Biochar and Biomass Ash as a Soil Ameliorant: The Effect on Selected Soil Properties and Yield of Giant Miscanthus (Miscanthus x giganteus)
Abstract
:1. Introduction
2. Results
2.1. Names of Tests
- ▪
- B1/P1 (control test—no fertiliser),
- ▪
- P2 (fertilised with ash at a dose of 1.5 t ha−1),
- ▪
- P3 (fertilised with ash at a dose of 3.0 t ha−1),
- ▪
- P4 (fertilised with ash at a dose of 4.5 t ha−1),
- ▪
- B2/P1 (fertilised with biochar at a dose of 11.5 t ha−1),
- ▪
- B2/P2 (fertilised with biochar and ash at doses of 11.5 and 1.5 t ha−1, respectively),
- ▪
- B2/P3 (fertilised with biochar and ash at doses of 11.5 and 3.0 t ha−1, respectively),
- ▪
- B2/P4 (fertilised with biochar and ash at doses of 11.5 and 4.5 t ha−1, respectively).
2.2. Biochar and Biomass Ash
2.3. Soil
2.4. Biomass of Giant Miscanthus
3. Discussion
4. Materials and Methods
4.1. Site Description
4.2. Experimental Design
4.3. Fertiliser Material
4.4. Biomass Production
4.5. Examination of Samples
4.6. Statistical Analyses
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Kumar, P.; Barret, D.M.; Delwiche, M.J.; Stroeve, P. Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Ind. Eng. Chem. Res. 2009, 48, 3713–3729. [Google Scholar] [CrossRef]
- Tripathi, M.; Sahu, J.N.; Ganesan, P. Effect of process parameters on production of biochar from biomass waste through pyrolysis: A review. Renew. Sustain. Energy Rev. 2016, 55, 467–481. [Google Scholar] [CrossRef]
- Kalembasa, D. Amount and chemical composition of ash from biomass of energy crops. Acta Agrophys. 2006, 7, 909–914. [Google Scholar]
- Pels, J.R.; Nie, D.S.; Kiel, J.H.A. Utilization of ashes from biomass combustion and gasification. In Proceedings of the 14th European Biomass Conference & Exhibition, Paris, France, 17–21 October 2005. [Google Scholar]
- Medyńska-Juraszek, A. Biochar as an addition to soils. Soil Sci. Annu. 2016, 67, 151–157. [Google Scholar] [CrossRef]
- Laird, D.; Fleming, P.; Davis, D.; Horton, R.; Wang, B.; Karlen, D. Impact of biochar amendments on the quality of a typical Midwestern agricultural soil. Geoderma 2010, 158, 443–449. [Google Scholar] [CrossRef] [Green Version]
- Macdonald, L.; Farrell, M.; Van Zwieten, L.; Krull, E. Plant growth responses to biochar addition: An Australian soils perspective. Biol. Fertil. Soils 2014, 50, 1035–1045. [Google Scholar] [CrossRef]
- Beesley, L.; Moreno-Jiménez, E.; Gomez-Eyles, J.; Harris, E.; Robinson, B.; Sizmur, T. A review of biochars’ potential role in the remediation, revegetation and restoration of contaminated soils. Environ. Pollut. 2011, 159, 3269–3282. [Google Scholar] [CrossRef] [PubMed]
- Cross, A.; Sohi, S. The priming potential of biochar products in relation to labile carbon contents and soil organic matter status. Soil Biol. Biochem. 2011, 43, 2127–2134. [Google Scholar] [CrossRef]
- Zhang, Q.; Du, Z.; Lou, Y.; He, X. A one-year short-term biochar application improved carbon accumulation in large macro aggregate fractions. Catena 2015, 127, 26–31. [Google Scholar] [CrossRef]
- Lehmann, J.; Rilling, M.C.; Thies, J.; Masiello, C.A.; Hockaday, W.C.; Crowley, D. Biochar effects on soil biota—A review. Soil Biol. Biochem. 2011, 43, 1812–1836. [Google Scholar] [CrossRef]
