and prognosis after radical gastrectomy for gastric cancer: A systematic review and meta-analysis of observational studies. World J. Surg. Oncol. 2019, 17, 52. [Google Scholar] [CrossRef] [PubMed]
- Nathan, H.; Yin, H.; Wong, S.L. Postoperative Complications and Long-Term Survival After Complex Cancer Resection. Ann. Surg. Oncol. 2017, 24, 638–644. [Google Scholar] [CrossRef] [PubMed]
- Carli, F.; Zavorsky, G.S. Optimizing functional exercise capacity in the elderly surgical population. Curr. Opin. Clin. Nutr. Metab. Care 2005, 8, 23–32. [Google Scholar] [CrossRef]
- Engel, D.; Testa, G.D.; McIsaac, D.I.; Carli, F.; Santa Mina, D.; Baldini, G.; Scheede-Bergdahl, C.; Chevalier, S.; Edgar, L.; Beilstein, C.M.; et al. Reporting quality of randomized controlled trials in prehabilitation: A scoping review. Perioper. Med. 2023, 12, 48. [Google Scholar] [CrossRef]
- Dun, Y.; Cui, N.; Wu, S.; Fu, S.; Ripley-Gonzalez, J.W.; Zhou, N.; Zeng, T.; Li, D.; Chen, M.; Ren, Y.; et al. Cardiorespiratory fitness and morbidity and mortality in patients with non-small cell lung cancer: A prospective study with propensity score weighting. Ann. Med. 2023, 55, 2295981. [Google Scholar] [CrossRef] [PubMed]
- An, K.R.; Seijas, V.; Xu, M.S.; Gruser, L.; Humar, S.; Moreno, A.A.; Turk, M.; Kasanagottu, K.; Alzghari, T.; Dimagli, A.; et al. Does prehabilitation before esophagectomy improve postoperative outcomes? A systematic review and meta-analysis. Dis. Esophagus 2023, 37, doad066. [Google Scholar] [CrossRef] [PubMed]
- Daniels, S.L.; Lee, M.J.; George, J.; Kerr, K.; Moug, S.; Wilson, T.R.; Brown, S.R.; Wyld, L. Prehabilitation in elective abdominal cancer surgery in older patients: Systematic review and meta-analysis. BJS Open 2020, 4, 1022–1041. [Google Scholar] [CrossRef]
- Meneses-Echavez, J.F.; Loaiza-Betancur, A.F.; Diaz-Lopez, V.; Echavarria-Rodriguez, A.M.; Triana-Reina, H.R. Prehabilitation programs for individuals with cancer: A systematic review of randomized-controlled trials. Syst. Rev. 2023, 12, 219. [Google Scholar] [CrossRef] [PubMed]
- Molenaar, C.J.; van Rooijen, S.J.; Fokkenrood, H.J.; Roumen, R.M.; Janssen, L.; Slooter, G.D. Prehabilitation versus no prehabilitation to improve functional capacity, reduce postoperative complications and improve quality of life in colorectal cancer surgery. Cochrane Database Syst. Rev. 2023, 5, CD013259. [Google Scholar] [PubMed]
- Molenaar, C.J.L.; Minnella, E.M.; Coca-Martinez, M.; ten Cate, D.W.G.; Regis, M.; Awasthi, R.; Martínez-Palli, R.; López-Baamonde, R.; Sebio-Garcia, R.; Feo, C.V.; et al. Effect of Multimodal Prehabilitation on Reducing Postoperative Complications and Enhancing Functional Capacity Following Colorectal Cancer Surgery: The PREHAB Randomized Clinical Trial. JAMA Surg. 2023, 158, 572–581. [Google Scholar] [CrossRef] [PubMed]
- Bojesen, R.D.; Dalton, S.O.; Skou, S.T.; Jorgensen, L.B.; Walker, L.R.; Eriksen, J.R.; Grube, C.; Justesen, T.F.; Johansen, C.; Slooter, G.; et al. Preoperative multimodal prehabilitation before elective colorectal cancer surgery in patients with WHO performance status I or II: Randomized clinical trial. BJS Open 2023, 7, zrad134. [Google Scholar] [CrossRef] [PubMed]
- Triguero-Canovas, D.; Lopez-Rodriguez-Arias, F.; Gomez-Martinez, M.; Sanchez-Guillen, L.; Peris-Castello, F.; Alcaide-Quiros, M.J.; Morillas-Blasco, P.; Arroyo, A.; Ramírez, J.M. Home-based prehabilitation improves physical conditions measured by ergospirometry and 6MWT in colorectal cancer patients: A randomized controlled pilot study. Support. Care Cancer 2023, 31, 673. [Google Scholar] [CrossRef]
- Baethge, C.; Goldbeck-Wood, S.; Mertens, S. SANRA—A scale for the quality assessment of narrative review articles. Res. Integr. Peer Rev. 2019, 4, 5. [Google Scholar] [CrossRef]
- Fortin, J.; Leblanc, M.; Elgbeili, G.; Cordova, M.J.; Marin, M.F.; Brunet, A. The mental health impacts of receiving a breast cancer diagnosis: A meta-analysis. Br. J. Cancer 2021, 125, 1582–1592. [Google Scholar] [CrossRef]
- Ji, X.; Cummings, J.R.; Gilleland Marchak, J.; Han, X.; Mertens, A.C. Mental health among nonelderly adult cancer survivors: A national estimate. Cancer 2020, 126, 3768–3776. [Google Scholar] [CrossRef] [PubMed]
