Artificial Intelligence in Head and Neck Cancer: Innovations, Applications, and Future Directions
Abstract
:1. Introduction
1.1. Background on Head and Neck Cancer
- Heterogeneity: oral cancer is not a single disease; it includes various subtypes with distinct genetic and clinical characteristics. This heterogeneity complicates diagnosis.
- Tissue sampling: accurate diagnosis often requires a biopsy of the affected tissue. However, obtaining a representative sample can be challenging, and false negatives may occur if the biopsy misses the cancerous area.
- Recurrence prediction: predicting the recurrence of oral cancer after treatment is challenging due to factors like tumor heterogeneity, incomplete removal of cancer cells during surgery, and resistance to therapy.
- Imaging limitations: while medical imaging, such as CT scans, is valuable for cancer diagnosis and staging, it may not always detect small or early-stage lesions accurately. This can lead to underdiagnosis.
- Patient variability: patient-related factors, such as lifestyle choices, overall health, and genetic predisposition, can influence both the initial diagnosis and the likelihood of recurrence.
- Post-treatment changes: treatments for oral cancer, such as surgery and radiation therapy, can result in changes to the oral cavity, affecting speech, swallowing, and quality of life. Distinguishing between post-treatment changes and cancer recurrence can be difficult.
- Limited biomarkers: currently, there are limited specific biomarkers for oral cancer, making it challenging to identify individuals at high risk.
- Patient awareness and access: some patients may lack awareness of oral cancer risk factors and symptoms, and others may face barriers to accessing healthcare, delaying diagnosis.
1.2. Review Objectives
1.3. Selection Criteria
2. AI Technologies and Methodologies
2.1. Machine Learning Techniques
2.2. Deep Learning Approaches
2.3. Natural Language Processing
3. Diagnostic Applications
3.1. Early Detection
3.2. Biomarker Discovery
4. Prognostic and Predictive Models
4.1. Risk Assessment Tools
4.2. Personalized Treatment Planning
4.3. Monitoring and Surveillance
5. Therapeutic Applications
5.1. Drug Discovery
5.2. Precision Medicine
5.3. Surgery
6. Challenges and Limitations
6.1. Data Quality and Accessibility
6.2. Algorithm Bias and Fairness
6.3. Integration into Clinical Practice
7. Future Directions
7.1. Potential Solutions to HNC
7.1.1. Diverse Mutational Landscape
7.1.2. Surgical Planning and Management
7.1.3. Radiotherapy and Adaptive Radiotherapy
7.1.4. Multiple Simultaneous Primary Tumors
7.2. Innovations on the Horizon
7.2.1. Advanced Machine Learning Algorithms
7.2.2. Explainable Machine Intelligence
7.2.3. Integration of Multimodal Data
7.2.4. AI in Drug Discovery
7.2.5. Real-Time Monitoring and Decision Support
7.2.6. Telemedicine and Remote Care
7.3. Interdisciplinary Collaboration
8. Study Limitations
- Scope of coverage: the review might focus primarily on recent advances in AI without fully addressing earlier foundational work, potentially limiting the understanding of the evolution of AI applications in HNC.
- Selection bias: the review could be biased towards studies that demonstrate positive results, neglecting those with negative or inconclusive outcomes, which is crucial for a balanced understanding of the effectiveness of AI.
- Heterogeneity in studies: the review includes studies with varying methodologies, datasets, and patient populations, making it difficult to compare outcomes or draw definitive conclusions about the general applicability of AI techniques.
- Lack of practical implementation insights: the review might focus more on research aspects rather than practical challenges and considerations for implementing AI tools in clinical settings, such as integration into existing workflows and real-world validation.
- Clinical validation: this review could be limited in its discussion of the clinical validation and real-world efficacy of AI applications, as many studies may be preliminary or based on small sample sizes, requiring further validation in broader clinical contexts.
9. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- NHS. Head and Neck Cancer. Available online: https://www.nhs.uk/conditions/head-and-neck-cancer (accessed on 5 August 2024).
- NIH. Head and Neck Cancers. Available online: https://www.cancer.gov/types/head-and-neck/head-neck-fact-sheet (accessed on 5 August 2024).
- Johnson, D.E.; Burtness, B.; Leemans, C.R.; Lui, V.W.Y.; Bauman, J.E.; Grandis, J.R. Head and neck squamous cell carcinoma. Nat. Rev. Dis. Prim. 2020, 6, 92. [Google Scholar] [CrossRef] [PubMed]
- Montero, P.H.; Patel, S.G. Cancer of the oral cavity. Surg. Oncol. Clin. N. Am. 2015, 24, 491–508. [Google Scholar] [CrossRef] [PubMed]
- Wenig, B.M. Squamous cell carcinoma of the upper aerodigestive tract: Dysplasia and select variants. Mod. Pathol. 2017, 30, S112–S118. [Google Scholar] [CrossRef] [PubMed]
- Tan, Y.; Wang, Z.; Xu, M.; Li, B.; Huang, Z.; Qin, S.; Nice, E.C.; Tang, J.; Huang, C. Oral squamous cell carcinomas: State of the field and emerging directions. Int. J. Oral Sci. 2023, 15, 44. [Google Scholar] [CrossRef]
- Tarle, M.; Luksic, I. Pathogenesis and therapy of oral carcinogenesis. Int. J. Mol. Sci. 2024, 25, 6343. [Google Scholar] [CrossRef] [PubMed]
- Young, A.; Okuyemi, O.T. Malignant Salivary Gland Tumors. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2024. Available online: https://www.ncbi.nlm.nih.gov/books/NBK563022 (accessed on 9 March 2024).
- Coletta, R.D.; Yeudall, W.A.; Salo, T. Grand challenges in oral cancers. Front. Oral Health 2020, 1, 3. [Google Scholar] [CrossRef]
- World Health Organization. Oral Health. Available online: https://www.who.int/news-room/fact-sheets/detail/oral-health (accessed on 1 May 2024).
- Badwelan, M.; Muaddi, H.; Ahmed, A.; Lee, K.T.; Tran, S.D. Oral squamous cell carcinoma and concomitant primary tumors, what do we know? A review of the literature. Curr. Oncol. 2023, 30, 3721–3734. [Google Scholar] [CrossRef]
- Tranby, E.P.; Heaton, L.J.; Tomar, S.L.; Kelly, A.L.; Fager, G.L.; Backley, M.; Frantsve-Hawley, J. Oral cancer prevalence, mortality, and costs in medicaid and commercial insurance claims data. Cancer Epidemiol. Biomarkers Prev. 2022, 31, 1849–1857. [Google Scholar] [CrossRef]
- Sun, R.; Dou, W.; Liu, W.; Li, J.; Han, X.; Li, S.; Wu, X.; Wang, F.; Xu, X.; Li, J. Global, regional, and national burden of oral cancer and its attributable risk factors from 1990 to 2019. Cancer Med. 2023, 12, 13811–13820. [Google Scholar] [CrossRef]
- Hernandez, B.Y.; Zhu, X.; Goodman, M.T.; Gatewood, R.; Mendiola, P.; Quinata, K.; Paulino, Y.C. Betel nut chewing, oral premalignant lesions, and the oral microbiome. PLoS ONE 2017, 12, e0172196. [Google Scholar] [CrossRef]
- Warnakulasuriya, S.; Chen, T.H.H. Areca Nut and oral cancer: Evidence from studies conducted in humans. J. Dent Res. 2022, 101, 1139–1146. [Google Scholar] [CrossRef]
- Rodriguez-Molinero, J.; Miguelanez-Medran, B.D.C.; Puente-Gutierrez, C.; Delgado-Somolinos, E.; Martin Carreras-Presas, C.; Fernandez-Farhall, J.; Lopez-Sanchez, A.F. Association between oral cancer and diet: An update. Nutrients 2021, 13, 1299. [Google Scholar] [CrossRef]
- Huang, Y.; Zhao, J.; Mao, G.; Lee, G.S.; Zhang, J.; Bi, L.; Gu, L.; Chang, Z.; Valentino, J.; Li, G.M. Identification of novel genetic variants predisposing to familial oral squamous cell carcinomas. Cell Discov. 2019, 5, 57. [Google Scholar] [CrossRef] [PubMed]
- Lima, A.M.; Meira, I.A.; Soares, M.S.; Bonan, P.R.; Mélo, C.B.; Piagge, C.S. Delay in diagnosis of oral cancer: A systematic review. Med. Oral Patol. Oral Cir. Bucal. 2021, 26, e815–e824. [Google Scholar] [CrossRef] [PubMed]
- Watters, C.; Brar, S.; Pepper, T. Cancer of the oral mucosa. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2024. Available online: https://www.ncbi.nlm.nih.gov/books/NBK565867 (accessed on 21 May 2024).
- Daniel, M.; Rogers, S.N. Professional delays in referral of patients with mouth cancer: Six case histories. Br. Dent. J. 2022, 233, 1003–1008. [Google Scholar] [CrossRef]
- Homer, J.J.; Winter, S.C.; Abbey, E.C.; Ahmed, S.K. Head and neck cancer: United Kingdom national multidisciplinary guidelines, sixth edition. J. Laryngol. Otol. 2024, 138, S1–S224. [Google Scholar] [CrossRef] [PubMed]
- Sankaranarayanan, R.; Ramadas, K.; Amarasinghe, H.; Subramanian, S.; Johnson, N. Oral cancer: Prevention, early detection, and treatment. In Cancer: Disease Control Priorities, 3rd ed.; Gelband, H., Jha, P., Sankaranarayanan, R., Eds.; The International Bank for Reconstruction and Development: Washington, DC, USA, 2015; Volume 3, Chapter 5. Available online: https://www.ncbi.nlm.nih.gov/books/NBK343649/ (accessed on 21 May 2024). [CrossRef]
- Ghantous, Y.; Nashef, A.; Sidransky, D.; Abdelraziq, M.; Alkeesh, K.; Araidy, S.; Koch, W.; Brait, M.; Abu El-Naaj, I. Clinical and prognostic significance of the eighth edition oral cancer staging system. Cancers 2022, 14, 4632. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.H.; O’Sullivan, B. Oral cancer: Current role of radiotherapy and chemotherapy. Med. Oral Patol. Oral Cir. Bucal. 2013, 18, e233–e240. [Google Scholar] [CrossRef] [PubMed]
- Vanneman, M.; Dranoff, G. Combining immunotherapy and targeted therapies in cancer treatment. Nat. Rev. Cancer 2012, 12, 237–251. [Google Scholar] [CrossRef]
- Gupta, S.L.; Basu, S.; Soni, V.; Jaiswal, R.K. Immunotherapy: An alternative promising therapeutic approach against cancers. Mol. Biol. Rep. 2022, 49, 9903–9913. [Google Scholar] [CrossRef]
- Voss, J.O.; Freund, L.; Neumann, F.; Mrosk, F.; Rubarth, K.; Kreutzer, K.; Doll, C.; Heiland, M.; Koerdt, S. Prognostic value of lymph node involvement in oral squamous cell carcinoma. Clin. Oral Investig. 2022, 26, 6711–6720. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez-Moles, M.A.; Aguilar-Ruiz, M.; Ramos-Garcia, P. Challenges in the early diagnosis of oral cancer, evidence gaps and strategies for improvement: A scoping review of systematic reviews. Cancers 2022, 14, 4967. [Google Scholar] [CrossRef] [PubMed]
- Carter, N. Mouth cancer: The challenges ahead. BDJ Pract. 2021, 34, 20–21. [Google Scholar] [CrossRef]
- Fuller, C.; Mohamed, A.; Elhalawani, H.; Predict from CTData the HPV Phenotype of Oropharynx Tumors. Compared to Ground-Truth Results Previously Obtained by p16 or HPV Testing. 2017. Available online: https://figshare.com/collections/Predict_from_CT_data_the_HPV_phenotype_of_oropharynx_tumors_compared_to_ground-truth_results_previously_obtained_by_p16_or_HPV_testing/3757403/1 (accessed on 7 October 2023).
