CyberKnife in Pediatric Oncology: A Narrative Review of Treatment Approaches and Outcomes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Inclusion and Exclusion Criteria
2.2. Literature Search
2.3. Study Selection and Data Extraction
2.4. Narrative Review Checklist
3. Results
Literature Review
4. Discussion
Narrative
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Agrawal, S.; Bansal, N. Advances and challenges in pediatric cancers. Cancer Rep. 2019, 2, e1202. [Google Scholar] [CrossRef] [PubMed Central]
- Hua, C.H.; Mascia, A.E.; Seravalli, E.; Lomax, A.J.; Seiersen, K.; Ulin, K. Advances in radiotherapy technology for pediatric cancer patients and roles of medical physicists: COG and SIOP Europe perspectives. Pediatr. Blood Cancer 2021, 68 (Suppl. S2), e28344. [Google Scholar] [CrossRef] [PubMed]
- Kutanzi, K.R.; Lumen, A.; Koturbash, I.; Miousse, I.R. Pediatric Exposures to Ionizing Radiation: Carcinogenic Considerations. Int. J. Environ. Res. Public Health 2016, 13, 1057. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bates, J.E.; Shrestha, S.; Liu, Q.; Smith, S.A.; Mulrooney, D.A.; Leisenring, W.; Gibson, T.; Robison, L.L.; Chow, E.J.; Oeffinger, K.C.; et al. Cardiac Substructure Radiation Dose and Risk of Late Cardiac Disease in Survivors of Childhood Cancer: A Report From the Childhood Cancer Survivor Study. J. Clin. Oncol. 2023, 41, 3826–3838. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Duffner, P.K. Long-term effects of radiation therapy on cognitive and endocrine function in children with leukemia and brain tumors. Neurologist 2004, 10, 293–310. [Google Scholar] [CrossRef] [PubMed]
- Padovani, L.; André, N.; Constine, L.S.; Muracciole, X. Neurocognitive function after radiotherapy for paediatric brain tumours. Nat. Rev. Neurol. 2012, 8, 578–588. [Google Scholar] [CrossRef] [PubMed]
- Dieterich, S.; Gibbs, I.C. The CyberKnife in clinical use: Current roles, future expectations. Front. Radiat. Ther. Oncol. 2011, 43, 181–194. [Google Scholar] [PubMed]
- Lartigau, E.; Mirabel, X.; Prevost, B.; Lacornerie, T.; Dubus, F.; Sarrazin, T. Extracranial stereotactic radiotherapy: Preliminary results with the CyberKnife. Onkologie 2009, 32, 209–215. [Google Scholar] [CrossRef]
- Harada, K.; Nishizaki, T.; Adachi, N.; Suzuki, M.; Ito, H. Pediatric acoustic schwannoma showing rapid regrowth with high proliferative activity. Childs Nerv. Syst. 2000, 16, 134–137. [Google Scholar] [CrossRef] [PubMed]
- Deguchi, K.; Fukuiwa, T.; Saito, K.; Kurono, Y. Application of CyberKnife for the treatment of juvenile nasopharyngeal angiofibroma: A case report. Auris Nasus Larynx. 2002, 29, 395–400. [Google Scholar] [CrossRef]
- Giller, C.A.; Berger, B.D.; Pistenmaa, D.A.; Sklar, F.; Weprin, B.; Shapiro, K.; Winick, N.; Mulne, A.F.; Delp, J.L.; Gilio, J.P.; et al. Robotically guided radiosurgery for children. Pediatr. Blood Cancer 2005, 45, 304–310. [Google Scholar] [CrossRef]
- Peugniez, C.; Dewas, S.; Coche-Dequéant, B.; Leblond, P.; Defachelles, A.S.; Thebaud, E.; Lacornerie, T.; Lartigau, E. Use of conventional fractionation with CyberKnife in children: A report of 5 cases. J. Pediatr. Hematol. Oncol. 2010, 32, 472–475. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Zhang, Y.; Wang, E.; Wang, Z.; Li, W.; Huang, S.; Li, J. Intracranial clear cell meningioma in two children with blood relations: Two case reports and literature review. Childs Nerv. Syst. 2012, 28, 2143–2151. [Google Scholar] [CrossRef] [PubMed]
- Uslu, N.; Karakaya, E.; Dizman, A.; Yegen, D.; Guney, Y. Optic nerve glioma treatment with fractionated stereotactic radiotherapy. J. Neurosurg. Pediatr. 2013, 11, 596–599. [Google Scholar] [CrossRef] [PubMed]