- Clinton, S.K.; Giovannucci, E.L.; Hursting, S.D. The World Cancer Research Fund/American Institute for Cancer Research Third Expert Report on Diet, Nutrition, Physical Activity, and Cancer: Impact and Future Directions. J. Nutr. 2020, 150, 663–671. [Google Scholar] [CrossRef] [PubMed]
- Oshima, S.M.; Tait, S.D.; Rushing, C.; Lane, W.; Hyslop, T.; Offodile, A.C., 2nd; Wheeler, S.B.; Zafar, S.Y.; Greenup, R.; Fish, L.J. Patient Perspectives on the Financial Costs and Burdens of Breast Cancer Surgery. JCO Oncol. Pract. 2021, 17, e872–e881. [Google Scholar] [CrossRef] [PubMed]
- Shih, Y.T.; Owsley, K.M.; Nicholas, L.H.; Yabroff, K.R.; Bradley, C.J. Cancer’s Lasting Financial Burden: Evidence from a Longitudinal Assessment. J. Natl. Cancer Inst. 2022, 114, 1020–1028. [Google Scholar] [CrossRef] [PubMed]
- Oechsle, K.; Ullrich, A.; Marx, G.; Benze, G.; Heine, J.; Dickel, L.M.; Zhang, Y.; Wowretzko, F.; Wendt, K.N.; Nauck, F.; et al. Psychological burden in family caregivers of patients with advanced cancer at initiation of specialist inpatient palliative care. BMC Palliat. Care 2019, 18, 102. [Google Scholar] [CrossRef] [PubMed]
- Krampe, H.; Goerling, U.; Spies, C.D.; Gerhards, S.K.; Enge, S.; Salz, A.L.; Kerper, L.F.; Schnell, T. Sense of coherence, mental well-being and perceived preoperative hospital and surgery related stress in surgical patients with malignant, benign, and no neoplasms. BMC Psychiatry 2020, 20, 567. [Google Scholar] [CrossRef] [PubMed]
- Sharma, P.; Henriksen, C.H.; Zargar-Shoshtari, K.; Xin, R.; Poch, M.A.; Pow-Sang, J.M.; Sexton, W.J.; Spiess, P.E.; Gilbert, S.M. Preoperative Patient Reported Mental Health is Associated with High Grade Complications after Radical Cystectomy. J. Urol. 2016, 195, 47–52. [Google Scholar] [CrossRef] [PubMed]
- Sommer, J.L.; Reynolds, K.; Hebbard, P.; Mota, N.; Roos, L.; Sareen, J.; Devereaux, P.J.; Srinathan, S.; El-Gabalawy, R. Healthcare-related correlates of preoperative psychological distress among a mixed surgical and cancer-specific sample. J. Psychosom. Res. 2022, 162, 111036. [Google Scholar] [CrossRef]
- Giordano, N.A.; Kent, M.L.; Kroma, R.B.; Rojas, W.; Lindl, M.J.; Lujan, E.; Buckenmaier, C.C.; Highland, K.B. Acute postoperative pain impact trajectories and factors contributing to trajectory membership. Pain Med. 2023, 24, 829–836. [Google Scholar] [CrossRef]
- Hirst, N.; McBride, K.E.; Thanigasalam, R.; Leslie, S.; Karunaratne, S.; Alexander, K.; Treacy, P.-J.; Steffens, D. Impact of Preoperative Mental Health on Surgical Outcomes Following Robotic-assisted Radical Prostatectomy. Urology 2023, 182, 136–142. [Google Scholar] [CrossRef]
- Cruz-Jentoft, A.J.; Bahat, G.; Bauer, J.; Boirie, Y.; Bruyère, O.; Cederholm, T.; Cooper, C.; Landi, F.; Rolland, Y.; Sayer, A.A.; et al. Sarcopenia: Revised European consensus on definition and diagnosis. Age Ageing 2019, 48, 16–31. [Google Scholar] [CrossRef] [PubMed]
- Sun, Q.; Jiang, X.; Qin, R.; Yang, Y.; Gong, Y.; Wang, K.; Peng, J. Sarcopenia among older patients with cancer: A scoping review of the literature. J. Geriatr. Oncol. 2022, 13, 924–934. [Google Scholar] [CrossRef] [PubMed]
- Bliggenstorfer, J.T.; Hashmi, A.; Bingmer, K.; Chang, C.; Liu, J.C.; Ginesi, M.; Stein, S.L.; Steinhagen, E. Sarcopenia in Patients With Rectal Adenocarcinoma: An Opportunity for Preoperative Rehabilitation. Am. Surg. 2023, 89, 5631–5637. [Google Scholar] [CrossRef] [PubMed]
- Fang, P.; Zhou, J.; Xiao, X.; Yang, Y.; Luan, S.; Liang, Z.; Li, X.; Zhang, H.; Shang, Q.; Zeng, X.; et al. The prognostic value of sarcopenia in oesophageal cancer: A systematic review and meta-analysis. J. Cachexia Sarcopenia Muscle 2023, 14, 3–16. [Google Scholar] [CrossRef] [PubMed]
- Nasser, S.; Bilir, E.; Derin, X.; Richter, R.; Grabowski, J.P.; Ali, P.; Kulbe, H.; Chekerov, R.; Braicu, E.; Sehouli, J. Pre-Operative Malnutrition in Patients with Ovarian Cancer: What Are the Clinical Implications? Results of a Prospective Study. Cancers 2024, 16, 622. [Google Scholar] [CrossRef] [PubMed]
- He, J.; Luo, W.; Huang, Y.; Song, L.; Mei, Y. Sarcopenia as a prognostic indicator in colorectal cancer: An updated meta-analysis. Front. Oncol. 2023, 13, 1247341. [Google Scholar] [CrossRef] [PubMed]