- Ribeiro-de-Assis, M.C.F.; Soares, J.P.; de Lima, L.M.; de Barros, L.A.P.; Grao-Velloso, T.R.; Krohling, R.A.; Camisasca, D.R. NDB-UFES: An oral cancer and leukoplakia dataset composed of histopathological images and patient data. Data Brief 2023, 48, 109128. [Google Scholar] [CrossRef] [PubMed]
- Veeraraghavan, V.P.; Daniel, S.; Dasari, A.K.; Aileni, K.R.; Patil, C.; Patil, S.R. Harnessing artificial intelligence for predictive modelling in oral oncology: Opportunities, challenges, and clinical perspectives. Oral Oncol. Rep. 2024, 11, 100591. [Google Scholar] [CrossRef]
- de Chauveron, J.; Unger, M.; Lescaille, G.; Wendling, L.; Kurtz, C.; Rochefort, J. Artificial intelligence for oral squamous cell carcinoma detection based on oral photographs: A comprehensive literature review. Cancer Med. 2024, 13, e6822. [Google Scholar] [CrossRef]
- Sarker, I.H. AI-based modeling: Techniques, applications and research issues towards automation, intelligent and smart systems. SN Comput. Sci. 2022, 3, 158. [Google Scholar] [CrossRef]
- Rawas, S. AI: The future of humanity. Discov. Artif. Intell. 2014, 4, 25. [Google Scholar] [CrossRef]
- Chen, Z.H.; Lin, L.; Wu, C.F.; Li, C.F.; Xu, R.H.; Sun, Y. Artificial intelligence for assisting cancer diagnosis and treatment in the era of precision medicine. Cancer Commun. 2021, 41, 1100–1115. [Google Scholar] [CrossRef]
- Koh, D.M.; Papanikolaou, N.; Bick, U.; Illing, R.; Kahn, C.E., Jr.; Kalpathi-Cramer, J.; Matos, C.; Marti-Bonmatí, L.; Miles, A.; Mun, S.K.; et al. Artificial intelligence and machine learning in cancer imaging. Commun. Med. 2022, 2, 133. [Google Scholar] [CrossRef]
- Lipkova, J.; Chen, R.J.; Chen, B.; Lu, M.Y.; Barbieri, M.; Shao, D.; Vaidya, A.J.; Chen, C.; Zhuang, L.; Williamson, D.F.K.; et al. Artificial intelligence for multimodal data integration in oncology. Cancer Cell 2022, 40, 1095–1110. [Google Scholar] [CrossRef] [PubMed]
- Ke, J.; Shen, Y.; Lu, Y.; Guo, Y.; Shen, D. Mine local homogeneous representation by interaction information clustering with unsupervised learning in histopathology images. Comput. Methods Programs Biomed. 2023, 235, 107520. [Google Scholar] [CrossRef] [PubMed]
- Yaqoob, A.; Aziz, R.M.; Verma, N.K. Applications and techniques of machine learning in cancer classification: A systematic review. Hum. Cent. Intell. Syst. 2013, 3, 588–615. [Google Scholar] [CrossRef]
- Eckardt, J.N.; Wendt, K.; Bornhäuser, M.; Middeke, J.M. Reinforcement learning for precision oncology. Cancers 2021, 13, 4624. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Shen, X.; Pan, W. Deep reinforcement learning for personalized treatment recommendation. Stat. Med. 2022, 41, 4034–4056. [Google Scholar] [CrossRef]
- Liu, S.; See, K.C.; Ngiam, K.Y.; Celi, L.A.; Sun, X.; Feng, M. Reinforcement learning for clinical decision support in critical care: Comprehensive review. J. Med. Internet Res. 2020, 22, e18477. [Google Scholar] [CrossRef]
- Datta, S.; Li, Y.; Ruppert, M.M.; Ren, Y.; Shickel, B.; Ozrazgat-Baslanti, T.; Rashidi, P.; Bihorac, A. Reinforcement learning in surgery. Surgery 2021, 170, 329–332. [Google Scholar] [CrossRef]
- Lee, H.; Yoon, H.K.; Kim, J.; Park, J.S.; Koo, C.H.; Won, D.; Lee, H.C. Development and validation of a reinforcement learning model for ventilation control during emergence from general anesthesia. NPJ Digit. Med. 2023, 6, 145. [Google Scholar] [CrossRef] [PubMed]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef]
- Dixit, S.; Kumar, A.; Srinivasan, K. A Current review of machine learning and deep learning models in oral cancer diagnosis: Recent technologies, open challenges, and future research directions. Diagnostics 2023, 13, 1353. [Google Scholar] [CrossRef]
- Albalawi, E.; Thakur, A.; Ramakrishna, M.T.; Bhatia Khan, S.; SankaraNarayanan, S.; Almarri, B.; Hadi, T.H. Oral squamous cell carcinoma detection using EfficientNet on histopathological images. Front. Med. 2024, 10, 1349336. [Google Scholar] [CrossRef] [PubMed]
- Illimoottil, M.; Ginat, D. Recent advances in deep learning and medical imaging for head and neck cancer treatment: MRI, CT, and PET scans. Cancers 2023, 15, 3267. [Google Scholar] [CrossRef]
- Warin, K.; Suebnukarn, S. Deep learning in oral cancer—A systematic review. BMC Oral Health 2024, 24, 212. [Google Scholar] [CrossRef] [PubMed]
- Varalakshmi, D.; Tharaheswari, M.; Anand, T.; Saravanan, K.M. Transforming oral cancer care: The promise of deep learning in diagnosis. Oral Oncol. Rep. 2024, 10, 100482. [Google Scholar] [CrossRef]
- Sheng, J.Q.; Hu, P.J.; Liu, X.; Huang, T.S.; Chen, Y.H. Predictive analytics for care and management of patients with acute diseases: Deep learning-based method to predict crucial complication phenotypes. J. Med. Internet Res. 2021, 23, e18372. [Google Scholar] [CrossRef] [PubMed]
- Maleki Varnosfaderani, S.; Forouzanfar, M. The role of AI in hospitals and clinics: Transforming healthcare in the 21st century. Bioengineering 2024, 11, 337. [Google Scholar] [CrossRef] [PubMed]
- Berahmand, K.; Daneshfar, F.; Salehi, E.S.; Li, Y.; Xu, Y. Autoencoders and their applications in machine learning: A survey. Artif. Intell. Rev. 2024, 57, 28. [Google Scholar] [CrossRef]
- Janoudi, G.; Uzun Rada, M.; Fell, D.B.; Ray, J.G.; Foster, A.M.; Giffen, R.; Clifford, T.; Walker, M.C. Outlier analysis for accelerating clinical discovery: An augmented intelligence framework and a systematic review. PLoS Digit. Health 2024, 3, e0000515. [Google Scholar] [CrossRef]
- Franco, E.F.; Rana, P.; Cruz, A.; Calderon, V.V.; Azevedo, V.; Ramos, R.T.J.; Ghosh, P. Performance comparison of deep learning autoencoders for cancer subtype detection using multi-omics data. Cancers 2021, 13, 2013. [Google Scholar] [CrossRef]
- Chen, R.J.; Lu, M.Y.; Chen, T.Y.; Williamson, D.K.F.; Mahmood, F. Synthetic data in machine learning for medicine and healthcare. Nat. Biomed. Eng. 2021, 5, 493–497. [Google Scholar] [CrossRef]
- Song, B.; KC, D.R.; Yang, R.Y.; Li, S.; Zhang, C.; Liang, R. Classification of mobile-based oral cancer images using the vision transformer and the Swin transformer. Cancers 2024, 16, 987. [Google Scholar] [CrossRef] [PubMed]
- Friedman, C.; Rindflesch, T.C.; Corn, M. Natural language processing: State of the art and prospects for significant progress, a workshop sponsored by the National Library of Medicine. J. Biomed. Inform. 2013, 46, 765–773. [Google Scholar] [CrossRef]
- Velupillai, S.; Suominen, H.; Liakata, M.; Roberts, A.; Shah, A.D.; Morley, K.; Osborn, D.; Hayes, J.; Stewart, R.; Downs, J.; et al. Using clinical natural language processing for health outcomes research: Overview and actionable suggestions for future advances. J. Biomed Inform. 2018, 88, 11–19. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Wang, M.; Wu, J.; Francis, F.; Chang, Y.H.; Shavick, A.; Dong, H.; Poon, M.T.C.; Fitzpatrick, N.; Levine, A.P.; et al. A survey on clinical natural language processing in the United Kingdom from 2007 to 2022. NPJ Digit. Med. 2022, 5, 186. [Google Scholar] [CrossRef] [PubMed]
- Clusmann, J.; Kolbinger, F.R.; Muti, H.S.; Carrero, Z.I.; Eckardt, J.N.; Laleh, N.G.; Löffler, C.M.L.; Schwarzkopf, S.C.; Unger, M.; Veldhuizen, G.P.; et al. The future landscape of large language models in medicine. Commun. Med. 2023, 3, 141. [Google Scholar] [CrossRef] [PubMed]
- Aramaki, E.; Wakamiya, S.; Yada, S.; Nakamura, Y. Natural language processing: From bedside to everywhere. Yearb Med. Inform. 2022, 31, 243–253. [Google Scholar] [CrossRef]
- Yang, X.; Chen, A.; PourNejatian, N.; Shin, H.C.; Smith, K.E.; Parisien, C.; Compas, C.; Martin, C.; Costa, A.B.; Flores, M.G.; et al. A large language model for electronic health records. NPJ Digit Med. 2022, 5, 194. [Google Scholar] [CrossRef] [PubMed]
- Hossain, E.; Rana, R.; Higgins, N.; Soar, J.; Barua, P.D.; Pisani, A.R.; Turner, K. Natural Language processing in electronic health records in relation to healthcare decision-making: A systematic review. Comput. Biol. Med. 2023, 155, 106649. [Google Scholar] [CrossRef]
- Aggarwal, D.; Pallavi, K. Advancements and challenges in natural language processing in oral cancer research: A narrative review. Cancer Res. Stat. Treat. 2024, 7, 228–233. [Google Scholar] [CrossRef]
- Demner-Fushman, D.; Chapman, W.W.; McDonald, C.J. What can natural language processing do for clinical decision support? J. Biomed. Inform. 2009, 42, 760–772. [Google Scholar] [CrossRef]
- Wang, L.; Chen, X.; Zhang, L.; Li, L.; Huang, Y.; Sun, Y.; Yuan, X. Artificial intelligence in clinical decision support systems for oncology. Int. J. Med. Sci. 2023, 20, 79–86. [Google Scholar] [CrossRef] [PubMed]
- Berge, G.T.; Granmo, O.C.; Tveit, T.O.; Munkvold, B.E.; Ruthjersen, A.L.; Sharma, J. Machine learning-driven clinical decision support system for concept-based searching: A field trial in a Norwegian hospital. BMC Med. Inform. Decis. Mak. 2023, 23, 5. [Google Scholar] [CrossRef] [PubMed]