- Gatz, S.A.; Thway, K.; Mandeville, H.; Kerawala, C.; MacVicar, D.; Chisholm, J. Chemotherapy responsiveness in a patient with multiply relapsed ameloblastic fibro-odontosarcoma of the maxilla. Pediatr. Blood Cancer 2015, 62, 2029–2032. [Google Scholar] [CrossRef] [PubMed]
- Nishimoto, T.; Nomura, S.; Fukano, R.; Kimura, T.; Ikeda, E.; Suzuki, M. A primary extradural malignant rhabdoid tumor at the craniovertebral junction in a 3-year-old boy. Childs Nerv. Syst. 2018, 34, 367–371. [Google Scholar] [CrossRef] [PubMed]
- Mejías, R.; Bermúdez-Guzmán, L.; Blanco, A. CyberKnife Stereotactic Radiosurgery for an Unusual Case of Large Brain Metastases From Ewing’s Sarcoma in a Pediatric Patient. Adv. Radiat. Oncol. 2022, 7, 100979. [Google Scholar] [CrossRef]
- Fadel, H.A.; El Ahmadieh, T.Y.; Plitt, A.R.; Neeley, O.J.; Johnson, Z.; Aoun, S.G.; Mohamad, O.; Timmerman, R.; Weprin, B.E. Oculomotor Schwannomas: A Systematic Review and Report of Two Pediatric Cases Treated with Fractionated CyberKnife Stereotactic Radiotherapy. World Neurosurg. 2019, 129, 487–496. [Google Scholar] [CrossRef] [PubMed]
- Mohamad, O.; Wardak, Z.; Bowers, D.C.; Le, A.H.; Dan, T.; Abdulrahman, R.; Gargan, L.; Klesse, L.; Weprin, B.; Swift, D.; et al. Margin-Free Fractionated Stereotactic Radiation Therapy for Pediatric Brain Tumors. Pract. Radiat. Oncol. 2020, 10, e485–e494. [Google Scholar] [CrossRef] [PubMed]
- Paddick, I.; Cameron, A.; Dimitriadis, A. Extracranial dose and the risk of radiation-induced malignancy after intracranial stereotactic radiosurgery: Is it time to establish a therapeutic reference level? Acta Neurochir. 2021, 163, 971–979. [Google Scholar] [CrossRef]
- Yoo, K.H.; Marianayagam, N.J.; Park, D.J.; Zamarud, A.; Gu, X.; Pollom, E.; Soltys, S.G.; Meola, A.; Chang, S.D. The Role of CyberKnife Stereotactic Radiosurgery in Recurrent Cranial Medulloblastomas across Pediatric and Adult Populations. J. Clin. Med. 2024, 13, 3592. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Baethge, C.; Goldbeck-Wood, S.; Mertens, S. SANRA-a scale for the quality assessment of narrative review articles. Res. Integr. Peer Rev. 2019, 4, 5. [Google Scholar] [CrossRef] [PubMed]
- Kurup, G. CyberKnife: A new paradigm in radiotherapy. J. Med. Phys. 2010, 35, 63–64. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Snider, J.W.; Oermann, E.K.; Chen, V.; Rabin, J.; Suy, S.; Yu, X.; Vahdat, S.; Collins, S.P.; Banovac, F.; Anderson, E.; et al. CyberKnife with Tumor Tracking: An Effective Treatment for High-Risk Surgical Patients with Single Peripheral Lung Metastases. Front. Oncol. 2012, 2, 63. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Haas, J.A.; Witten, M.R.; Clancey, O.; Episcopia, K.; Accordino, D.; Chalas, E. CyberKnife Boost for Patients with Cervical Cancer Unable to Undergo Brachytherapy. Front. Oncol. 2012, 2, 25. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ma, L.; Nichol, A.; Hossain, S.; Wang, B.; Petti, P.; Vellani, R.; Higby, C.; Ahmad, S.; Barani, I.; Shrieve, D.C.; et al. Variable dose interplay effects across radiosurgical apparatus in treating multiple brain metastases. Int. J. Comput. Assist. Radiol. Surg. 2014, 9, 1079–1086. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ihnát, P.; Skácelíková, E.; Tesař, M.; Penka, I. Stereotactic body radiotherapy using the CyberKnife® system in the treatment of patients with liver metastases: State of the art. Onco Targets Ther. 2018, 11, 4685–4691. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Miszczyk, L.; Stąpór-Fudzińska, M.; Miszczyk, M.; Maciejewski, B.; Tukiendorf, A. Salvage CyberKnife-Based Reirradiation of Patients With Recurrent Prostate Cancer: The Single-Center Experience. Technol. Cancer Res. Treat. 2018, 17, 1533033818785496. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Rossi, L.; Méndez Romero, A.; Milder, M.; de Klerck, E.; Breedveld, S.; Heijmen, B. Individualized automated planning for dose bath reduction in robotic radiosurgery for benign tumors. PLoS ONE 2019, 14, e0210279. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Armstrong, G.T.; Stovall, M.; Robison, L.L. Long-term effects of radiation exposure among adult survivors of childhood cancer: Results from the childhood cancer survivor study. Radiat. Res. 2010, 174, 840–850. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Linet, M.S.; Kim, K.P.; Rajaraman, P. Children’s exposure to diagnostic medical radiation and cancer risk: Epidemiologic and dosimetric considerations. Pediatr. Radiol. 2009, 39 (Suppl. S1), S4–S26. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Østergaard, D.E.; Bryce-Atkinson, A.; Skaarup, M.; Smulders, B.; Davies, L.S.C.; Whitfield, G.; Janssens, G.O.; Hjalgrim, L.L.; Richter, I.V.; van Herk, M.; et al. Paediatric CBCT protocols for image-guided radiotherapy; outcome of a survey across SIOP Europe affiliated countries and literature review. Radiother. Oncol. 2024, 190, 109963. [Google Scholar] [CrossRef] [PubMed]
- Indelicato, D.J.; Rotondo, R.L.; Uezono, H.; Sandler, E.S.; Aldana, P.R.; Ranalli, N.J.; Beier, A.D.; Morris, C.G.; Bradley, J.A. Outcomes Following Proton Therapy for Pediatric Low-Grade Glioma. Int. J. Radiat. Oncol. Biol. Phys. 2019, 104, 149–156. [Google Scholar] [CrossRef] [PubMed]
- Hall, M.D.; Bradley, J.A.; Rotondo, R.L.; Hanel, R.; Shah, C.; Morris, C.G.; Aldana, P.R.; Indelicato, D.J. Risk of Radiation Vasculopathy and Stroke in Pediatric Patients Treated With Proton Therapy for Brain and Skull Base Tumors. Int. J. Radiat. Oncol. Biol. Phys. 2018, 101, 854–859. [Google Scholar] [CrossRef] [PubMed]
- Bojaxhiu, B.; Ahlhelm, F.; Walser, M.; Placidi, L.; Kliebsch, U.; Mikroutsikos, L.; Morach, P.; Bolsi, A.; Lomax, T.; Pica, A.; et al. Radiation Necrosis and White Matter Lesions in Pediatric Patients with Brain Tumors Treated With Pencil Beam Scanning Proton Therapy. Int. J. Radiat. Oncol. Biol. Phys. 2018, 100, 987–996. [Google Scholar] [CrossRef] [PubMed]
- Indelicato, D.J.; Bradley, J.A.; Rotondo, R.L.; Nanda, R.H.; Logie, N.; Sandler, E.S.; Aldana, P.R.; Ranalli, N.J.; Beier, A.D.; Morris, C.G.; et al. Outcomes following proton therapy for pediatric ependymoma. Acta Oncol. 2018, 57, 644–648. [Google Scholar] [CrossRef]
- Gentile, M.S.; Yeap, B.Y.; Paganetti, H.; Goebel, C.P.; Gaudet, D.E.; Gallotto, S.L.; Weyman, E.A.; Morgan, M.L.; MacDonald, S.M.; Giantsoudi, D.; et al. Brainstem Injury in Pediatric Patients With Posterior Fossa Tumors Treated With Proton Beam Therapy and Associated Dosimetric Factors. Int. J. Radiat. Oncol. Biol. Phys. 2018, 100, 719–729. [Google Scholar] [CrossRef] [PubMed]
- Kralik, S.F.; Watson, G.A.; Shih, C.-S.; Ho, C.Y.; Finke, W.; Buchsbaum, J. Radiation-Induced Large Vessel Cerebral Vasculopathy in Pediatric Patients with Brain Tumors Treated with Proton Radiation Therapy. Int. J. Radiat. Oncol. Biol. Phys. 2017, 99, 817–824. [Google Scholar] [CrossRef]
- Indelicato, D.J.; Bradley, J.A.; Sandler, E.S.; Aldana, P.R.; Sapp, A.; Gains, J.E.; Crellin, A.; Rotondo, R.L. Clinical outcomes following proton therapy for children with central nervous system tumors referred overseas. Pediatric Blood Cancer 2017, 64, 644–648. [Google Scholar] [CrossRef] [PubMed]
- Greenfield, B.J.; Jaramillo, S.; Abboud, M.; Mahajan, A.; Paulino, A.C.; McGovern, S.; McAleer, M.F.; Chintagumpala, M.; Okcu, M.F.; Khatua, S.; et al. Outcomes for pediatric patients with central nervous system germ cell tumors treated with proton therapy. Clin. Transl. Radiat. Oncol. 2016, 1, 9–14. [Google Scholar] [CrossRef] [PubMed]