- Laird, D.A. The charcoal vision: A win-win-win scenario for simultaneously producing bioenergy, permanently sequestering carbon, while improving soil and water quality. Agron. J. 2008, 100, 178–181. [Google Scholar] [CrossRef]
- Chan, K.Y.; Van Zwieten, L.; Meszaros, I.; Downie, A.; Joseph, S. Agronomic values of green waste biochar as a soil amendment. Aust. J. Soil Res. 2007, 45, 629–634. [Google Scholar] [CrossRef]
- Woolf, D.; Amonette, J.E.; Street-Perrott, F.A.; Lehmann, J.; Joseph, S. Sustainable biochar to mitigate global climate change. Nat. Commun. 2010, 1, 56. [Google Scholar] [CrossRef] [PubMed]
- Yuan, J.; Xu, R.; Zhang, H. The forms of alkalis in the biochar produced from crop residues at different temperatures. Bioresour. Technol. 2011, 102, 3488–3497. [Google Scholar] [CrossRef] [PubMed]
- Novak, J.M.; Busscher, W.J.; Laird, D.L.; Ahmedna, M.; Watts, D.W.; Niandou, M.A.S. Impact of biochar amendment on fertility of a Southeastern coastal plain soil. Soil Sci. 2009, 174, 105–112. [Google Scholar] [CrossRef]
- Zong, Y.; Xiao, Q.; Lu, S. Acidity, water retention, and mechanical physical quality of a strongly acidic Ultisol amended with biochars derived from different feedstocks. J. Soil Sediment 2006, 16, 177–190. [Google Scholar] [CrossRef]
- Jien, S.; Wang, C. Effects of biochar on soil properties and erosion potential in a highly weathered soil. Catena 2014, 110, 225–233. [Google Scholar] [CrossRef]
- Agegnehu, G.; Bass, A.; Nelson, P.; Bird, M. Benefits of biochar, compost and biochar-compost for soil quality, maize yield and greenhouse gas emissions in a tropical agricultural soil. Sci. Total Environ. 2016, 543, 295–306. [Google Scholar] [CrossRef] [PubMed]
- Das, O.; Sarmah, A. The love-hate relationship of pyrolysis biochar and water: A perspective. Sci. Total Environ. 2015, 512/513, 682–685. [Google Scholar] [CrossRef] [PubMed]
- Cayuela, M.; Van Zwieten, L.; Singh, B.; Jeffery, S.; Roig, A.; Sanchez-Monedero, M.A. Biochar’s role in mitigating soil nitrous oxide emissions: A review and meta-analysis. Agric. Ecosyst. Environ. 2014, 191, 5–16. [Google Scholar] [CrossRef]
- Cadoux, S.; Riche, A.B.; Yates, N.E.; Machet, J.M. Nutrient requirements of Miscanthus x giganteus: Conclusions from a review of published studies. Biomass Bioenergy 2012, 38, 14–22. [Google Scholar] [CrossRef]
- Lewandowski, I.; Scurlock, J.M.O.; Lindvall, E.; Christou, M. The development and current status of perennial rhizomatous grasses as energy crops in the US and Europe. Biomass Bioenergy 2003, 25, 335–361. [Google Scholar] [CrossRef]
- Landrat, M.; Waluda, T. Possibilities of fertilizer using of rabbit manure. Arch. Waste Manag. Environ. Prot. 2016, 18, 25–32. [Google Scholar]
- Piekarczyk, M. Content of absorbable forms of some macro- and microelements in light soil fertilized with ash from winter wheat straw. Fragm. Agron. 2013, 30, 92–98. [Google Scholar]
- Butnan, S.; Deenik, J.L.; Toomsan, B.; Antal, M.J.; Vityakon, P. Biochar characteristics and application rates affecting corn growth and properties of soils contrasting in texture and mineralogy. Geoderma 2015, 237, 105–116. [Google Scholar] [CrossRef]