- Elani, H.W.; Giannobile, W.V. Harnessing Artificial intelligence to address oral health disparities. JAMA Health Forum. 2024, 5, e240642. [Google Scholar] [CrossRef]
- Tobias, M.A.S.; Nogueira, B.P.; Santana, M.C.S.; Pires, R.G.; Papa, J.P.; Santos, P.S.S. Artificial intelligence for oral cancer diagnosis: What are the possibilities? Oral Oncol. 2022, 134, 106117. [Google Scholar] [CrossRef] [PubMed]
- Kavyashree, C.; Vimala, H.S.; Shreyas, J. A systematic review of artificial intelligence techniques for oral cancer detection. Healthc. Anal. 2024, 5, 100304. [Google Scholar] [CrossRef]
- Pereira-Prado, V.; Martins-Silveira, F.; Sicco, E.; Hochmann, J.; Isiordia-Espinoza, M.A.; Gonzalez, R.G.; Pandiar, D.; Bologna-Molina, R. Artificial intelligence for image analysis in oral squamous cell carcinoma: A review. Diagnostics 2023, 13, 2416. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Pola, M.; Pons-Fuster, E.; Suarez-Fernandez, C.; Seoane-Romero, J.; Romero-Mendez, A.; Lopez-Jornet, P. Role of Artificial intelligence in the early diagnosis of oral cancer. A scoping review. Cancers 2021, 13, 4600. [Google Scholar] [CrossRef] [PubMed]
- Talwar, V.; Singh, P.; Mukhia, N.; Shetty, A.; Birur, P.; Desai, K.M.; Sunkavalli, C.; Varma, K.S.; Sethuraman, R.; Jawahar, C.V.; et al. AI-assisted screening of oral potentially malignant disorders using smartphone-based photographic images. Cancers 2023, 15, 4120. [Google Scholar] [CrossRef]
- Song, B.; Sunny, S.; Uthoff, R.D.; Patrick, S.; Suresh, A.; Kolur, T.; Keerthi, G.; Anbarani, A.; Wilder-Smith, P.; Kuriakose, M.A.; et al. Automatic classification of dual-modalilty, smartphone-based oral dysplasia and malignancy images using deep learning. Biomed. Opt. Express 2018, 9, 5318–5329. [Google Scholar] [CrossRef]
- Chatfield, K.; Simonyan, K.; Vedaldi, A.; Zisserman, A. Return of the devil in the details: Delving deep into convolutional nets. In Proceedings of the British Machine Vision Conference 2014, Nottingham, UK, 1–5 September 2014; BMVA Press: Durham, UK, 2014. [Google Scholar]
- Olms, C.; Hix, N.; Neumann, H.; Yahiaoui-Doktor, M.; Remmerbach, T.W. Clinical comparison of liquid-based and conventional cytology of oral brush biopsies: A randomized controlled trial. Head Face Med. 2018, 14, 9. [Google Scholar] [CrossRef]
- Kokubun, K.; Nakajima, K.; Yamamoto, K.; Akashi, Y.; Matsuzaka, K. Evaluation of oral brush liquid-based cytology for oral squamous cell carcinoma: A comparative study of cytological and histological diagnoses at a single center. BMC Oral Health 2023, 23, 145. [Google Scholar] [CrossRef]
- Caponio, V.C.A.; Silva, F.F.E.; Popolo, F.; Giugliano, S.; Spizzirri, F.; Lorenzo-Pouso, A.I.; Padín-Iruegas, M.E.; Zhurakivska, K.; Muzio, L.L.; López-Pintor, R.M. State of art of micronuclei assay in exfoliative cytology as a clinical biomarker of genetic damage in oral carcinogenesis: A systematic review and meta-analysis. Mutat. Res. Rev. Mutat. Res. 2024, 794, 108508. [Google Scholar] [CrossRef]
- Mhaske, S.; Ramalingam, K.; Nair, P.; Patel, S.; Menon P, A.; Malik, N.; Mhaske, S. Automated analysis of nuclear parameters in oral exfoliative cytology using machine learning. Cureus 2024, 16, e58744. [Google Scholar] [CrossRef] [PubMed]
- Sunny, S.; Baby, A.; James, B.L.; Balaji, D.; Rana, M.H.; Gurpur, P.; Skandarajah, A.; D’Ambrosio, M.; Ramanjinappa, R.D.; Mohan, S.P.; et al. A smart tele-cytology point-of-care platform for oral cancer screening. PLoS ONE 2019, 14, e0224885. [Google Scholar] [CrossRef] [PubMed]
- Tayebi, R.M.; Mu, Y.; Dehkharghanian, T.; Ross, C.; Sur, M.; Foley, R.; Tizhoosh, H.R.; Campbell, C.J.V. Automated bone marrow cytology using deep learning to generate a histogram of cell types. Commun. Med. 2022, 2, 45. [Google Scholar] [CrossRef] [PubMed]
- Shephard, A.J.; Bashir, R.M.S.; Mahmood, H.; Jahanifar, M.; Minhas, F.; Raza, S.E.A.; McCombe, K.D.; Craig, S.G.; James, J.; Brooks, J.; et al. A fully automated and explainable algorithm for predicting malignant transformation in oral epithelial dysplasia. NPJ Precis. Oncol. 2024, 8, 137. [Google Scholar] [CrossRef] [PubMed]
- Welikala, R.A.; Remagnino, P.; Lim, J.H.; Chan, C.S.; Rajendran, S.; Kallarakkal, T.G.; Zain, R.; Jayasinghe, R.; Rimal, J.; Kerr, A.; et al. Automated detection and classification of oral lesions using deep learning for early detection of oral cancer. IEEE Access 2020, 8, 132677–132693. [Google Scholar] [CrossRef]
- de Lima, L.; de Assis, M.C.F.R.; Soares, J.P.; Grao-Velloso, T.R.; de Barros, L.A.P.; Camisasca, D.R.; Krohling, R.A. On the importance of complementary data to histopathological image analysis of oral leukoplakia and carcinoma using deep neural networks. Intell. Med. 2023, 3, 258–266. [Google Scholar] [CrossRef]
- Mann, M.; Kumar, C.; Zeng, W.F.; Strauss, M.T. Artificial intelligence for proteomics and biomarker discovery. Cell Syst. 2021, 12, 759–770. [Google Scholar] [CrossRef]
- Ng, S.; Masarone, S.; Watson, D.; Barnes, M.R. The benefits and pitfalls of machine learning for biomarker discovery. Cell Tissue Res. 2023, 394, 17–31. [Google Scholar] [CrossRef]
- Pham, T.D.; Ravi, V.; Fan, C.; Luo, B.; Sun, X.F. Tensor decomposition of largest convolutional eigenvalues reveals pathologic predictive power of RhoB in rectal cancer biopsy. Am. J. Pathol. 2023, 193, 579–590. [Google Scholar] [CrossRef] [PubMed]
- Pham, T.D.; Sun, X.F. Wavelet scattering networks in deep learning for discovering protein markers in a cohort of Swedish rectal cancer patients. Cancer Med. 2023, 12, 21502–21518. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Wang, J.; Pan, D.; Wang, X.; Xu, Y.; Yan, J.; Wang, L.; Yang, X.; Yang, M.; Liu, G.P. Applications of multi-omics analysis in human diseases. MedComm 2023, 4, e315. [Google Scholar] [CrossRef]
- Adeoye, J.; Su, Y.X. Artificial intelligence in salivary biomarker discovery and validation for oral diseases. Oral Dis. 2024, 30, 23–37. [Google Scholar] [CrossRef]
- Viet, C.T.; Asam, K.R.; Yu, G.; Dyer, E.C.; Kochanny, S.; Thomas, C.M.; Callahan, N.F.; Morlandt, A.B.; Cheng, A.C.; Patel, A.A.; et al. Artificial intelligence-based epigenomic, transcriptomic and histologic signatures of tobacco use in oral squamous cell carcinoma. NPJ Precis. Oncol. 2024, 8, 130. [Google Scholar] [CrossRef] [PubMed]
- Gu, X.; Salehi, A.; Wang, L.; Coates, P.J.; Sgaramella, N.; Nylander, K. Early detection of squamous cell carcinoma of the oral tongue using multidimensional plasma protein analysis and interpretable machine learning. J. Oral Pathol. Med. 2023, 52, 637–643. [Google Scholar] [CrossRef] [PubMed]
- Perumal, M.K.K.; Srinivasan, G.P.; Thangavelu, L.; Renuka, R.R. Theragnostic applications of artificial intelligence (AI) in the field of oral cancer care. Oral Oncol. Rep. 2024, 10, 100278. [Google Scholar] [CrossRef]
- Mahmood, H.; Shaban, M.; Rajpoot, N.; Syed, A.; Khurram, K. Artificial Intelligence-based methods in head and neck cancer diagnosis: An overview. Br. J. Cancer 2021, 124, 1934–1940. [Google Scholar] [CrossRef] [PubMed]
- Hegde, S.; Ajila, V.; Zhu, W.; Zeng, C. Artificial intelligence in early diagnosis and prevention of oral cancer. Asia Pac. J. Oncol. Nurs. 2022, 9, 100133. [Google Scholar] [CrossRef]
- Uppal, S.; Kumar Shrivastava, P.; Khan, A.; Sharma, A.; Kumar Shrivastav, A. Machine learning methods in predicting the risk of malignant transformation of oral potentially malignant disorders: A systematic review. Int. J. Med. Inform. 2024, 186, 105421. [Google Scholar] [CrossRef]
- Bi, W.L.; Hosny, A.; Schabath, M.B.; Giger, M.L.; Birkbak, N.J.; Mehrtash, A.; Allison, T.; Arnaout, O.; Abbosh, C.; Dunn, I.F.; et al. Artificial intelligence in cancer imaging: Clinical challenges and applications. CA Cancer J. Clin. 2019, 69, 127–157. [Google Scholar] [CrossRef] [PubMed]
- Habibi, M.; Taheri, G. A new machine learning method for cancer mutation analysis. PLoS Comput. Biol. 2022, 18, e1010332. [Google Scholar] [CrossRef] [PubMed]
- Rajula, H.S.R.; Verlato, G.; Manchia, M.; Antonucci, N.; Fanos, V. Comparison of conventional statistical methods with machine learning in medicine: Diagnosis, drug development, and treatment. Medicina 2020, 56, 455. [Google Scholar] [CrossRef] [PubMed]
- Howard, F.M.; Kochanny, S.; Koshy, M.; Spiotto, M.; Pearson, A.T. Machine Learning-Guided Adjuvant Treatment of Head and Neck Cancer. JAMA Netw. Open 2020, 3, e2025881. [Google Scholar] [CrossRef]