- Yock, T.I.; Yeap, B.Y.; Ebb, D.H.; Weyman, E.; Eaton, B.R.; Sherry, N.A.; Jones, R.M.; MacDonald, S.M.; Pulsifer, M.B.; Lavally, B.; et al. Long-term Toxic Effects of Proton Radiotherapy for Paediatric Medulloblastoma: A Phase 2 Single-Arm Study. Clin. Trial Lancet Oncol. 2016, 17, 287–298. [Google Scholar] [CrossRef] [PubMed]
- Kahalley, L.S.; Ris, M.D.; Grosshans, D.R.; Okcu, M.F.; Paulino, A.C.; Chintagumpala, M.; Moore, B.D.; Guffey, D.; Minard, C.G.; Stancel, H.H.; et al. Comparing Intelligence Quotient Change After Treatment with Proton Versus Photon Radiation Therapy for Pediatric Brain Tumors. J. Clin. Oncol. 2016, 34, 1043–1049. [Google Scholar] [CrossRef] [PubMed]
- Giantsoudi, D.; Sethi, R.V.; Yeap, B.Y.; Eaton, B.R.; Ebb, D.H.; Caruso, P.A.; Rapalino, O.; Chen, Y.L.E.; Adams, J.A.; Yock, T.I.; et al. Incidence of CNS Injury for a Cohort of 111 Patients Treated with Proton Therapy for Medulloblastoma: LET and RBE Associations for Areas of Injury. Int. J. Radiat. Oncol. Biol. Phys. 2016, 95, 287–296. [Google Scholar] [CrossRef] [PubMed]
- Kralik, S.F.; Ho, C.Y.; Finke, W.; Buchsbaum, J.C.; Haskins, C.P.; Shih, C.S. Radiation Necrosis in Pediatric Patients with Brain Tumors Treated with Proton Radiotherapy. AJNR Am. J. Neuroradiol. 2015, 36, 1572–1578. [Google Scholar] [CrossRef] [PubMed]
- McGovern, S.L.; Okcu, M.F.; Munsell, M.F.; Kumbalasseriyil, N.; Grosshans, D.R.; McAleer, M.F.; Chintagumpala, M.; Khatua, S.; Mahajan, A. Outcomes and acute toxicities of proton therapy for pediatric atypical teratoid/rhabdoid tumor of the central nervous system. Int. J. Radiat. Oncol. Biol. Phys. 2014, 90, 1143–1152. [Google Scholar] [CrossRef] [PubMed]
- Indelicato, D.J.; Flampouri, S.; Rotondo, R.L.; Bradley, J.A.; Morris, C.G.; Aldana, P.R.; Sandler, E.; Mendenhall, N.P. Incidence and dosimetric parameters of pediatric brainstem toxicity following proton therapy. Acta Oncol. 2014, 53, 1298–1304. [Google Scholar] [CrossRef]
- Greenberger, B.A.; Pulsifer, M.B.; Ebb, D.H.; MacDonald, S.M.; Jones, R.M.; Butler, W.E.; Huang, M.S.; Marcus, K.J.; Oberg, J.A.; Tarbell, N.J.; et al. Clinical outcomes and late endocrine, neurocognitive, and visual profiles of proton radiation for pediatric low-grade gliomas. Int. J. Radiat. Oncol. Biol. Phys. 2014, 89, 1060–1068. [Google Scholar] [CrossRef]
- MacDonald, S.M.; Sethi, R.; Lavally, B.; Yeap, B.Y.; Marcus, K.J.; Caruso, P.; Pulsifer, M.; Huang, M.; Ebb, D.; Tarbell, N.J.; et al. Proton radiotherapy for pediatric central nervous system ependymoma: Clinical outcomes for 70 patients. Neuro Oncol. 2013, 15, 1552–1559. [Google Scholar] [CrossRef] [PubMed]
- Moeller, B.J.; Chintagumpala, M.; Philip, J.J.; Grosshans, D.R.; McAleer, M.F.; Woo, S.Y.; Gidley, P.W.; Vats, T.S.; Mahajan, A. Low early ototoxicity rates for pediatric medulloblastoma patients treated with proton radiotherapy. Radiat. Oncol. 2011, 6, 58. [Google Scholar] [CrossRef]
- Viswanathan, V.; Pradhan, K.R.; Eugster, E.A. Pituitary hormone dysfunction after proton beam radiation therapy in children with brain tumors. Endocr. Pract. 2011, 17, 891–896. [Google Scholar] [CrossRef] [PubMed]
- Hug, E.B.; Muenter, M.W.; Archambeau, J.O.; DeVries, A.; Liwnicz, B.; Loredo, L.N.; Grove, R.I.; Slater, J.D. Conformal proton radiation therapy for pediatric low-grade astrocytomas. Strahlenther. Onkol. 2002, 178, 10–17. [Google Scholar] [CrossRef] [PubMed]
- Dong, P.; Lee, P.; Ruan, D.; Long, T.; Romeijn, E.; Low, D.A.; Kupelian, P.; Abraham, J.; Yang, Y.; Sheng, K. 4π noncoplanar stereotactic body radiation therapy for centrally located or larger lung tumors. Int. J. Radiat. Oncol. Biol. Phys. 2013, 86, 407–413. [Google Scholar] [CrossRef]