- Bril, S.I.; Pezier, T.F.; Tijink, B.M.; Janssen, L.M.; Braunius, W.W.; de Bree, R. Preoperative low skeletal muscle mass as a risk factor for pharyngocutaneous fistula and decreased overall survival in patients undergoing total laryngectomy. Head Neck 2019, 41, 1745–1755. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Wan, Z.; Zhu, Y.; Zhang, L.; Zhang, L.; Wan, H. Prevalence of malnutrition comparing NRS2002, MUST, and PG-SGA with the GLIM criteria in adults with cancer: A multi-center study. Nutrition 2021, 83, 111072. [Google Scholar] [CrossRef] [PubMed]
- Brown, T.; Edwards, A.; Pashley, A.; Lehn, B.; Vasani, S.; Hodge, R.; Bauer, J. Nutritional status and post-operative complications in patients undergoing surgery for advanced pharyngeal or laryngeal cancer. Eur. Arch. Oto-Rhino-Laryngol. 2023, 280, 5531–5538. [Google Scholar] [CrossRef]
- Zang, Y.; Xu, W.; Qiu, Y.; Gong, D.; Fan, Y. Association between Risk of Malnutrition Defined by the Nutritional Risk Screening 2002 and Postoperative Complications and Overall Survival in Patients with Cancer: A Meta-Analysis. Nutr. Cancer 2023, 75, 1600–1609. [Google Scholar] [CrossRef]
- Cole, C.L.; Kleckner, I.R.; Jatoi, A.; Schwarz, E.M.; Dunne, R.F. The Role of Systemic Inflammation in Cancer-Associated Muscle Wasting and Rationale for Exercise as a Therapeutic Intervention. JCSM Clin. Rep. 2018, 3, e00065. [Google Scholar] [CrossRef] [PubMed]
- Cederholm, T.; Barazzoni, R.; Austin, P.; Ballmer, P.; Biolo, G.; Bischoff, S.C.; Compher, C.; Correia, I.; Higashiguchi, T.; Holst, M.; et al. ESPEN guidelines on definitions and terminology of clinical nutrition. Clin. Nutr. 2017, 36, 49–64. [Google Scholar] [CrossRef] [PubMed]
- Weimann, A.; Wobith, M. ESPEN Guidelines on Clinical nutrition in surgery—Special issues to be revisited. Eur. J. Surg. Oncol. 2022. [Google Scholar] [CrossRef] [PubMed]
- Hara, T.; Kogure, E.; Iijima, S.; Fukawa, Y.; Kubo, A.; Kakuda, W. Addition of the nutrition factor enhances the cancer prehabilitation program design for colorectal cancer patients: A multi-center cohort study. J. Phys. Ther. Sci. 2023, 35, 817–824. [Google Scholar] [CrossRef] [PubMed]
- Nemoto, Y.; Kondo, T.; Ishihara, H.; Takagi, T.; Fukuda, H.; Yoshida, K.; Iizuka, J.; Ishida, H.; Tanabe, K.; Yoshida, K.; et al. The Controlling Nutritional Status CONUT Score in Patients With Advanced Bladder Cancer After Radical Cystectomy. In Vivo 2021, 35, 999–1006. [Google Scholar] [CrossRef] [PubMed]
- Minnella, E.M.; Awasthi, R.; Loiselle, S.-E.; Agnihotram, R.V.; Ferri, L.E.; Carli, F. Effect of Exercise and Nutrition Prehabilitation on Functional Capacity in Esophagogastric Cancer Surgery: A Randomized Clinical Trial. JAMA Surg. 2018, 153, 1081–1089. [Google Scholar] [CrossRef]
- Balady, G.J.; Arena, R.; Sietsema, K.; Myers, J.; Coke, L.; Fletcher, G.F.; Forman, D.; Franklin, B.; Guazzi, M.; Gulati, M.; et al. Clinician’s Guide to Cardiopulmonary Exercise Testing in Adults. Circulation 2010, 122, 191–225. [Google Scholar] [CrossRef] [PubMed]
- Ross, R.; Blair, S.N.; Arena, R.; Church, T.S.; Després, J.P.; Franklin, B.A.; Haskell, W.L.; Kaminsky, L.A.; Levine, B.D.; Lavie, C.J.; et al. Importance of Assessing Cardiorespiratory Fitness in Clinical Practice: A Case for Fitness as a Clinical Vital Sign: A Scientific Statement from the American Heart Association. Circulation 2016, 134, e653–e699. [Google Scholar] [CrossRef] [PubMed]
- Spence, J.; LeManach, Y.; Chan, M.T.V.; Wang, C.Y.; Sigamani, A.; Xavier, D.; Pearse, R.; Alonso-Coello, P.; Garutti, I.; Srinathan, S.K.; et al. Association between complications and death within 30 days after noncardiac surgery. Can. Med. Assoc. J. 2019, 191, E830–E837. [Google Scholar]
- Rezaian, S.; Asadi Gharabaghi, M.; Rahimi, B.; Gholamzadeh, M. Concordance between ARISCAT risk score and cardiopulmonary exercise test values in risk prediction of postoperative pulmonary complications of major abdominal surgeries in a tertiary cancer hospital: A cross-sectional study. Health Sci. Rep. 2023, 6, e1740. [Google Scholar] [CrossRef]
- Steffens, D.; Ismail, H.; Denehy, L.; Beckenkamp, P.R.; Solomon, M.; Koh, C.; Bartyn, J.; Pillinger, N. Preoperative Cardiopulmonary Exercise Test Associated with Postoperative Outcomes in Patients Undergoing Cancer Surgery: A Systematic Review and Meta-Analyses. Ann. Surg. Oncol. 2021, 28, 7120–7146. [Google Scholar] [CrossRef] [PubMed]