- Al-Rawi, N.; Sultan, A.; Rajai, B.; Shuaeeb, H.; Alnajjar, M.; Alketbi, M.; Mohammad, Y.; Shetty, S.R.; Mashrah, M.A. The effectiveness of artificial intelligence in detection of oral cancer. Int. Dent. J. 2022, 72, 436–447. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Ding, S.; Zhong, Q.; Fang, J.; Huang, J.; Huang, Z.; Zhang, Y. A machine learning model for predicting the three-year survival status of patients with hypopharyngeal squamous cell carcinoma using multiple parameters. J. Laryngol. Otol. 2023, 137, 1041–1047. [Google Scholar] [CrossRef]
- Choi, N.; Kim, J.; Yi, H.; Kim, H.; Kim, T.H.; Chung, M.J.; Ji, M.; Kim, Z.; Son, Y.I. The use of artificial intelligence models to predict survival in patients with laryngeal squamous cell carcinoma. Sci. Rep. 2023, 13, 9734. [Google Scholar] [CrossRef]
- Vollmer, A.; Hartmann, S.; Vollmer, M.; Shavlokhova, V.; Brands, R.C.; Kübler, A.; Wollborn, J.; Hassel, F.; Couillard-Despres, S.; Lang, G.; et al. Multimodal artificial intelligence-based pathogenomics improves survival prediction in oral squamous cell carcinoma. Sci. Rep. 2024, 14, 5687. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.F.; Shen, Y.J.; Huang, Q.; Wu, C.P.; Zhou, L.; Ren, H.L. Predicting survival of advanced laryngeal squamous cell carcinoma: Comparison of machine learning models and Cox regression models. Sci. Rep. 2023, 13, 18498. [Google Scholar] [CrossRef]
- Wang, Y.; Zhou, C.; Li, T.; Luo, J. Prognostic value of CDKN2A in head and neck squamous cell carcinoma via pathomics and machine learning. J. Cell Mol. Med. 2024, 28, e18394. [Google Scholar] [CrossRef]
- Bera, K.; Braman, N.; Gupta, A.; Velcheti, V.; Madabhushi, A. Predicting cancer outcomes with radiomics and artificial intelligence in radiology. Nat. Rev. Clin. Oncol. 2022, 19, 132–146. [Google Scholar] [CrossRef] [PubMed]
- Muthupandian, S.; Arockiaraj, J.; Belete, M.A. A commentary on “The use of multilayer perceptron and radial basis function: An artificial intelligence model to predict progression of oral cancer”: Correspondence. Int. J. Surg. 2024, 110, 2438–2439. [Google Scholar] [CrossRef] [PubMed]
- Chakrabarty, N.; Mahajan, A. Imaging analytics using artificial intelligence in oncology: A comprehensive review. Clin. Oncol. R. Coll. Radiol. 2024, 36, 498–513. [Google Scholar] [CrossRef] [PubMed]
- Gianoli, C.; De Bernardi, E.; Parodi, K. “Under the hood”: Artificial intelligence in personalized radiotherapy. BJR Open 2024, 6, tzae017. [Google Scholar] [CrossRef] [PubMed]
- Aggarwal, A.; Court, L.E.; Hoskin, P.; Jacques, I.; Kroiss, M.; Laskar, S.; Lievens, Y.; Mallick, I.; Abdul Malik, R.; Miles, E.; et al. ARCHERY: A prospective observational study of artificial intelligence-based radiotherapy treatment planning for cervical, head and neck and prostate cancer—Study protocol. BMJ Open 2023, 13, e077253. [Google Scholar] [CrossRef]
- Berger, M.F.; Mardis, E.R. The emerging clinical relevance of genomics in cancer medicine. Nat. Rev. Clin. Oncol. 2018, 15, 353–365. [Google Scholar] [CrossRef]
- Krzyszczyk, P.; Acevedo, A.; Davidoff, E.J.; Timmins, L.M.; Marrero-Berrios, I.; Patel, M.; White, C.; Lowe, C.; Sherba, J.J.; Hartmanshenn, C.; et al. The growing role of precision and personalized medicine for cancer treatment. Technology 2018, 6, 79–100. [Google Scholar] [CrossRef] [PubMed]
- Duan, X.P.; Qin, B.D.; Jiao, X.D.; Liu, K.; Wang, Z.; Zang, Y.S. New clinical trial design in precision medicine: Discovery, development and direction. Sig. Transduct. Target Ther. 2024, 9, 57. [Google Scholar] [CrossRef]
- Xu, Z.; Wang, X.; Zeng, S.; Ren, X.; Yan, Y.; Gong, Z. Applying artificial intelligence for cancer immunotherapy. Acta Pharm. Sin. B 2021, 11, 3393–3405. [Google Scholar] [CrossRef]
- Liao, J.; Li, X.; Gan, Y.; Han, S.; Rong, P.; Wang, W.; Li, W.; Zhou, L. Artificial intelligence assists precision medicine in cancer treatment. Front. Oncol. 2023, 12, 998222. [Google Scholar] [CrossRef]
- Fionda, B.; Boldrini, L.; D’Aviero, A.; Lancellotta, V.; Gambacorta, M.A.; Kovács, G.; Patarnello, S.; Valentini, V.; Tagliaferri, L. Artificial intelligence (AI) and interventional radiotherapy (brachytherapy): State of art and future perspectives. J. Contemp. Brachyther. 2020, 12, 497–500. [Google Scholar] [CrossRef]
- Ahervo, H.; Korhonen, J.; Lim Wei Ming, S.; Guan Yunqing, F.; Soini, M.; Lian Pei Ling, C.; Metsala, E. Artificial intelligence-supported applications in head and neck cancer radiotherapy treatment planning and dose optimisation. Radiography 2023, 29, 496–502. [Google Scholar] [CrossRef]
- Crowson, M.G.; Ranisau, J.; Eskander, A.; Babier, A.; Xu, B.; Kahmke, R.R.; Chen, J.M.; Chan, T.C.Y. A contemporary review of machine learning in otolaryngology-head and neck surgery. Laryngoscope 2020, 130, 45–51. [Google Scholar] [CrossRef] [PubMed]
- Loperfido, A.; Celebrini, A.; Marzetti, A.; Bellocchi, G. Current role of artificial intelligence in head and neck cancer surgery: A systematic review of literature. Explor. Target Antitumor. Ther. 2023, 4, 933–940. [Google Scholar] [CrossRef]
- Miragall, M.F.; Knoedler, S.; Kauke-Navarro, M.; Saadoun, R.; Grabenhorst, A.; Grill, F.D.; Ritschl, L.M.; Fichter, A.M.; Safi, A.F.; Knoedler, L. Face the future-artificial intelligence in oral and maxillofacial surgery. J. Clin. Med. 2023, 12, 6843. [Google Scholar] [CrossRef] [PubMed]
- Cai, Y.; Xie, Y.; Zhang, S.; Wang, Y.; Wang, Y.; Chen, J.; Huang, Z. Prediction of postoperative recurrence of oral cancer by artificial intelligence model: Multilayer perceptron. Head Neck 2023, 45, 3053–3066. [Google Scholar] [CrossRef] [PubMed]
- Kar, A.; Wreesmann, V.B.; Shwetha, V.; Thakur, S.; Rao, V.U.S.; Arakeri, G.; Brennan, P.A. Improvement of oral cancer screening quality and reach: The promise of artificial intelligence. J. Oral Pathol. Med. 2020, 49, 727–730. [Google Scholar] [CrossRef]
- Farina, E.; Nabhen, J.J.; Dacoregio, M.I.; Batalini, F.; Moraes, F.Y. An overview of artificial intelligence in oncology. Future Sci. OA 2022, 8, FSO787. [Google Scholar] [CrossRef]
- Kurian, M.; Adashek, J.J.; West, H.J. Cancer care in the era of artificial intelligence. JAMA Oncol. 2024, 10, 683. [Google Scholar] [CrossRef]
- Lopez-Cortes, X.A.; Matamala, F.; Venegas, B.; Rivera, C. Machine-learning applications in oral cancer: A systematic review. Appl. Sci. 2022, 12, 5715. [Google Scholar] [CrossRef]
- Fatapour, Y.; Abiri, A.; Kuan, E.C.; Brody, J.P. Development of a Machine Learning Model to Predict Recurrence of Oral Tongue Squamous Cell Carcinoma. Cancers 2023, 15, 2769. [Google Scholar] [CrossRef] [PubMed]
- OuYang, P.Y.; He, Y.; Guo, J.G.; Liu, J.N.; Wang, Z.L.; Li, A.; Li, J.; Yang, S.S.; Zhang, X.; Fan, W.; et al. Artificial intelligence aided precise detection of local recurrence on MRI for nasopharyngeal carcinoma: A multicenter cohort study. EclinicalMedicine 2023, 63, 102202. [Google Scholar] [CrossRef]
- Califf, R.M. Biomarker definitions and their applications. Exp. Biol. Med. 2018, 243, 213–221. [Google Scholar] [CrossRef]
- Albutt, A.; O’Hara, J.; Conner, M.; Lawton, R. Involving patients in recognising clinical deterioration in hospital using the Patient Wellness Questionnaire: A mixed-methods study. J. Res. Nurs. 2020, 25, 68–86. [Google Scholar] [CrossRef]
- Brands, M.R.; Gouw, S.C.; Beestrum, M.; Cronin, R.M.; Fijnvandraat, K.; Badawy, S.M. Patient-centered digital health records and their effects on health outcomes: Systematic review. J. Med. Internet Res. 2022, 24, e43086. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Tang, H.; Liu, Y.; Qiao, Y.; Xia, H.; Zhou, J. Oral wearable sensors: Health management based on the oral cavity. Biosens. Bioelectron. X 2022, 10, 100135. [Google Scholar] [CrossRef]
- Dailah, H.G. Mobile health (mHealth) technology in early detection and diagnosis of oral cancer—A scoping review of the current scenario and feasibility. J. Healthc Eng. 2022, 2022, 4383303. [Google Scholar] [CrossRef]
- Babel, A.; Taneja, R.; Mondello Malvestiti, F.; Monaco, A.; Donde, S. Artificial intelligence solutions to increase medication adherence in patients with non-communicable diseases. Front. Digit. Health 2021, 3, 669869. [Google Scholar] [CrossRef] [PubMed]
- Saber, A.F.; Ahmed, S.K.; Hussein, S.; Qurbani, K. Artificial intelligence-assisted nursing interventions in psychiatry for oral cancer patients: A concise narrative review. Oral Oncol. Rep. 2024, 10, 100343. [Google Scholar] [CrossRef]
- Derraz, B.; Breda, G.; Kaempf, C.; Baenke, F.; Cotte, F.; Reiche, K.; Köhl, U.; Kather, J.N.; Eskenazy, D.; Gilbert, S. New regulatory thinking is needed for AI-based personalised drug and cell therapies in precision oncology. NPJ Precis. Oncol. 2024, 8, 23. [Google Scholar] [CrossRef]
- Wu, Y.P.; Linder, L.A.; Kanokvimankul, P.; Fowler, B.; Parsons, B.G.; Macpherson, C.F.; Johnson, R.H. Use of a smartphone application for prompting oral medication adherence among adolescents and young adults with cancer. Oncol. Nurs. Forum. 2018, 45, 69–76. [Google Scholar] [CrossRef]