- Dong, P.; Lee, P.; Ruan, D.; Long, T.; Romeijn, E.; Yang, Y.; Low, D.; Sheng, K. 4π non-coplanar liver SBRT: A novel delivery technique. Int. J. Radiat. Oncol. Biol. Phys. 2013, 85, 1360–1366. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, D.; Rwigema, J.C.; Yu, V.Y.; Kaprealian, T.; Kupelian, P.; Selch, M.; Lee, P.; Low, D.A.; Sheng, K. Feasibility of extreme dose escalation for glioblastoma multiforme using 4π radiotherapy. Radiat. Oncol. 2014, 9, 239. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, D.; Dong, P.; Long, T.; Ruan, D.; Low, D.A.; Romeijn, E.; Sheng, K. Integral dose investigation of non-coplanar treatment beam geometries in radiotherapy. Med. Phys. 2014, 41, 011905. [Google Scholar] [CrossRef] [PubMed]
- Dong, P.; Nguyen, D.; Ruan, D.; King, C.; Long, T.; Romeijn, E.; Low, D.A.; Kupelian, P.; Steinberg, M.; Yang, Y.; et al. Feasibility of prostate robotic radiation therapy on conventional C-arm linacs. Pract. Radiat. Oncol. 2014, 4, 254–260. [Google Scholar] [CrossRef]
- Rwigema, J.C.; Nguyen, D.; Heron, D.E.; Chen, A.M.; Lee, P.; Wang, P.C.; Vargo, J.A.; Low, D.A.; Huq, M.S.; Tenn, S.; et al. 4π noncoplanar stereotactic body radiation therapy for head-and-neck cancer: Potential to improve tumor control and late toxicity. Int. J. Radiat. Oncol. Biol. Phys. 2015, 91, 401–409. [Google Scholar] [CrossRef]
- Woods, K.; Nguyen, D.; Tran, A.; Yu, V.Y.; Cao, M.; Niu, T.; Lee, P.; Sheng, K. Viability of Non-Coplanar VMAT for Liver SBRT as Compared to Coplanar VMAT and Beam Orientation Optimized 4π IMRT. Adv. Radiat. Oncol. 2016, 1, 67–75. [Google Scholar] [CrossRef]
- Tran, A.; Zhang, J.; Woods, K.; Yu, V.; Nguyen, D.; Gustafson, G.; Rosen, L.; Sheng, K. Treatment planning comparison of IMPT, VMAT, and 4π radiotherapy for prostate cases. Radiat. Oncol. 2017, 12, 10. [Google Scholar] [CrossRef]
- Chen, T.W.; Sison, J.; Lee, B.; Olch, A.J.; Chang, A.; Giebeler, A.; Wong, K. A Dosimetric Comparison of Intensity-Modulated Proton Therapy, Volumetric-Modulated Arc Therapy, and 4π Non-Coplanar Intensity-Modulated Radiation Therapy for a Patient with Parameningeal Rhabdomyosarcoma. Cureus 2017, 9, e1673. [Google Scholar] [CrossRef] [PubMed]
- Subramanian, V.S.; Subramani, V.; Chilukuri, S.; Kathirvel, M.; Arun, G.; Swamy, S.T.; Subramanian, K.; Fogliata, A.; Cozzi, L. Multi-isocentric 4π volumetric-modulated arc therapy approach for head and neck cancer. J. Appl. Clin. Med. Phys. 2017, 18, 293–300. [Google Scholar] [CrossRef]
- Yu, V.Y.; Landers, A.; Woods, K.; Nguyen, D.; Cao, M.; Du, D.; Chin, R.K.; Sheng, K.; Kaprealian, T.B. A Prospective 4π Radiation Therapy Clinical Study in Recurrent High-Grade Glioma Patients. Int. J. Radiat. Oncol. Biol. Phys. 2018, 101, 144–151. [Google Scholar] [CrossRef] [PubMed]
- Woods, K.; Nguyen, D.; Tran, A.; Yu, V.Y.; Cao, M.; Ruan, D.; Sheng, K. Cochlea-sparing acoustic neuroma treatment with 4π radiation therapy. Adv. Radiat. Oncol. 2018, 3, 543–552. [Google Scholar] [CrossRef] [PubMed]
- Lyu, Q.; Yu, V.Y.; Ruan, D.; Neph, R.; O’Connor, D.; Sheng, K. A novel optimization framework for VMAT with dynamic gantry couch rotation. Phys. Med. Biol. 2018, 63, 125013. [Google Scholar] [CrossRef] [PubMed]
- Sarkar, B.; Ganesh, T.; Munshi, A.; Manikandan, A.; Mohanti, B.K. 4π radiotherapy using a linear accelerator: A misnomer in violation of the solid geometric boundary conditions in three-dimensional Euclidean space. J. Med. Phys. 2019, 44, 283–286. [Google Scholar] [CrossRef] [PubMed]
- Landers, A.; O’Connor, D.; Ruan, D.; Sheng, K. Automated 4π radiotherapy treatment planning with evolving knowledge-base. Med. Phys. 2019, 46, 3833–3843. [Google Scholar] [CrossRef] [PubMed]
- MacDonald, R.L.; Syme, A.; Little, B.; Ward, L.; Thomas, C.G. Toward the combined optimization of dynamic axes (CODA) for stereotactic radiotherapy and radiosurgery using fixed couch trajectories. Med. Phys. 2020, 47, 307–316. [Google Scholar] [CrossRef]