- Case, S.D.C.; McNamara, N.P.; Reay, D.S.; Whitaker, J. The effect of biochar addition on N2O and CO2 emissions from a sandy loam soil—The role of soil aeration. Soil Biol. Biochem. 2012, 51, 125–134. [Google Scholar] [CrossRef]
- Lai, W.Y.; Lai, C.M.; Ke, G.R.; Chung, R.S.; Chen, C.T.; Cheng, C.H.; Pai, C.W.; Chen, S.Y.; Chen, C. The effects of woodchip biochar application on crop yield, carbon sequestration and greenhouse gas emissions from soils planted with rice or leaf beet. J. Taiwan Inst. Chem. Eng. 2013, 44, 1039–1044. [Google Scholar] [CrossRef]
- Nigussie, A.; Kissi, E.; Misganaw, M.; Ambaw, G. Effect of biochar application on soil properties and nutrient uptake of lettuces (Lactuca sativa) grown in chromium polluted soils. Am.-Eurasian. J. Agric. Environ. Sci. 2012, 12, 369–376. [Google Scholar]
- Park, B.B.; Yanai, R.D.; Sahm, J.M.; Lee, D.K.; Abrahamson, L.P. Wood ash effects on plant and soil in a willow bioenergy plantation. Biomass Bioenergy 2005, 28, 355–365. [Google Scholar] [CrossRef]
- Turner, B.L.; Frossard, E.; Oberson, A. Biological Approaches to Sustainable Soil Systems; Enhancing phosphorus availability in low-fertility soils; Taylor & Francis: Abingdon, UK, 2006; pp. 191–205. [Google Scholar]
- Chintala, R.; Schumacher, T.; McDonald, L.; Clay, D.; Malo, D.; Papiernik, S.; Clay, S.; Julson, J. Phosphorus sorption and availability from biochars and soil/biochar mixtures. Clean-Soil Air Water 2014, 42, 626–634. [Google Scholar] [CrossRef]
- Oram, N.; van de Voorde, T.; Ouwehand, G.; Bezemer, T.; Mommer, L.; Jeffery, S.; van Groenigen, J. Soil amendment with biochar increases the competitive ability of legumes via increased potassium availability. Agric. Ecosyst. Environ. 2014, 191, 92–98. [Google Scholar] [CrossRef] [Green Version]
- Widowati, W.; Asnah, A. Biochar can enhance potassium fertilization efficiency and economic feasibility of maize cultivation. J. Agric. Sci. 2014, 6, 24–32. [Google Scholar] [CrossRef]
- Liu, Y.; Lu, H.; Yang, S.; Wang, Y. Impacts of biochar addition on rice yield and soil properties in a cold waterlogged paddy for two crop seasons. Field Crops Res. 2016, 191, 161–167. [Google Scholar] [CrossRef]
- James, A.K.; Thring, R.W.; Helle, S.; Ghuman, H.S. Ash management review—Applications of biomass bottom ash. Energies 2012, 5, 3856–3873. [Google Scholar] [CrossRef]
- Bakisgan, C.; Dumanli, A.G.; Yürüm, Y. Trace elements in Turkish biomass fuels: Ashes of wheat straw, olive bagasse and hazelnut shell. Fuel 2009, 88, 1842–1851. [Google Scholar] [CrossRef] [Green Version]
- Klavina, D.; Pennanen, T.; Gaitnieks, T.; Velmala, S.; Lazdins, A.; Lazdina, D.; Menkis, A. The ectomycorrhizal community of conifer stands on peat soils 12 years after fertilization with wood ash. Mycorrhiza 2016, 26, 153–160. [Google Scholar] [CrossRef] [PubMed]
- Doan, T.T.; Henry-des-Tureaux, T.; Rumpel, C.; Janeau, J.L.; Jouquet, P. Impact of compost, vermicompost and biochar on soil fertility, maize yield and soil erosion in northern Vietnam: A three-year mesocosm experiment. Sci. Total Environ. 2015, 514, 147–154. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, S.; Ow, L.F.; Wilson, B. Influence of biochar and compost on soil properties and tree growth in a tropical urban environment. Int. J. Environ. Sci. Technol. 2015, 12, 1303–1310. [Google Scholar] [CrossRef]