- Villanueva-Bueno, C.; Collado-Borrell, R.; Escudero-Vilaplana, V.; Revuelta-Herrero, J.L.; Marzal-Alfaro, M.B.; Gonzalez-Haba, E.; Arranz-Arija, J.Á.; Osorio, S.; Herranz-Alonso, A.; Sanjurjo-Saez, M. A smartphone app to improve the safety of patients undergoing treatment with oral antineoplastic agents: 4 years of experience in a university hospital. Front. Public Health 2022, 10, 978783. [Google Scholar] [CrossRef] [PubMed]
- Shaffer, K.M.; Turner, K.L.; Siwik, C.; Gonzalez, B.D.; Upasani, R.; Glazer, J.V.; Ferguson, R.J.; Joshua, C.; Low, C.A. Digital health and telehealth in cancer care: A scoping review of reviews. Lancet Digit Health 2023, 5, e316–e327. [Google Scholar] [CrossRef] [PubMed]
- Batra, P.; Tagra, H.; Katyal, S. Artificial intelligence in teledentistry. Discoveries 2022, 10, 153. [Google Scholar] [CrossRef] [PubMed]
- You, Y.; Lai, X.; Pan, Y.; Zheng, H.; Vera, J.; Liu, S.; Deng, S.; Zhang, L. Artificial intelligence in cancer target identification and drug discovery. Signal Transduct. Target Ther. 2022, 7, 156. [Google Scholar] [CrossRef]
- Wang, L.; Song, Y.; Wang, H.; Zhang, X.; Wang, M.; He, J.; Li, S.; Zhang, L.; Li, K.; Cao, L. Advances of Artificial intelligence in anti-cancer drug design: A review of the past decade. Pharmaceuticals 2023, 16, 253. [Google Scholar] [CrossRef]
- Tran, N.L.; Kim, H.; Shin, C.H.; Ko, E.; Oh, S.J. Artificial intelligence-driven new drug discovery targeting serine/threonine kinase 33 for cancer treatment. Cancer Cell Int. 2023, 23, 321. [Google Scholar] [CrossRef]
- Sharma, V.; Singh, A.; Chauhan, S.; Sharma, P.K.; Chaudhary, S.; Sharma, A.; Porwal, O.; Fuloria, N.K. Role of artificial intelligence in drug discovery and target identification in cancer. Curr. Drug Deliv. 2024, 21, 870–886. [Google Scholar] [CrossRef]
- Pawar, A.M.; Desai, R.; Thakur, B. From tedious to targeted: Optimizing oral cancer research with Consensus AI. Oral Oncol. Rep. 2024, 10, 100383. [Google Scholar] [CrossRef]
- Sobhani, N.; Tardiel-Cyril, D.R.; Chai, D.; Generali, D.; Li, J.R.; Vazquez-Perez, J.; Lim, J.M.; Morris, R.; Bullock, Z.N.; Davtyan, A.; et al. Artificial intelligence-powered discovery of small molecules inhibiting CTLA-4 in cancer. BJC Rep. 2024, 2, 4. [Google Scholar] [CrossRef]
- Issa, N.T.; Stathias, V.; Schürer, S.; Dakshanamurthy, S. Machine and deep learning approaches for cancer drug repurposing. Semin. Cancer Biol. 2021, 68, 132–142. [Google Scholar] [CrossRef]
- Rogers, M.F.; Gaunt, T.R.; Campbell, C. Prediction of driver variants in the cancer genome via machine learning methodologies. Brief Bioinform. 2021, 22, bbaa250. [Google Scholar] [CrossRef] [PubMed]
- Paul, D.; Sanap, G.; Shenoy, S.; Kalyane, D.; Kalia, K.; Tekade, R.K. Artificial intelligence in drug discovery and development. Drug Discov. Today 2021, 26, 80–93. [Google Scholar] [CrossRef]
- Dara, S.; Dhamercherla, S.; Jadav, S.S.; Babu, C.M.; Ahsan, M.J. Machine learning in drug discovery: A review. Artif. Intell. Rev. 2022, 55, 1947–1999. [Google Scholar] [CrossRef] [PubMed]
- Visan, A.I.; Negut, I. Integrating artificial intelligence for drug discovery in the context of revolutionizing drug delivery. Life 2024, 14, 233. [Google Scholar] [CrossRef]
- Tanoli, Z.; Vähä-Koskela, M.; Aittokallio, T. Artificial intelligence, machine learning, and drug repurposing in cancer. Expert Opin. Drug Discov. 2021, 16, 977–989. [Google Scholar] [CrossRef] [PubMed]
- Vora, L.K.; Gholap, A.D.; Jetha, K.; Thakur, R.R.S.; Solanki, H.K.; Chavda, V.P. Artificial intelligence in pharmaceutical technology and drug delivery design. Pharmaceutics 2023, 15, 1916. [Google Scholar] [CrossRef] [PubMed]
- Anand, U.; Dey, A.; Chandel, A.K.S.; Sanyal, R.; Mishra, A.; Pandey, D.K.; De Falco, V.; Upadhyay, A.; Kandimalla, R.; Chaudhary, A.; et al. Cancer chemotherapy and beyond: Current status, drug candidates, associated risks and progress in targeted therapeutics. Genes Dis. 2022, 10, 1367–1401. [Google Scholar] [CrossRef]
- Xia, Y.; Sun, M.; Huang, H.; Jin, W.L. Drug repurposing for cancer therapy. Signal Transduct. Target Ther. 2024, 9, 92. [Google Scholar] [CrossRef]
- Qureshi, R.; Irfan, M.; Gondal, T.M.; Khan, S.; Wu, J.; Hadi, M.U.; Heymach, J.; Le, X.; Yan, H.; Alam, T. AI in drug discovery and its clinical relevance. Heliyon 2023, 9, e17575. [Google Scholar] [CrossRef]
- Singh, S.; Kumar, R.; Payra, S.; Singh, S.K. Artificial intelligence and machine learning in pharmacological research: Bridging the gap between data and drug discovery. Cureus 2023, 15, e44359. [Google Scholar] [CrossRef] [PubMed]
- Yadav, S.; Singh, A.; Singhal, R.; Yadav, J.P. Revolutionizing drug discovery: The impact of artificial intelligence on advancements in pharmacology and the pharmaceutical industry. Intell. Pharm. 2024, 2, 367–380. [Google Scholar] [CrossRef]
- Reardon, S. Precision-medicine plan raises hopes. Nature 2015, 517, 540. [Google Scholar] [CrossRef] [PubMed]
- Olson, M.V. Precision medicine at the crossroads. Hum. Genom. 2017, 11, 23. [Google Scholar] [CrossRef]
- Vinks, A.A. Precision medicine—Nobody is average. Clin. Pharmacol. Ther. 2017, 101, 304–307. [Google Scholar] [CrossRef]
- Rosen, A.; Zeger, S.L. Precision medicine: Discovering clinically relevant and mechanistically anchored disease subgroups at scale. J. Clin. Investig. 2019, 129, 944–945. [Google Scholar] [CrossRef] [PubMed]
- Cutler, D.M. Early returns from the era of precision medicine. JAMA 2020, 323, 109–110. [Google Scholar] [CrossRef]
- Sahu, M.; Gupta, R.; Ambasta, R.K.; Kumar, P. Artificial intelligence and machine learning in precision medicine: A paradigm shift in big data analysis. Prog. Mol. Biol. Transl. Sci. 2022, 190, 57–100. [Google Scholar] [CrossRef]
- Wang, R.C.; Wang, Z. Precision medicine: Disease subtyping and tailored treatment. Cancers 2023, 15, 3837. [Google Scholar] [CrossRef]
- Alabi, R.O.; Almangush, A.; Elmusrati, M.; Makitie, A.A. Deep machine learning for oral cancer: From precise diagnosis to precision medicine. Front. Oral Health 2022, 2, 794248. [Google Scholar] [CrossRef]
- Mesko, B. The role of artificial intelligence in precision medicine. Expert Rev. Precis. Med. Drug Dev. 2017, 2, 239–241. [Google Scholar] [CrossRef]
- Johnson, K.B.; Wei, W.Q.; Weeraratne, D.; Frisse, M.E.; Misulis, K.; Rhee, K.; Zhao, J.; Snowdon, J.L. Precision medicine, AI, and the future of personalized health care. Clin. Transl. Sci. 2021, 14, 86–93. [Google Scholar] [CrossRef] [PubMed]
- Babu, M.; Snyder, M. Multi-omics profiling for health. Mol. Cell Proteom. 2023, 22, 100561. [Google Scholar] [CrossRef]
- Sharma, A.; Lysenko, A.; Jia, S.; Boroevich, K.A.; Tsunoda, T. Advances in AI and machine learning for predictive medicine. J. Hum. Genet. 2024, 69, 487–497. [Google Scholar] [CrossRef]
- Kwon, Y.W.; Jo, H.S.; Bae, S.; Seo, Y.; Song, P.; Song, M.; Yoon, J.H. Application of proteomics in cancer: Recent trends and approaches for biomarkers discovery. Front. Med. 2021, 8, 747333. [Google Scholar] [CrossRef]
- Sinha, S.; Vegesna, R.; Mukherjee, S.; Kammula, A.V.; Dhruba, S.R.; Wu, W.; Kerr, D.L.; Nair, N.U.; Jones, M.G.; Yosef, N.; et al. Perception predicts patient response and resistance to treatment using single-cell transcriptomics of their tumors. Nat. Cancer 2024, 5, 938–952. [Google Scholar] [CrossRef] [PubMed]
- Krishnan, G.; Singh, S.; Pathania, M.; Gosavi, S.; Abhishek, S.; Parchani, A.; Dhar, M. Artificial intelligence in clinical medicine: Catalyzing a sustainable global healthcare paradigm. Front. Artif Intell. 2023, 6, 1227091. [Google Scholar] [CrossRef] [PubMed]
- Alowais, S.A.; Alghamdi, S.S.; Alsuhebany, N.; Alqahtani, T.; Alshaya, A.I.; Almohareb, S.N.; Aldairem, A.; Alrashed, M.; Bin Saleh, K.; Badreldin, H.A.; et al. Revolutionizing healthcare: The role of artificial intelligence in clinical practice. BMC Med. Educ. 2023, 23, 689. [Google Scholar] [CrossRef]
- Knudsen, J.E.; Ghaffar, U.; Ma, R.; Hung, A.J. Clinical applications of artificial intelligence in robotic surgery. J. Robot. Surg. 2024, 18, 102. [Google Scholar] [CrossRef]
- Liu, Y.; Wu, X.; Sang, Y.; Zhao, C.; Wang, Y.; Shi, B.; Fan, Y. Evolution of surgical robot systems enhanced by artificial intelligence: A review. Adv. Intell. Syst. 2024, 6, 2300268. [Google Scholar] [CrossRef]
- Marsden, M.; Weyers, B.W.; Bec, J.; Sun, T.; Gandour-Edwards, R.F.; Birkeland, A.C.; Abouyared, M.; Bewley, A.F.; Farwell, D.G.; Marcu, L. Intraoperative margin assessment in oral and oropharyngeal cancer using label-free fluorescence lifetime imaging and machine learning. IEEE Trans. Biomed. Eng. 2021, 68, 857–868. [Google Scholar] [CrossRef]
- Zhou, X.Y.; Guo, Y.; Shen, M.; Yang, G.Z. Application of artificial intelligence in surgery. Front. Med. 2020, 14, 417–430. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Zeng, B.; Egger, J.; Wang, C.; Smedby, Ö.; Jiang, X.; Chen, X. A review on AI-based medical image computing in head and neck surgery. Phys. Med. Biol. 2022, 67, 17TR01. [Google Scholar] [CrossRef] [PubMed]