- Michael, C.M.; Lehrer, E.J.; Schmitz, K.H.; Zaorsky, N.G. Prehabilitation exercise therapy for cancer: A systematic review and meta-analysis. Cancer Med. 2021, 10, 4195–4205. [Google Scholar] [CrossRef]
- Jandu, A.K.; Nitayamekin, A.; Stevenson, J.; Beed, M.; Vohra, R.S.; Wilson, V.G.; Lobo, D.N. Post-Cancer Treatment Reflections by Patients Concerning the Provisions and Support Required for a Prehabilitation Programme. World J. Surg. 2023, 47, 2724–2732. [Google Scholar] [CrossRef]
- Powell, R.; Davies, A.; Rowlinson-Groves, K.; French, D.P.; Moore, J.; Merchant, Z. Impact of a prehabilitation and recovery programme on emotional well-being in individuals undergoing cancer surgery: A multi-perspective qualitative study. BMC Cancer 2023, 23, 1232. [Google Scholar] [CrossRef]
- Wade-Mcbane, K.; King, A.; Urch, C.; Jeyasingh-Jacob, J.; Milne, A.; Boutillier, C.L. Prehabilitation in the lung cancer pathway: A scoping review. BMC Cancer 2023, 23, 747. [Google Scholar] [CrossRef]
- Karenovics, W.; Licker, M.; Ellenberger, C.; Christodoulou, M.; Diaper, J.; Bhatia, C.; Robert, J.; Bridevaux, P.O.; Triponez, F. Short-term preoperative exercise therapy does not improve long-term outcome after lung cancer surgery: A randomized controlled study. Eur. J. Cardio-Thorac. Surg. 2017, 52, 47–54. [Google Scholar] [CrossRef]
- van Rooijen, S.; Carli, F.; Dalton, S.; Thomas, G.; Bojesen, R.; Le Guen, M.; Barizien, N.; Awasthi, R.; Minella, E.; Beijer, S.; et al. Multimodal prehabilitation in colorectal cancer patients to improve functional capacity and reduce postoperative complications: The first international randomized controlled trial for multimodal prehabilitation. BMC Cancer 2019, 19, 98. [Google Scholar] [CrossRef]
- Weston, M.; Weston, K.L.; Prentis, J.M.; Snowden, C.P. High-intensity interval training (HIT) for effective and time-efficient pre-surgical exercise interventions. Perioper. Med. 2016, 5, 2. [Google Scholar] [CrossRef]
- Bausys, A.; Luksta, M.; Anglickiene, G.; Maneikiene, V.V.; Kryzauskas, M.; Rybakovas, A.; Dulskas, A.; Kuliavas, J.; Stratilatovas, E.; Macijauskiene, L.; et al. Effect of home-based prehabilitation on postoperative complications after surgery for gastric cancer: Randomized clinical trial. Br. J. Surg. 2023, 110, 1800–1807. [Google Scholar] [CrossRef] [PubMed]
- Allen, S.K.; Brown, V.; White, D.; King, D.; Hunt, J.; Wainwright, J.; Emery, A.; Hodge, E.; Kehinde, A.; Prabhu, P.; et al. Multimodal Prehabilitation During Neoadjuvant Therapy Prior to Esophagogastric Cancer Resection: Effect on Cardiopulmonary Exercise Test Performance, Muscle Mass and Quality of Life-A Pilot Randomized Clinical Trial. Ann. Surg. Oncol. 2022, 29, 1839–1850. [Google Scholar] [CrossRef]
- Borg, G.A. Psychophysical bases of perceived exertion. Med. Sci. Sports Exerc. 1982, 14, 377–381. [Google Scholar] [CrossRef]
- Loughney, L.; Cahill, R.; O’Malley, K.; McCaffrey, N.; Furlong, B. Compliance, adherence and effectiveness of a community-based pre-operative exercise programme: A pilot study. Perioper. Med. 2019, 8, 17. [Google Scholar] [CrossRef]
- Ellis, J.L.; Dalimov, Z.; Chew, L.; Quek, M.L. Preoperative optimization of the radical cystectomy patient: Current state and future directions. J. Surg. Oncol. 2024, 129, 138–144. [Google Scholar] [CrossRef]
- Garg, T.; Chen, L.Y.; Kim, P.H.; Zhao, P.T.; Herr, H.W.; Donat, S.M. Preoperative serum albumin is associated with mortality and complications after radical cystectomy. BJU Int. 2014, 113, 918–923. [Google Scholar] [CrossRef] [PubMed]
- Calder, P.C. Immunonutrition in surgical and critically ill patients. Br. J. Nutr. 2007, 98 (Suppl. 1), S133–S139. [Google Scholar] [CrossRef]
- Arribas-López, E.; Zand, N.; Ojo, O.; Snowden, M.J.; Kochhar, T. The Effect of Amino Acids on Wound Healing: A Systematic Review and Meta-Analysis on Arginine and Glutamine. Nutrients 2021, 13, 2498. [Google Scholar] [CrossRef]
- Cruzat, V.; Macedo Rogero, M.; Noel Keane, K.; Curi, R.; Newsholme, P. Glutamine: Metabolism and Immune Function, Supplementation and Clinical Translation. Nutrients 2018, 10, 1564. [Google Scholar] [CrossRef] [PubMed]
- Witte, M.B.; Barbul, A. Arginine physiology and its implication for wound healing. Wound Repair. Regen. 2003, 11, 419–423. [Google Scholar] [CrossRef]