- Spokas, K.A.; Cantrell, K.B.; Novak, J.M.; Archer, D.A.; Ippolito, J.A.; Collins, H.P.; Boateng, A.A.; Lima, I.M.; Lamb, M.C.; McAloon, A.J.; et al. Biochar: A synthesis of its agronomic impact beyond carbon sequestration. J. Environ. Qual. 2012, 41, 973–989. [Google Scholar] [CrossRef] [PubMed]
- Kuzyakov, Y.; Subbotina, I.; Chen, H.; Bogomolova, I.; Xu, X. Black carbon decomposition and incorporation into soil microbial biomass estimated by 14C labeling. Soil Biol. Biochem. 2009, 41, 210–219. [Google Scholar] [CrossRef]
- Liu, Z.; Chen, X.; Jing, Y.; Li, Q.; Zhang, J.; Huang, Q. Effects of biochar amendment on rapeseed and sweet potato yields and water stable aggregate in upland red soil. Catena 2014, 123, 45–51. [Google Scholar] [CrossRef]
- Puga, A.P.; Abreu, C.A.; Melo, L.C.A.; Paz-Ferreiro, J.; Beesley, L. Cadmium, lead and zinc mobility and plant uptake in a mine soil amended with sugarcane straw biochar. Environ. Sci. Pollut. Res. 2015, 22, 17606–17614. [Google Scholar] [CrossRef] [PubMed]
- Bielińska, E.J.; Baran, S.; Stankowski, S. Assessment of the suitability of fluidized ashes from hard coal for agricultural purposes. Agric. Eng. 2009, 6, 7–13. [Google Scholar]
- Szczukowski, S.; Stolarski, M.; Tworkowski, J. Yielf of willow biomass manufactured with the eco-salix system. Fragm. Agron. 2011, 28, 104–115. [Google Scholar]
- Kwaśniewski, D. Energy efficiency of biomass production from the annual willow. Agric. Eng. 2010, 1, 289–295. [Google Scholar]
- Szczukowski, S.; Stolarski, M.; Tworkowski, J.; Rutkowski, P.; Goliński, P.; Mleczek, M.; Szentner, K. Yield and quality of biomass of selected willow species in the four-year harvest rotation. Fragm. Agron. 2014, 31, 107–114. [Google Scholar]
- Jeżowski, S.; Głowacka, K.; Kaczmarek, Z.; Szczukowski, S. Field traits of eight common osier clones in the first three years following planting in Poland. Biomass Bioenergy 2011, 35, 1205–1210. [Google Scholar]
- Kobyliński, A.; Olszewska, M. Energy efficiency of biomass production Miscanthus giganteus. Grassl. Sci. Pol. 2013, 16, 19–28. [Google Scholar]
- Puchalski, C.; Zapałowska, A.; Hury, G. The impact of sewage sludge and biomass ash fertilization on the yield, including biometric features and physiological parameters of plants of two jerusalem artichoke (Helianthus tuberosus L.) cultivars. Folia Pomer. Univ. Technol. Stetin. Agric. Aliment Pisc. Zootech. 2017, 332, 37–52. [Google Scholar]
- Boehmel, C.; Claupein, W. Contribution to bioenergy production by different annual and perennial cropping systems. In Proceedings of the 15th European Biomass Conference, Berlin, Germany, 7–11 May 2007. [Google Scholar]
- Christou, M.; Mardikis, M.; Alexopoulou, E. Research on the effect of irrigation and nitrogen upon growth and yields of Arundo donax L. in Greece. Asp. Appl. Biol. 2001, 65, 47–55. [Google Scholar]
- Danalatos, N.; Archontoulis, S.; Mitsios, I. Potential growth and biomass productivity of Miscanthus x giganteus as affected by plant density and N–fertilization in central Greece. Biomass Bioenergy 2007, 31, 31–152. [Google Scholar] [CrossRef]