- Mithany, R.H.; Aslam, S.; Abdallah, S.; Abdelmaseeh, M.; Gerges, F.; Mohamed, M.S.; Manasseh, M.; Wanees, A.; Shahid, M.H.; Khalil, M.S.; et al. Advancements and challenges in the application of artificial intelligence in surgical arena: A literature review. Cureus 2023, 15, e47924. [Google Scholar] [CrossRef] [PubMed]
- Reddy, K.; Gharde, P.; Tayade, H.; Patil, M.; Reddy, L.S.; Surya, D. Advancements in robotic surgery: A comprehensive overview of current utilizations and upcoming frontiers. Cureus 2023, 15, e50415. [Google Scholar] [CrossRef]
- Fairag, M.; Almahdi, R.H.; Siddiqi, A.A.; Alharthi, F.K.; Alqurashi, B.S.; Alzahrani, N.G.; Alsulami, A.; Alshehri, R. Robotic revolution in surgery: Diverse applications across specialties and future prospects review article. Cureus 2024, 16, e52148. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Wang, F.; Fan, S.; Chow, J.K. Robotics in dental implantology. Oral Maxillofac. Surg. Clin. N. Am. 2019, 31, 513–518. [Google Scholar] [CrossRef]
- Satapathy, P.; Hermis, A.H.; Rustagi, S.; Pradhan, K.B.; Padhi, B.K.; Sah, R. Artificial intelligence in surgical education and training: Opportunities, challenges, and ethical considerations—Correspondence. Int. J. Surg. 2023, 109, 1543–1544. [Google Scholar] [CrossRef]
- Guerrero, D.T.; Asaad, M.; Rajesh, A.; Hassan, A.; Butler, C.E. Advancing surgical education: The use of artificial intelligence in surgical training. Am. Surg. 2023, 89, 49–54. [Google Scholar] [CrossRef]
- Varas, J.; Coronel, B.V.; Villagrán, I.; Escalona, G.; Hernandez, R.; Schuit, G.; Durán, V.; Lagos-Villaseca, A.; Jarry, C.; Neyem, A.; et al. Innovations in surgical training: Exploring the role of artificial intelligence and large language models (LLM). Rev. Col. Bras. Cir. 2023, 50, e20233605. [Google Scholar] [CrossRef]
- Sinha, A.; West, A.; Vasdev, N.; Sooriakumaran, P.; Rane, A.; Dasgupta, P.; McKirdy, M. Current practises and the future of robotic surgical training. Surgeon 2023, 21, 314–322. [Google Scholar] [CrossRef] [PubMed]
- Brian, R.; Murillo, A.; Gomes, C.; Alseidi, A. Artificial intelligence and robotic surgical education. Glob. Surg. Educ. 2024, 3, 60. [Google Scholar] [CrossRef]
- Chen, G.; Jin, S.; Xia, Q.; Wang, Z.; Shi, Z.; Chen, G.; Hong, Y.; Fan, X.; Lin, H. Insight into the history and trends of surgical simulation training in education: A bibliometric analysis. Int. J. Surg. 2023, 109, 2204–2213. [Google Scholar] [CrossRef]
- Khanagar, S.B.; Alkadi, L.; Alghilan, M.A.; Kalagi, S.; Awawdeh, M.; Bijai, L.K.; Vishwanathaiah, S.; Aldhebaib, A.; Singh, O.G. Application and performance of artificial intelligence (AI) in oral cancer diagnosis and prediction using histopathological images: A systematic review. Biomedicines 2023, 11, 1612. [Google Scholar] [CrossRef]
- Behera, A.; Babu, N.A.; Renuka, R.R.; Jothinathan, M.K.D. Harnessing artificial intelligence role in oral cancer diagnosis and prediction: A comprehensive exploration. Oral Oncol. Rep. 2024, 10, 100314. [Google Scholar] [CrossRef]
- Edemekong, P.F.; Annamaraju, P.; Haydel, M.J. Health Insurance Portability and Accountability Act. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2024. Available online: https://www.ncbi.nlm.nih.gov/books/NBK500019/ (accessed on 30 May 2024).
- Cabral, B.P.; Braga, L.A.M.; Syed-Abdul, S.; Mota, F.B. Future of Artificial intelligence applications in cancer care: A global cross-sectional survey of researchers. Curr. Oncol. 2023, 30, 3432–3446. [Google Scholar] [CrossRef] [PubMed]
- Alshuhri, M.S.; Al-Musawi, S.G.; Al-Alwany, A.A.; Uinarni, H.; Rasulova, I.; Rodrigues, P.; Alkhafaji, A.T.; Alshanberi, A.M.; Alawadi, A.H.; Abbas, A.H. Artificial intelligence in cancer diagnosis: Opportunities and challenges. Pathol. Res. Pract. 2024, 253, 154996. [Google Scholar] [CrossRef] [PubMed]
- Adeoye, J.; Hui, L.; Su, Y.X. Data-centric artificial intelligence in oncology: A systematic review assessing data quality in machine learning models for head and neck cancer. J. Big Data 2023, 10, 28. [Google Scholar] [CrossRef]
- Istasy, P.; Lee, W.S.; Iansavichene, A.; Upshur, R.; Gyawali, B.; Burkell, J.; Sadikovic, B.; Lazo-Langner, A.; Chin-Yee, B. The impact of artificial intelligence on health equity in oncology: Scoping review. J. Med. Internet Res. 2022, 24, e39748. [Google Scholar] [CrossRef]
- Khoury, Z.H.; Ferguson, A.; Price, J.B.; Sultan, A.S.; Wang, R. Responsible artificial intelligence for addressing equity in oral healthcare. Front. Oral. Health 2024, 5, 1408867. [Google Scholar] [CrossRef]
- Makitie, A.A.; Alabi, R.O.; Ng, S.P.; Takes, R.P.; Robbins, K.T.; Ronen, O.; Shaha, A.R.; Bradley, P.J.; Saba, N.F.; Nuyts, S.; et al. Artificial Intelligence in head and neck cancer: A systematic review of systematic reviews. Adv. Ther. 2023, 40, 3360–3380. [Google Scholar] [CrossRef] [PubMed]
- Kelly, C.J.; Karthikesalingam, A.; Suleyman, M.; Corrado, G.; King, D. Key challenges for delivering clinical impact with artificial intelligence. BMC Med. 2019, 17, 195. [Google Scholar] [CrossRef]
- Wachter, R.M.; Brynjolfsson, E. Will generative artificial intelligence deliver on its promise in health care? JAMA 2024, 331, 65–69. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Faes, L.; Kale, A.U.; Wagner, S.K.; Fu, D.J.; Bruynseels, A.; Mahendiran, T.; Moraes, G.; Shamdas, M.; Kern, C.; et al. A comparison of deep learning performance against health-care professionals in detecting diseases from medical imaging: A systematic review and meta-analysis. Lancet Digit. Health 2019, 1, e271–e297. [Google Scholar] [CrossRef]
- Karalis, V.D. The integration of artificial intelligence into clinical practice. Appl. Biosci. 2024, 3, 14–44. [Google Scholar] [CrossRef]
- Park, S.H.; Choi, J.; Byeon, J.S. Key Principles of clinical validation, device approval, and insurance coverage decisions of artificial intelligence. Korean J. Radiol. 2021, 22, 442–453. [Google Scholar] [CrossRef]
- Tsopra, R.; Fernandez, X.; Luchinat, C.; Alberghina, L.; Lehrach, H.; Vanoni, M.; Dreher, F.; Sezerman, O.U.; Cuggia, M.; de Tayrac, M.; et al. A framework for validating AI in precision medicine: Considerations from the European ITFoC consortium. BMC Med. Inform. Decis. Mak. 2021, 21, 274. [Google Scholar] [CrossRef]
- Mennella, C.; Maniscalco, U.; De Pietro, G.; Esposito, M. Ethical and regulatory challenges of AI technologies in healthcare: A narrative review. Heliyon 2024, 10, e26297. [Google Scholar] [CrossRef]
- Siontis, G.C.M.; Sweda, R.; Noseworthy, P.A.; Friedman, P.A.; Siontis, K.C.; Patel, C.J. Development and validation pathways of artificial intelligence tools evaluated in randomised clinical trials. BMJ Health Care Inform. 2021, 28, e100466. [Google Scholar] [CrossRef]
- McKee, M.; Wouters, O.J. The challenges of regulating artificial intelligence in healthcare. Int. J. Health Policy Manag. 2023, 12, 7261. [Google Scholar] [CrossRef]
- Lambert, S.I.; Madi, M.; Sopka, S.; Lenes, A.; Stange, H.; Buszello, C.P.; Stephan, A. An integrative review on the acceptance of artificial intelligence among healthcare professionals in hospitals. NPJ Digit. Med. 2023, 6, 111. [Google Scholar] [CrossRef] [PubMed]
- Mucci, A.; Green, W.M.; Hill, L.H. Incorporation of artificial intelligence in healthcare professions and patient education for fostering effective patient care. New Dir. Adult Contin. Educ. 2024, 2024, 51–62. [Google Scholar] [CrossRef]
- Shevtsova, D.; Ahmed, A.; Boot, I.W.A.; Sanges, C.; Hudecek, M.; Jacobs, J.J.L.; Hort, S.; Vrijhoef, H.J.M. Trust in and acceptance of artificial intelligence applications in medicine: Mixed methods study. JMIR Hum. Factors 2024, 11, e47031. [Google Scholar] [CrossRef]
- Richardson, J.P.; Smith, C.; Curtis, S.; Watson, S.; Zhu, X.; Barry, B.; Sharp, R.R. Patient apprehensions about the use of artificial intelligence in healthcare. NPJ Digit. Med. 2021, 4, 140. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.; Xu, H.; Bai, D.; Chen, X.; Gao, J.; Jiang, X. Public perceptions on the application of artificial intelligence in healthcare: A qualitative meta-synthesis. BMJ Open 2023, 13, e066322. [Google Scholar] [CrossRef]
- Kotter, E.; Ranschaert, E. Challenges and solutions for introducing artificial intelligence (AI) in daily clinical workflow. Eur. Radiol. 2021, 31, 5–7. [Google Scholar] [CrossRef]
- Bajwa, J.; Munir, U.; Nori, A.; Williams, B. Artificial intelligence in healthcare: Transforming the practice of medicine. Future Healthc. J. 2021, 8, e188–e194. [Google Scholar] [CrossRef]
- Wenderott, K.; Krups, J.; Luetkens, J.A.; Weigl, M. Radiologists’ perspectives on the workflow integration of an artificial intelligence-based computer-aided detection system: A qualitative study. Appl. Ergon. 2024, 117, 104243. [Google Scholar] [CrossRef] [PubMed]