- Arends, J.; Bachmann, P.; Baracos, V.; Barthelemy, N.; Bertz, H.; Bozzetti, F.; Fearon, K.; Hutterer, E.; Isenring, E.; Kaasa, S.; et al. ESPEN guidelines on nutrition in cancer patients. Clin. Nutr. 2017, 36, 11–48. [Google Scholar] [CrossRef]
- Haase, O.; Schwenk, W.; Hermann, C.; Müller, J.M. Guided imagery and relaxation in conventional colorectal resections: A randomized, controlled, partially blinded trial. Dis. Colon Rectum 2005, 48, 1955–1963. [Google Scholar] [CrossRef]
- Tsimopoulou, I.; Pasquali, S.; Howard, R.; Desai, A.; Gourevitch, D.; Tolosa, I.; Vohra, R. Psychological Prehabilitation Before Cancer Surgery: A Systematic Review. Ann. Surg. Oncol. 2015, 22, 4117–4123. [Google Scholar] [CrossRef]
- Papakostas, G.I. Managing partial response or nonresponse: Switching, augmentation, and combination strategies for major depressive disorder. J. Clin. Psychiatry 2009, 70 (Suppl. 6), 16–25. [Google Scholar] [CrossRef] [PubMed]
- Onerup, A.; Andersson, J.; Angenete, E.; Bock, D.; Borjesson, M.; Ehrencrona, C.; Olson, M.F.; Larsson, P.-A.; de la Croix, H.; Wedin, A.; et al. Effect of Short-term Homebased Pre- and Postoperative Exercise on Recovery After Colorectal Cancer Surgery (PHYSSURG-C): A Randomized Clinical Trial. Ann. Surg. 2022, 275, 448–455. [Google Scholar] [CrossRef]
- Pu, C.Y.; Batarseh, H.; Zafron, M.L.; Mador, M.J.; Yendamuri, S.; Ray, A.D. Effects of Preoperative Breathing Exercise on Postoperative Outcomes for Patients with Lung Cancer Undergoing Curative Intent Lung Resection: A Meta-analysis. Arch. Phys. Med. Rehabil. 2021, 102, 2416–2427.e4. [Google Scholar] [CrossRef]
- Humeidan, M.L.; Reyes, J.-P.C.; Mavarez-Martinez, A.; Roeth, C.; Nguyen, C.M.; Sheridan, E.; Alarcon, A.; Otey, A.; Abdel-Rasoul, M.; Bergese, S.D. Effect of Cognitive Prehabilitation on the Incidence of Postoperative Delirium Among Older Adults Undergoing Major Noncardiac Surgery: The Neurobics Randomized Clinical Trial. JAMA Surg. 2021, 156, 148–156. [Google Scholar] [CrossRef]
- Evered, L.; Silbert, B.; Knopman, D.S.; Scott, D.A.; DeKosky, S.T.; Rasmussen, L.S.; Oh, E.; Crosby, G.; Berger, M.; Eckenhoff, R.G.; et al. Recommendations for the nomenclature of cognitive change associated with anaesthesia and surgery—2018. Br. J. Anaesth. 2018, 121, 1005–1012. [Google Scholar] [CrossRef] [PubMed]
- Rivera-Rivera, P.A.; Rios-Lago, M.; Sanchez-Casarrubios, S.; Salazar, O.; Yus, M.; González-Hidalgo, M.; Sanz, A.; Avecillas-Chasin, J.; Alvarez-Linera, J.; Pascual-Leone, A.; et al. Cortical plasticity catalyzed by prehabilitation enables extensive resection of brain tumors in eloquent areas. J. Neurosurg. 2017, 126, 1323–1333. [Google Scholar] [CrossRef]
- Hamer, R.P.; Yeo, T.T. Current Status of Neuromodulation-Induced Cortical Prehabilitation and Considerations for Treatment Pathways in Lower-Grade Glioma Surgery. Life 2022, 12, 466. [Google Scholar] [CrossRef]
- Boccuni, L.; Abellaneda-Perez, K.; Martin-Fernandez, J.; Leno-Colorado, D.; Roca-Ventura, A.; Prats Bisbe, A.; Buloz-Osorio, M.; Bartres-Faz, D.; Bargallo, N.; Cabello-Toscano, M.; et al. Neuromodulation-induced prehabilitation to leverage neuroplasticity before brain tumor surgery: A single-cohort feasibility trial protocol. Front. Neurol. 2023, 14, 1243857. [Google Scholar] [CrossRef]
- Engelhardt, M.; Grittner, U.; Krieg, S.; Picht, T. Preconditioning of the motor network with repetitive navigated transcranial magnetic stimulation (rnTMS) to improve oncological and functional outcome in brain tumor surgery: A study protocol for a randomized, sham-controlled, triple-blind clinical trial. Trials 2023, 24, 638. [Google Scholar] [CrossRef]
- Briggs, L.G.; Reitblat, C.; Bain, P.A.; Parke, S.; Lam, N.Y.; Wright, J.; Catto, J.W.F.; Copeland, R.J.; Psutka, S.P. Prehabilitation Exercise Before Urologic Cancer Surgery: A Systematic and Interdisciplinary Review. Eur. Urol. 2022, 81, 157–167. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, K.; Vogt, L.; Thiel, C.; Jäger, E.; Banzer, W. Validity of the six-minute walk test in cancer patients. Int. J. Sports Med. 2013, 34, 631–636. [Google Scholar] [CrossRef]
- ATS statement: Guidelines for the six-minute walk test. Am. J. Respir. Crit. Care Med. 2002, 166, 111–117. [CrossRef] [PubMed]