- QM Reis, C.; Little, B.; Lee MacDonald, R.; Syme, A.; Thomas, C.G.; Robar, J.L. SBRT of ventricular tachycardia using 4pi optimized trajectories. J. Appl. Clin. Med. Phys. 2021, 22, 72–86. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ma, M.; Ren, W.; Li, M.; Niu, C.; Dai, J. Dosimetric comparison of coplanar and noncoplanar beam arrangements for radiotherapy of patients with lung cancer: A meta-analysis. J. Appl. Clin. Med. Phys. 2021, 22, 34–43. [Google Scholar] [CrossRef]
- Rossi, L.; Cambraia Lopes, P.; Marques Leitão, J.; Janus, C.; van de Pol, M.; Breedveld, S.; Penninkhof, J.; Heijmen, B.J.M. On the Importance of Individualized, Non-Coplanar Beam Configurations in Mediastinal Lymphoma Radiotherapy, Optimized With Automated Planning. Front. Oncol. 2021, 11, 619929. [Google Scholar] [CrossRef]
- Lohkamp, L.N.; Grün, A.; Dengler, J.; Vajkoczy, P.; Budach, V.; Kufeld, M. Pediatric CyberKnife© Registry Study Group. The rationale and development of a CyberKnife© registry for pediatric patients with CNS lesions. Childs Nerv. Syst. 2021, 37, 871–878. [Google Scholar] [CrossRef]
Authors/ Publication | Background/Aim Year | Material and Methods | Results | Conclusion |
---|---|---|---|---|
Harada et al./2000 [9] | To report a rare pediatric case of acoustic schwannoma with high proliferative potential. | Case study of a 10-year-old boy treated with subtotal resections and CyberKnife radiosurgery. | Rapid regrowth of the lesion, with immunohistochemical MIB-1 indices increasing from 2.3% to 14.7%. | Discussed proliferative potential of acoustic schwannoma. CyberKnife aided management. |
Deguchi et al./2002 [10] | To present CyberKnife treatment of a 12-year-old boy with Juvenile Nasopharyngeal Angiofibroma. | Case report of CyberKnife therapy (3 treatments, 4512 cGy) after failure of external-beam radiation therapy. | Almost complete tumor disappearance after 7 months, no recurrence after 2 years. | CyberKnife is effective for Juvenile Nasopharyngeal Angiofibroma, offering an alternative to surgical and other radiotherapies. |
Giller et al./2005 [11] | To report experience with CyberKnife in pediatric CNS tumors to avoid cognitive decline associated with other therapies. | 21 children aged 8 months to 16 years underwent 38 CyberKnife treatments. Tumor types varied. | Local control achieved in pilocytic and anaplastic astrocytomas, some medulloblastomas, and craniopharyngiomas. | CyberKnife offers precise treatment for unresectable pediatric CNS tumors with no major complications. |
Peugniez et al./2010 [12] | To assess the feasibility and tolerance of CyberKnife in children using conventional fractionation. | Report of 5 pediatric cases (ages 8–10) with recurrent brain tumors (optic pathway gliomas, pineal germinoma, Ewing sarcoma, and metastatic medulloblastoma) treated with CyberKnife. | Median treatment was 36.36 Gy over 20 sessions (31 days). No sedation or interruptions were required, and acute toxicity was minimal (grade 1). | Follow-up showed excellent tolerability with no severe toxicities. CyberKnife was a feasible and well-tolerated option for treating pediatric recurrences post-chemotherapy and prior radiation. |
Li et al./2012 [13] | To report intracranial clear cell meningioma in two children and discuss the role of CyberKnife. | Two cases with clear cell meningioma, one receiving subtotal resection followed by CyberKnife. | Residual tumor shrank gradually post-CyberKnife in one case. | CyberKnife is a safe, effective adjuvant for clear cell meningioma, with NF2 gene mutation implicated in tumorigenesis. |
Uslu et al./2013 [14] | To report CyberKnife use in optic nerve glioma treatment. | An 11-year-old girl with optic nerve glioma treated with CyberKnife fractionated stereotactic radiotherapy. | Marked tumor regression with no severe treatment-related toxicity after 1.5 years. | Supports further studies of CyberKnife for childhood optic nerve gliomas. |