- Brady, A.P.; Allen, B.; Chong, J.; Kotter, E.; Kottler, N.; Mongan, J.; Oakden-Rayner, L.; Dos Santos, D.P.; Tang, A.; Wald, C.; et al. Developing, purchasing, implementing and monitoring ai tools in radiology: Practical considerations. A multi-society statement from the ACR, CAR, ESR, RANZCR & RSNA. Can Assoc. Radiol. J. 2024, 75, 226–244. [Google Scholar] [CrossRef]
- Su, S.; Mayo, C.; Rosen, B.S.; Covington, E.; Zhang, Z.; Bryant, A.K.; Allen, S.G.; Morales Rivera, K.A.; Edwards, D.M.; Takayesu, J.; et al. Use of explainable ai algorithm revealing longitudinal changes in practice patterns and toxicity models. Int. J. Radiat. Oncol. Biol. Phys. 2023, 117, e628. [Google Scholar] [CrossRef]
- Adeoye, J.; Zheng, L.W.; Thomson, P.; Choi, S.W.; Su, Y.X. Explainable ensemble learning model improves identification of candidates for oral cancer screening. Oral Oncol. 2023, 136, 106278. [Google Scholar] [CrossRef]
- Dorrich, M.; Hecht, M.; Fietkau, R.; Hartmann, A.; Iro, H.; Gostian, A.O.; Eckstein, M.; Kist, A.M. Explainable convolutional neural networks for assessing head and neck cancer histopathology. Diagn. Pathol. 2023, 18, 121. [Google Scholar] [CrossRef]
- Shridevi, S.; Elias, S. Explainable AI based neck direction prediction and analysis during head impacts. IEEE Access 2024, 12, 31399–31408. [Google Scholar] [CrossRef]
- Xiong, X.; Smith, B.J.; Graves, S.A.; Graham, M.M.; Buatti, J.M.; Beichel, R.R. Head and neck cancer segmentation in fdg pet images: Performance comparison of convolutional neural networks and vision transformers. Tomography 2023, 9, 1933–1948. [Google Scholar] [CrossRef]
- Starke, S.; Zwanenburg, A.; Leger, K.; Lohaus, F.; Linge, A.; Kalinauskaite, G.; Tinhofer, I.; Guberina, N.; Guberina, M.; Balermpas, P.; et al. Multitask learning with convolutional neural networks and vision transformers can improve outcome prediction for head and neck cancer patients. Cancers 2023, 15, 4897. [Google Scholar] [CrossRef]
- Chen, M.; Wang, K.; Wang, J. Vision transformer-based multilabel survival prediction for oropharynx cancer after radiation therapy. Int. J. Radiat. Oncol. Biol. Phys. 2024, 118, 1123–1134. [Google Scholar] [CrossRef]
- Stransky, N.; Egloff, A.M.; Tward, A.D.; Kostic, A.D.; Cibulskis, K.; Sivachenko, A.; Kryukov, G.V.; Lawrence, M.S.; Sougnez, C.; McKenna, A.; et al. The mutational landscape of head and neck squamous cell carcinoma. Science 2011, 333, 1157–1160. [Google Scholar] [CrossRef]
- Plath, M.; Gass, J.; Hlevnjak, M.; Li, Q.; Feng, B.; Hostench, X.P.; Bieg, M.; Schroeder, L.; Holzinger, D.; Zapatka, M.; et al. Unraveling most abundant mutational signatures in head and neck cancer. Int. J. Cancer 2021, 148, 115–127. [Google Scholar] [CrossRef]
- Zhou, G.; Liu, Z.; Myers, J.N. TP53 Mutations in head and neck squamous cell carcinoma and their impact on disease progression and treatment response. J. Cell Biochem. 2016, 117, 2682–2692. [Google Scholar] [CrossRef]
- Li, Q.; Tie, Y.; Alu, A.; Ma, X.; Shi, H. Targeted therapy for head and neck cancer: Signaling pathways and clinical studies. Signal Transduct. Target Ther. 2023, 8, 31. [Google Scholar] [CrossRef]
- Haridevamuthu, B. Advancing oral squamous cell carcinoma patient care with artificial intelligence: From prediction to rehabilitation. EJMO 2024, 8, 233–234. [Google Scholar] [CrossRef]
- Costantino, A.; Sampieri, C.; Pirola, F.; De Virgilio, A.; Kim, S.H. Development of machine learning models for the prediction of positive surgical margins in transoral robotic surgery (TORS). Head Neck 2023, 45, 675–684. [Google Scholar] [CrossRef]
- Tighe, D.; McMahon, J.; Schilling, C.; Ho, M.; Provost, S.; Freitas, A. Machine learning methods applied to risk adjustment of cumulative sum chart methodology to audit free flap outcomes after head and neck surgery. Br. J. Oral Maxillofac. Surg. 2022, 60, 1353–1361. [Google Scholar] [CrossRef]
- Asaad, M.; Lu, S.C.; Hassan, A.M.; Kambhampati, P.; Mitchell, D.; Chang, E.I.; Yu, P.; Hanasono, M.M.; Sidey-Gibbons, C. The use of machine learning for predicting complications of free-flap head and neck reconstruction. Ann. Surg. Oncol. 2023, 30, 2343–2352. [Google Scholar] [CrossRef]
- Devault-Tousignant, C.; Harvie, M.; Bissada, E.; Christopoulos, A.; Tabet, P.; Guertin, L.; Bahig, H.; Ayad, T. The use of artificial intelligence in reconstructive surgery for head and neck cancer: A systematic review. Eur. Arch. Otorhinolaryngol. 2024. [Google Scholar] [CrossRef]
- Yeh, S.A. Radiotherapy for head and neck cancer. Semin. Plast. Surg. 2010, 24, 127–136. [Google Scholar] [CrossRef]
- Oktay, O.; Nanavati, J.; Schwaighofer, A.; Carter, D.; Bristow, M.; Tanno, R.; Jena, R.; Barnett, G.; Noble, D.; Rimmer, Y.; et al. Evaluation of deep learning to augment image-guided radiotherapy for head and neck and prostate cancers. JAMA Netw. Open 2020, 3, e2027426. [Google Scholar] [CrossRef]
- Trimpl, M.J.; Primakov, S.; Lambin, P.; Stride, E.P.J.; Vallis, K.A.; Gooding, M.J. Beyond automatic medical image segmentation—The spectrum between fully manual and fully automatic delineation. Phys. Med. Biol. 2022, 67, 20230030. [Google Scholar] [CrossRef]
- Landry, G.; Kurz, C.; Traverso, A. The role of artificial intelligence in radiotherapy clinical practice. BJR Open 2023, 5, 20230030. [Google Scholar] [CrossRef]
- Ono, T.; Iramina, H.; Hirashima, H.; Adachi, T.; Nakamura, M.; Mizowaki, T. Applications of artificial intelligence for machine- and patient-specific quality assurance in radiation therapy: Current status and future directions. J. Radiat. Res. 2024, 65, 421–432. [Google Scholar] [CrossRef]
- Morgan, H.E.; Sher, D.J. Adaptive radiotherapy for head and neck cancer. Cancers Head Neck 2020, 5, 1. [Google Scholar] [CrossRef]
- Gan, Y.; Langendijk, J.A.; van der Schaaf, A.; van den Bosch, L.; Oldehinkel, E.; Lin, Z.; Both, S.; Brouwer, C.L. An efficient strategy to select head and neck cancer patients for adaptive radiotherapy. Radiother. Oncol. 2023, 186, 109763. [Google Scholar] [CrossRef]
- Lemus, O.M.D.; Cao, M.; Cai, B.; Cummings, M.; Zheng, D. Adaptive radiotherapy: Next-generation radiotherapy. Cancers 2024, 16, 1206. [Google Scholar] [CrossRef]
- Zhang, W.L.; Zhu, Z.L.; Huang, M.C.; Tang, Y.J.; Tang, Y.L.; Liang, X.H. Susceptibility of multiple primary cancers in patients with head and neck cancer: Nature or nurture? Front. Oncol. 2019, 9, 1275. [Google Scholar] [CrossRef]
- Coca-Pelaz, A.; Rodrigo, J.P.; Suárez, C.; Nixon, I.J.; Mäkitie, A.; Sanabria, A.; Quer, M.; Strojan, P.; Bradford, C.R.; Kowalski, L.P.; et al. The risk of second primary tumors in head and neck cancer: A systematic review. Head Neck 2020, 42, 456–466. [Google Scholar] [CrossRef]
- Wang, S.W.; Chan, L.P.; Wang, L.F.; Wu, C.W.; Lin, S.H.; Huang, T.Y.; Lee, K.W. Secondary primary malignancy in patients with head and neck squamous cell carcinoma: 27-year experience from the perspective of diagnostic tools. PLoS ONE 2022, 17, e0263773. [Google Scholar] [CrossRef]
- Waqas, A.; Tripathi, A.; Ramachandran, R.; Stewart, P.A.; Rasool, G. Multimodal data integration for oncology in the era of deep neural networks: A review. Front. Artif. Intell. 2024, 7, 1408843. [Google Scholar] [CrossRef]
- Ilhan, B.; Guneri, P.; Wilder-Smith, P. The contribution of artificial intelligence to reducing the diagnostic delay in oral cancer. Oral Oncol. 2021, 116, 105254. [Google Scholar] [CrossRef]
- Khoury, Z.H.; Sultan, A.S. Tele-oral oncology: Reinvigorating telemedicine in oral cancer care. J. Cancer Allied Spec. 2020, 6, e335. [Google Scholar] [CrossRef]
- Kutuk, T.; Atak, E.; Villa, A.; Kalman, N.S.; Kaiser, A. Interdisciplinary collaboration in head and neck cancer care: Optimizing oral health management for patients undergoing radiation therapy. Curr. Oncol. 2024, 31, 2092–2108. [Google Scholar] [CrossRef]
- Giansanti, D. Joint expedition: Exploring the intersection of digital health and AI in precision medicine with team integration. J. Pers. Med. 2024, 14, 388. [Google Scholar] [CrossRef] [PubMed]
Patient 1 | Patient 2 | Patient 3 | Patient 4 | Patient 5 | Patient 6 | |
---|---|---|---|---|---|---|
HPV/p16 status | positive | negative | positive | negative | positive | positive |
Gender | male | female | female | male | male | female |
Age | 58 | 78 | 56 | 59 | 55 | 47 |
Race | white | white | white | black | hispanic | asian |
Tumor side | left | right | right | right | right | left |
Tumor subsite | tonsil | BOT | BOT | BOT | BOT | BOT |
T category | 2 | 3 | 2 | 4 | 2 | 1 |
N category | 0 | 0 | 2b | 1 | 2a | 2a |
AJCC cancer stage | II | III | IV | III | IV | IV |
Pathological grade | III | II | III | NA | III | II–III |
Smoking status | former | former | never | current | never | never |