- Butland, R.J.; Pang, J.; Gross, E.R.; Woodcock, A.A.; Geddes, D.M. Two-, six-, and 12-minute walking tests in respiratory disease. Br. Med. J. Clin. Res. Ed. 1982, 284, 1607–1608. [Google Scholar] [CrossRef]
- Jager-Wittenaar, H.; Ottery, F.D. Assessing nutritional status in cancer: Role of the Patient-Generated Subjective Global Assessment. Curr. Opin. Clin. Nutr. Metab. Care. 2017, 20, 322–329. [Google Scholar] [CrossRef]
- Tórtola-Navarro, A.; Gallardo-Gómez, D.; Álvarez-Barbosa, F.; Salazar-Martínez, E. Cancer survivor inspiratory muscle training: Systematic review and Bayesian meta-analysis. BMJ Support Palliat Care. 2024, 13, e561–e569. [Google Scholar] [CrossRef]
- Bauer-Staeb, C.; Kounali, D.Z.; Welton, N.J.; Griffith, E.; Wiles, N.J.; Lewis, G.; Faraway, J.J.; Button, K.S. Effective dose 50 method as the minimal clinically important difference: Evidence from depression trials. J. Clin. Epidemiol. 2021, 137, 200–208. [Google Scholar] [CrossRef] [PubMed]
- Myles, P.S.; Myles, D.B.; Galagher, W.; Chew, C.; MacDonald, N.; Dennis, A. Minimal Clinically Important Difference for Three Quality of Recovery Scales. Anesthesiology 2016, 125, 39–45. [Google Scholar] [CrossRef]
- Derstine, B.A.; Holcombe, S.A.; Ross, B.E.; Wang, N.C.; Su, G.L.; Wang, S.C. Skeletal muscle cutoff values for sarcopenia diagnosis using T10 to L5 measurements in a healthy US population. Sci. Rep. 2018, 8, 11369. [Google Scholar] [CrossRef]
- Roberts, H.C.; Denison, H.J.; Martin, H.J.; Patel, H.P.; Syddall, H.; Cooper, C.; Sayer, A.A. A review of the measurement of grip strength in clinical and epidemiological studies: Towards a standardised approach. Age Ageing 2011, 40, 423–429. [Google Scholar] [CrossRef]
- Steiber, N. Strong or Weak Handgrip? Normative Reference Values for the German Population across the Life Course Stratified by Sex, Age, and Body Height. PLoS ONE 2016, 11, e0163917. [Google Scholar] [CrossRef] [PubMed]
- Thompson, K.L.; Elliott, L.; Fuchs-Tarlovsky, V.; Levin, R.M.; Voss, A.C.; Piemonte, T. Oncology Evidence-Based Nutrition Practice Guideline for Adults. J. Acad. Nutr. Diet. 2017, 117, 297–310.e47. [Google Scholar] [CrossRef] [PubMed]
- Bauer, J.; Capra, S.; Ferguson, M. Use of the scored Patient-Generated Subjective Global Assessment (PG-SGA) as a nutrition assessment tool in patients with cancer. Eur. J. Clin. Nutr. 2002, 56, 779–785. [Google Scholar] [CrossRef] [PubMed]
- Novak, F.; Heyland, D.K.; Avenell, A.; Drover, J.W.; Su, X. Glutamine supplementation in serious illness: A systematic review of the evidence. Crit. Care Med. 2002, 30, 2022–2029. [Google Scholar] [CrossRef] [PubMed]
- Voorn, M.J.J.; Franssen, R.F.W.; Hoogeboom, T.J.; van Kampen-van den Boogaart, V.E.M.; Bootsma, G.P.; Bongers, B.C.; Janssen-Heijnen, M.L.G. Evidence base for exercise prehabilitation suggests favourable outcomes for patients undergoing surgery for non-small cell lung cancer despite being of low therapeutic quality: A systematic review and meta-analysis. Eur. J. Surg. Oncol. 2023, 49, 879–894. [Google Scholar] [CrossRef] [PubMed]
- Machado, P.; Pimenta, S.; Garcia, A.L.; Nogueira, T.; Silva, S.; Dos Santos, C.L.; Martins, M.V.; Canha, A.; Oliveiros, B.; Martins, R.A.; et al. Effect of Preoperative Home-Based Exercise Training on Quality of Life After Lung Cancer Surgery: A Multicenter Randomized Controlled Trial. Ann. Surg. Oncol. 2024, 31, 847–859. [Google Scholar] [CrossRef] [PubMed]
- Abbott, T.E.F.; Fowler, A.J.; Pelosi, P.; Gama de Abreu, M.; Moller, A.M.; Canet, J.; Creagh-Brown, B.; Mythen, M.; Gin, T.; Lalu, M.M.; et al. A systematic review and consensus definitions for standardised end-points in perioperative medicine: Pulmonary complications. Br. J. Anaesth. 2018, 120, 1066–1079. [Google Scholar] [CrossRef]
- Peng, L.H.; Wang, W.J.; Chen, J.; Jin, J.Y.; Min, S.; Qin, P.P. Implementation of the pre-operative rehabilitation recovery protocol and its effect on the quality of recovery after colorectal surgeries. Chin. Med. J. 2021, 134, 2865–2873. [Google Scholar] [CrossRef] [PubMed]
- Zhao, B.; Zhang, T.; Chen, Y.; Zhang, C. Effects of unimodal or multimodal prehabilitation on patients undergoing surgery for esophagogastric cancer: A systematic review and meta-analysis. Support. Care Cancer 2023, 32, 15. [Google Scholar] [CrossRef]