Gatz et al./2015 [15] | To report CyberKnife use in a multiply relapsed case of ameloblastic fibro- odontosarcoma. | 15-year-old female treated with stereotactic CyberKnife reirradiation post-chemotherapy. | Complete remission maintained for 14 months post-reirradiation. Suspected bone necrosis. | CyberKnife combined with chemotherapy is effective in advanced ameloblastic fibro-odontosarcoma. |
Nishimoto et al./2018 [16] | To report CyberKnife use in a malignant rhabdoid tumor the craniovertebral junction. | A 3-year-old boy treated with subtotal resection, CyberKnife radiotherapy, and chemotherapy. | Survived 29 months with local control but died of metastases. | CyberKnife is useful for local control in malignant rhabdoid tumor but requires multimodal treatment. |
Mejías et al./2022 [17] | To report CyberKnife treatment of large brain metastases from Ewing’s sarcoma. | 9-year-old boy treated with CyberKnife in two stages for brain metastases. | Complete resolution of lesions and good cognitive outcomes after 20 months. | Supports CyberKnife for large metastatic lesions in pediatric patients. |
Fadel et al./2019 [18] | To review CyberKnife use in oculomotor nerve schwannomas. | Systematic review and two pediatric cases treated with fractionated CyberKnife radiotherapy. | Tumor control achieved without new deficits over 56–58 months. | CyberKnife is effective and well-tolerated for pediatric oculomotor schwannomas. |
Mohamad et al./2020 [19] | To compare fractionated CyberKnife with IMRT in pediatric brain tumors. | 52 pediatric cases treated with CyberKnife. Dosimetry compared with IMRT. | CyberKnife reduced normal tissue radiation volumes without compromising local control (3-year local tumor control: 92%). | Fractionated CyberKnife reduces irradiated tissue volume; results warrant prospective validation. |
Paddick et al./2021 [20] | To measure extracranial doses and model malignancy risks from different SRS platforms. | Measured doses from Gamma Knife, linacs, and CyberKnife, modeling lifetime malignancy risks. | CyberKnife had highest extracranial dose and malignancy risk (2.2–39%). | Malignancy risk varies by platform; therapeutic reference levels proposed. |
Yoo et al./2024 [21] | To evaluate CyberKnife for recurrent cranial medulloblastomas in pediatric and adult populations. | Retrospective review of 15 medulloblastomas in 10 patients treated with CyberKnife. | 3-year local control: 65%, overall survival: 70%, progression-free survival: 58%. Better outcomes in pediatric patients. | CyberKnife is safe and effective, requiring tailored approaches for recurrence management. |
Aspect | Image-Guided Radiotherapy (IGRT) | Proton Therapy | Intensity-Modulated Proton Therapy (IMPT) | Gamma Knife | CyberKnife |
---|---|---|---|---|---|
Precision | Moderate (depends on imaging quality) | High (Bragg peak) | Very high (modulates intensity for optimized dose distribution) | Very high (designed for intracranial and small lesions) | Very high (real-time tracking |
Impact on Surrounding Tissue | Moderate to high (depends on technique) | Minimal | Minimal (improved dose sculpting over standard proton therapy) | Minimal (steep dose fall-off within the cranium) | Minimal to moderate (CyberKnife offers very high precision with real-time tracking, reducing exposure to surrounding tissue. However, some low-dose scatter may occur, particularly for certain tumor locations.) |
Treatment Duration | Weeks (fractionated) | Weeks (fractionated) | Weeks (fractionated) | Single session or a few sessions | 1–5 sessions |