Smoking pack-years | 5 | 70 | 0 | 66 | 0 | 0 |
Patient 1 | Patient 2 | Patient 3 | Patient 4 | Patient 5 | Patient 6 | |
---|---|---|---|---|---|---|
Gender | male | male | male | male | male | male |
Age group | 1 | 1 | 2 | 2 | 1 | 1 |
Race | white | white | black | white | NI | white |
Tobacco use | Y | N | N | former | NI | Y |
Alcohol consumption | former | Y | Y | former | NI | Y |
Localization | tongue | FOM | BM | gingiva | palate | tongue |
Diagnosis | OSCC | OSCC | LP (mild) | OSCC | LP (severe) | OSCC |
Application | Examples | Benefits |
---|---|---|
Early Detection [33,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86] | Histopathological analysis: digitized slides of tissue samples are fed into an AI system. The AI can highlight areas of concern, rank the likelihood of malignancy, and even provide a second opinion. Imaging techniques: an AI system can analyze image scans to identify tiny nodules or irregular tissue structures that may suggest the presence of cancer. It can also compare current scans with previous ones to track tumor progression. | Improved accuracy in detecting early-stage lesions (quantitative assessments, reduction of false negatives), enhanced visualization of suspicious areas. |
Diagnosis [72,74] | Automated lesion detection: an AI system can identify potential lesions, and generate a report highlighting suspicious areas. Classification algorithms: for instance, a lesion found in the oral cavity might be classified as high-risk for squamous cell carcinoma based on its irregular borders and rapid growth rate as identified by the AI. The system might also provide a probability score indicating the likelihood of malignancy, aiding in deciding whether to proceed with a biopsy or other diagnostic tests. | Standardized diagnostic criteria (uniform diagnostics), reduction in diagnostic variability (consistent decision-making, quality control, and second opinions). |
Treatment Planning [47,75,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127] | Personalized medicine: after a diagnosis of HNC, the patient’s comprehensive data—including medical history, imaging results, and genetic information—are fed into an AI system. The AI analyzes the data to predict the patient’s response to different treatment modalities. Genomics integration: AI can match specific genetic mutations identified in a patient’s tumor with drugs known to target those mutations. | Tailored treatment regimens (optimal therapy selection), better patient outcomes based on individual profiles (adaptive treatment strategies). |
Monitoring and Surveillance [128,129,130,131,132,133,134,135,136,137,138,139,140,141,142] | Real-time monitoring: AI can analyze data of vital signs provided by a wearable device and alerts if it detects signs of complications of a patient recovering from HNC surgery. Recurrence detection: an AI system can compare present scans with previous images, looking for any changes in tissue density or new growths. Patient compliance tracking: a patient undergoing chemotherapy for HNC might use a mobile app that sends reminders to take their medication. The AI within the app can monitor the patient’s adherence and flag any missed doses. | Early identification of recurrence, improved patient follow-up, enhanced compliance with treatment protocols. |
Drug Discovery [143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160] | Identification of therapeutic targets: AI can analyze genomic data to identify mutations like PIK3CA in HNC, leading to the development of targeted treatments such as PI3K inhibitors. Drug screening and repurposing: AI can rapidly screen millions of chemical compounds to identify those most likely to bind to a new head and neck cancer target, streamlining the drug discovery process by prioritizing the most promising candidates for lab testing. | Accelerated drug development (reduced time to market, cost efficiency), identification of novel therapeutic compounds. |
Robotics and Surgery [123,179,180,181,182,183,184,185,186,187,188,189,190,191] | AI-assisted surgery: an AI-assisted robotic system can integrate preoperative imaging and analyze real-time data to guide the surgeon, reducing complications and enhancing precision. Precision surgery techniques: an AI-driven laser system can precisely remove tumors near the vocal cords by adjusting in real time to preserve the vocal cords while effectively excising the cancer, improving outcomes and preserving the patient’s voice. | Increased surgical precision (enhanced tumor removal, preservation of critical structures), reduced intraoperative risks, faster recovery times. |
AI Technique | Applications | Description and Benefits |
---|---|---|
Supervised Learning [36,37,38] | Image classification, predictive modeling: classifying imaging scans to detect head and neck tumors with high accuracy, while predictive modeling can forecast patient outcomes, such as the likelihood of tumor recurrence, based on clinical and imaging data, helping to tailor treatment strategies. | Utilizes labeled data to train models for accurate diagnosis and prognosis prediction, improving early detection and personalized treatment plans |
Unsupervised Learning [38,39,40] | Biomarker discovery, patient clustering: analyzing genomic data and to cluster patients into subgroups based on genetic profiles, leading to more targeted therapies. | Analyzes unlabeled data to identify patterns and correlations, aiding in the discovery of novel biomarkers and understanding patient subgroups |
Reinforcement Learning [41,42,43,44,45] | Treatment optimization, robotic surgery: optimizing HNC treatments by adjusting radiation doses based on patient response and enhances robotic surgery precision through real-time feedback. | Uses feedback loops to optimize treatment strategies and enhance precision in surgical procedures, resulting in better patient outcomes and reduced errors |
Deep Learning [47,48,49,50,51,52,53,54,55,56,57] | Histopathological image analysis, radiographic image enhancement: analyzing histopathological images, identifying subtle cellular changes for precise diagnosis, and to enhance radiographic images, improving tumor visibility and aiding in more accurate treatment planning. | Employs neural networks to analyze complex medical images, leading to improved detection and diagnosis accuracy |
Natural Language Processing (NLP) [63,64,65,66,67,68,69,70] | Literature mining, patient data analysis: identifying new biomarkers or treatment strategies for HNC, while also reviewing patient records to detect patterns and predict responses to therapies, thereby refining treatment protocols. | Extracts and analyzes information from medical literature and patient records, facilitating better decision-making and research insights |
Explainable AI (XAI) [219,220,221,222] | Diagnostic decision support, treatment planning transparency: helping oncologists understand why an AI model recommends a particular diagnosis or treatment plan for HNC by offering clear explanations of the underlying data and decision-making process, thereby increasing trust and confidence in the AI’s recommendations. | Enhances the interpretability of AI models, providing clinicians with understandable insights and supporting transparent decision-making processes |
Vision Transformer Networks [49,58,223,224,225] | Medical image classification, lesion detection: analyzing imaging scans of HNC patients to accurately classify tumors and detect subtle lesions, enhancing early diagnosis and treatment planning. | Utilizes advanced transformer models for image analysis, offering superior accuracy in detecting and classifying lesions |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pham, T.D.; Teh, M.-T.; Chatzopoulou, D.; Holmes, S.; Coulthard, P. Artificial Intelligence in Head and Neck Cancer: Innovations, Applications, and Future Directions. Curr. Oncol. 2024, 31, 5255-5290. https://doi.org/10.3390/curroncol31090389
Pham TD, Teh M-T, Chatzopoulou D, Holmes S, Coulthard P. Artificial Intelligence in Head and Neck Cancer: Innovations, Applications, and Future Directions. Current Oncology. 2024; 31(9):5255-5290. https://doi.org/10.3390/curroncol31090389
Chicago/Turabian StylePham, Tuan D., Muy-Teck Teh, Domniki Chatzopoulou, Simon Holmes, and Paul Coulthard. 2024. "Artificial Intelligence in Head and Neck Cancer: Innovations, Applications, and Future Directions" Current Oncology 31, no. 9: 5255-5290. https://doi.org/10.3390/curroncol31090389
APA StylePham, T. D., Teh, M. -T., Chatzopoulou, D., Holmes, S., & Coulthard, P. (2024). Artificial Intelligence in Head and Neck Cancer: Innovations, Applications, and Future Directions. Current Oncology, 31(9), 5255-5290. https://doi.org/10.3390/curroncol31090389