- Falz, R.; Bischoff, C.; Thieme, R.; Lassing, J.; Mehdorn, M.; Stelzner, S.; Busse, M.; Gockel, I. Effects and duration of exercise-based prehabilitation in surgical therapy of colon and rectal cancer: A systematic review and meta-analysis. J. Cancer Res. Clin. Oncol. 2022, 148, 2187–2213. [Google Scholar] [CrossRef]
- Huang, G.; Wang, R.; Chen, P.; Huang, S.C.; Donnelly, J.E.; Mehlferber, J.P. Dose–response relationship of cardiorespiratory fitness adaptation to controlled endurance training in sedentary older adults. Eur. J. Prev. Cardiol. 2020, 23, 518–529. [Google Scholar] [CrossRef] [PubMed]
- Berkel, A.E.M.; Bongers, B.C.; Kotte, H.; Weltevreden, P.; de Jongh, F.H.C.; Eijsvogel, M.M.M.; Wymenga, M.; Bigirwamungu-Bargeman, M.; van der Palen, J.; van Det, M.; et al. Effects of Community-based Exercise Prehabilitation for Patients Scheduled for Colorectal Surgery with High Risk for Postoperative Complications: Results of a Randomized Clinical Trial. Ann. Surg. 2022, 275, e299–e306. [Google Scholar] [CrossRef] [PubMed]
- Kokez, H.; Keskin, H.; Ergin, M.; Erdogan, A. Is preoperative pulmonary rehabilitation effective in the postoperative period after lung resection? Afr. Health Sci. 2023, 23, 646–655. [Google Scholar] [CrossRef] [PubMed]
- Bingham, S.L.; Small, S.; Semple, C.J. A qualitative evaluation of a multi-modal cancer prehabilitation programme for colorectal, head and neck and lung cancers patients. PLoS ONE 2023, 18, e0277589. [Google Scholar] [CrossRef] [PubMed]
- Nilssen, Y.; Brustugun, O.T.; Tandberg Eriksen, M.; Gulbrandsen, J.; Skaaheim Haug, E.; Naume, B.; Moller, B. Decreasing waiting time for treatment before and during implementation of cancer patient pathways in Norway. Cancer Epidemiol. 2019, 61, 59–69. [Google Scholar] [CrossRef] [PubMed]
- Kirkegård, J.; Mortensen, F.V.; Hansen, C.P.; Mortensen, M.B.; Sall, M.; Fristrup, C. Waiting time to surgery and pancreatic cancer survival: A nationwide population-based cohort study. Eur. J. Surg. Oncol. 2019, 45, 1901–1905. [Google Scholar] [CrossRef]
- Liu, X.Y.; Li, Z.W.; Kang, B.; Cheng, Y.X.; Tao, W.; Zhang, B.; Zhang, H.; Wei, Z.-Q.; Peng, D. Does Preoperative Waiting Time Affect the Short-Term Outcomes and Prognosis of Colorectal Cancer Patients? A Retrospective Study from the West of China. Can. J. Gastroenterol. Hepatol. 2022, 2022, 8235736. [Google Scholar] [CrossRef] [PubMed]
- Yen, C.C.; Yang, Y.H.; Ku, H.Y.; Hu, H.M.; Lo, S.S.; Chang, H.C.; Chao, Y.; Chen, J.-S.; Wang, H.-P.; Wang, T.-E.; et al. The impact of preoperative waiting time in Stage II-III gastric or gastroesophageal junction cancer: A population-based cohort study. Cancer Med. 2023, 12, 16906–16917. [Google Scholar] [CrossRef] [PubMed]
- Bhat, I.; Okiror, L.; Nair, A.; Billè, A. Impact of waiting times on tumour growth and pathologic upstaging in patients with non-small cell lung cancer having lung resection. Tumori 2021, 107, 329–334. [Google Scholar] [CrossRef]
- Kjaergard, L.L.; Villumsen, J.; Gluud, C. Reported methodologic quality and discrepancies between large and small randomized trials in meta-analyses. Ann. Intern. Med. 2001, 135, 982–989. [Google Scholar] [CrossRef]
- Wong, P.Y.; Soh, S.M.M.; Chu, W.M.; Lim, M.X.C.; Jones, L.E.; Selvaraj, S.; Chow, K.M.S.; Choo, H.W.D.; Aziz, A.R. A single all-out bout of 30-s sprint-cycle performed on 5 consecutive days per week over 6 weeks does not enhance cardiovascular fitness, maximal strength, and clinical health markers in physically active young adults. Eur. J. Appl. Physiol. 2024. [Google Scholar] [CrossRef] [PubMed]
- Raichurkar, P.; Denehy, L.; Solomon, M.; Koh, C.; Pillinger, N.; Hogan, S.; McBride, K.; Carey, S.; Bartyn, J.; Hirst, N.; et al. Research Priorities in Prehabilitation for Patients Undergoing Cancer Surgery: An International Delphi Study. Ann. Surg. Oncol. 2023, 30, 7226–7235. [Google Scholar] [CrossRef] [PubMed]