Availability | Widely available | Limited | Very limited (requires specialized facilities and expertise) | Limited (dedicated for specific indications) | Quite available (depending on country) |
Cost | Less expensive | Expensive | Very expensive (advanced technology required) | Expensive | Expensive (less expensive than proton therapy and IMPT, it is costlier than traditional image-guided radiotherapy). |
Indication for Pediatric Use | Effective but higher exposure to non-target tissue | Excellent for minimizing long-term effects | Superior for highly complex or irregular tumors in sensitive areas | Excellent for intracranial tumors and small, well-defined lesions | Effective for irregular or moving tumors and situations requiring precision, No evidence suggesting higher risk of side effects compared to other high-precision modalities. The risk profile largely depends on tumor location and radiation dose. |
Suitability for Large Tumors | Effective | Effective | Effective for both small and large tumors with complex geometries | Less suitable | Less suitable |
Real-time Tumor Tracking | Limited (may include adaptive strategies) | Limited | Limited, but advanced planning compensates for movement | No | Yes |
Special Applications | Broad use for various cancers | Tumors near critical structures | Complex, irregularly shaped tumors near critical structures | Small intracranial tumors | Irregular, small, or moving tumors |
Dose Bath (Low-Dose Irradiation of Large Volumes) | High (large irradiated volumes due to less conformality) | Minimal (sharp fall-off with Bragg peak) | Minimal (improved dose sculpting reduces dose bath) | Minimal (confined to cranium) | High to moderate (low-dose scatter) |
Sedation Requirement | Rarely needed (older children may remain still with immobilization devices) | Sometimes required for younger children due to long sessions | Often required for younger children due to precision and immobilization needs | Rarely needed (short treatment sessions) | Frequently required for younger children to ensure motion control during long-precise sessions |
Grade of Evidence (Pediatrics) | High (extensive publications and clinical use in pediatrics) | High (extensive clinical evidence and recognized as pediatric-friendly) | Moderate to High (limited availability but growing evidence) | Moderate to High (well-documented for specific intracranial cases) | Low to moderate (well-documented, but pediatric-specific studies are fewer) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Donati, C.M.; Medici, F.; Zamfir, A.A.; Galietta, E.; Cammelli, S.; Buwenge, M.; Masetti, R.; Prete, A.; Strigari, L.; Forlani, L.; et al. CyberKnife in Pediatric Oncology: A Narrative Review of Treatment Approaches and Outcomes. Curr. Oncol. 2025, 32, 76. https://doi.org/10.3390/curroncol32020076
Donati CM, Medici F, Zamfir AA, Galietta E, Cammelli S, Buwenge M, Masetti R, Prete A, Strigari L, Forlani L, et al. CyberKnife in Pediatric Oncology: A Narrative Review of Treatment Approaches and Outcomes. Current Oncology. 2025; 32(2):76. https://doi.org/10.3390/curroncol32020076
Chicago/Turabian StyleDonati, Costanza M., Federica Medici, Arina A. Zamfir, Erika Galietta, Silvia Cammelli, Milly Buwenge, Riccardo Masetti, Arcangelo Prete, Lidia Strigari, Ludovica Forlani, and et al. 2025. "CyberKnife in Pediatric Oncology: A Narrative Review of Treatment Approaches and Outcomes" Current Oncology 32, no. 2: 76. https://doi.org/10.3390/curroncol32020076
APA StyleDonati, C. M., Medici, F., Zamfir, A. A., Galietta, E., Cammelli, S., Buwenge, M., Masetti, R., Prete, A., Strigari, L., Forlani, L., D’Angelo, E., & Morganti, A. G. (2025). CyberKnife in Pediatric Oncology: A Narrative Review of Treatment Approaches and Outcomes. Current Oncology, 32(2), 76. https://doi.org/10.3390/curroncol32020076