- Casanovas-Álvarez, A.; Sebio-Garcia, R.; Ciendones, M.; Cuartero, J.; Estanyol, B.; Padrós, J.; García-Valdecasas, B.; Barnadas, A.; Masia, J. Prehabilitation in Patients With Breast Cancer Receiving Neoadjuvant Therapy to Minimize Musculoskeletal Postoperative Complications and Enhance Recovery (PREOPtimize): A Protocol for a Randomized Controlled Trial. Phys. Ther. 2023, 103, pzad062. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Tian, Y.; Cao, S.; Li, L.; Yu, W.; Ding, Y.; Wang, X.; Wang, H.; Hui, X.; Qu, J.; et al. Multimodal prehabilitation to improve the clinical outcomes of frail elderly patients with gastric cancer: A study protocol for a multicentre randomised controlled trial (GISSG+2201). BMJ Open 2023, 13, e071714. [Google Scholar] [CrossRef]
- West, M.; Bates, A.; Grimmett, C.; Allen, C.; Green, R.; Hawkins, L.; Moyses, H.; Leggett, S.; Levett, D.Z.H.; Rickard, S.; et al. The Wessex Fit-4-Cancer Surgery Trial (WesFit): A protocol for a factorial-design, pragmatic randomised-controlled trial investigating the effects of a multi-modal prehabilitation programme in patients undergoing elective major intra-cavity cancer surgery. F1000Research 2021, 10, 952. [Google Scholar] [CrossRef]
Outcome | Type of Outcome | Applicable Intervention | What it Measures | Minimal Clinically Important Difference |
---|---|---|---|---|
Maximal Aerobic Capacity | Therapeutic Effectiveness | Exercise (Aerobic) | Oxygen consumption at maximal effort (~80–85% age-adjusted predicted heart rate) | 1–2 METs * [47] |
6 min walking test | Therapeutic Effectiveness | Exercise (Aerobic) | Distance (m) at submaximal aerobic capacity | Not standardized, 70 m + [83] |
Hand Grip Test | Therapeutic Effectiveness | Exercise (Resistance) | Muscle strength (Kg, N, etc.) | 5–6.5 Kg [14] |
1 RM chest press | Therapeutic Effectiveness | Exercise (Resistance) | Muscle strength (Kg) | Not reported |
Patient-Generated Subjective Global Assessment (PG-SGA) | Therapeutic Effectiveness | Nutrition | Global numerical nutritional assessment | 9 points ‡ [85] |
Albumin | Therapeutic Effectiveness | Nutrition | Serum albumin concentration (g/dL) | Normal values 3.5–5.5 d/dL |
Maximal Inspiratory Pressure | Therapeutic Effectiveness | Functional | Improvement of IMT | Not reported [86] |
Rate of Postoperative Complications | Clinical | Non-specific | Proportion (%) | Not standardized |
Comprehensive Complication Index | Clinical | Non-specific | Severity-weighed complication rate 0 (no complication)–100 (death) | CCI > 20 indicates severe complications [16] |
Length of Stay | Clinical | Non-specific | Hospital stay in days | NA |
Mortality | Clinical | Non-specific | Proportion of deaths at different time points | NA |
PHQ-9 | Patient Health Questionnaire | Psychological | Questionnaire-based score for depression | 3.7 points [87] |
GAD 7-item | Generalized Anxiety Disorder | Psychological | Questionnaire-based score for anxiety | 3.3 points [87] |
SF-36 | Patient-centered | Any intervention | Health-related quality of life | 5 points [14] |
EORTC QLQ-C30 | Patient-centered | Any intervention | Health-related quality of life | 4–11 points [14] |
Quality of Recovery 40 | Patient-centered | Any intervention | Multidomain measure of postoperative recovery | 6.3 points [88] |
Quality of Recovery 15 | Patient-centered | Any intervention | Abbreviated multidomain measure of postoperative recovery | 8 points [88] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guerra-Londono, C.E.; Cata, J.P.; Nowak, K.; Gottumukkala, V. Prehabilitation in Adults Undergoing Cancer Surgery: A Comprehensive Review on Rationale, Methodology, and Measures of Effectiveness. Curr. Oncol. 2024, 31, 2185-2200. https://doi.org/10.3390/curroncol31040162
Guerra-Londono CE, Cata JP, Nowak K, Gottumukkala V. Prehabilitation in Adults Undergoing Cancer Surgery: A Comprehensive Review on Rationale, Methodology, and Measures of Effectiveness. Current Oncology. 2024; 31(4):2185-2200. https://doi.org/10.3390/curroncol31040162
Chicago/Turabian StyleGuerra-Londono, Carlos E., Juan P. Cata, Katherine Nowak, and Vijaya Gottumukkala. 2024. "Prehabilitation in Adults Undergoing Cancer Surgery: A Comprehensive Review on Rationale, Methodology, and Measures of Effectiveness" Current Oncology 31, no. 4: 2185-2200. https://doi.org/10.3390/curroncol31040162
APA StyleGuerra-Londono, C. E., Cata, J. P., Nowak, K., & Gottumukkala, V. (2024). Prehabilitation in Adults Undergoing Cancer Surgery: A Comprehensive Review on Rationale, Methodology, and Measures of Effectiveness. Current Oncology, 31(4), 2185-2200. https://doi.org/10.3390/curroncol31040162