- Smith, R.; Slater, F.M. The effects of organic and inorganic fertilizer applications to Miscanthus x giganteus, Arundo donax and Phalaris arundinacea, when grown as energy crops in Wales, UK. GCB. Bioenergy 2010, 2, 169–179. [Google Scholar] [CrossRef]
- Chan, K.Y.; Van Zwieten, L.; Meszaros, I.; Downie, A.; Joseph, S. Using poultry litter biochars as soil amendments. Aust. J. Soil Res. 2008, 46, 437–444. [Google Scholar] [CrossRef]
- Glaser, B.; Lehmann, J.; Zech, W. Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal—Review. Biol. Fertil Soils 2002, 35, 1719–1730. [Google Scholar] [CrossRef]
- Uzoma, K.C.; Inoue, M.; Andry, H.; Fujimaki, H.; Zahoor, A.; Nishihara, E. Effect of cow manure biochar on maize productivity under sandy soil condition. Soil Use Manag. 2011, 27, 205–212. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, A.; Ji, C.; Joseph, S.; Bian, R.; Li, L.; Pan, G.; Paz-Ferreiro, J. Biochar’s effect on crop productivity and the dependence on experimental conditions—A meta-analysis of literature data. Plant Soil 2013, 373, 583–594. [Google Scholar] [CrossRef]
- Hossain, M.K.; Strezov, V.; Chan, K.Y.; Nelson, P.F. Agronomic properties of wastewater sludge biochar and bioavailability of metals in production of cherry tomato (Lycopersicon esculentum). Chemosphere 2010, 78, 1167–1171. [Google Scholar] [CrossRef] [PubMed]
- Lehmann, J.; Gaunt, J.; Rondon, M. Biochar sequestration in terrestrial ecosystems—A review. Mitig. Adapt. Strateg. Glob. Chang. 2006, 11, 395–419. [Google Scholar] [CrossRef]
- Gao, S.; DeLuca, T.H. Influence of biochar on soil nutrient transformations, nutrient leaching and crop yield. Adv. Plants Agric. Res. 2016, 4, 00150. [Google Scholar]
- Klašnja, B.; Orlović, S.; Galić, Z. Comparison of different wood species as raw materials for bioenergy. South-East Eur. For. 2013, 4, 81–88. [Google Scholar] [CrossRef]
- Kołodziej, B.; Antonkiewicz, J.; Sugier, D. Miscanthus x giganteus as a biomass feedstock grown on municipal sewage sludge. Ind. Crops Prod. 2016, 81, 72–82. [Google Scholar] [CrossRef]
- Szyszlak-Bargłowicz, J.; Zając, G.; Piekarski, W. Energy biomass characteristics of chosen plants. Int. Agrophys. 2012, 26, 175–179. [Google Scholar] [CrossRef] [Green Version]
- Borkowska, H.; Lipiński, W. Content of selected elements in biomass of several species of energy crops. Acta Agrophys. 2007, 10, 287–292. [Google Scholar]
- Szyszlak-Bargłowicz, J. Content of chosen macroelements in biomass of Virginia mallow (Sida hermaphrodita Rusby). J. Cent. Eur. Agric. 2014, 15, 263–271. [Google Scholar] [CrossRef]
- Kalembasa, D.; Malinowska, E. Follow-up activities of sewage sludge applied to the soil in the pot experiment on the content of heavy metals in grass Miscanthus sacchariflorus. Acta Agrophys. 2009, 13, 377–384. [Google Scholar]
- Kalembasa, S.; Wysokiński, A.; Cichuta, R. Content of heavy metals in willow (Salix viminalis) wth different nitrogen fertilization. Acta Agrophys. 2009, 13, 385–392. [Google Scholar]
- Szwalec, A.; Mundała, P.; Kędzior, R.; Telk, M.; Gawroński, P. Differentiation of Cd, Pb, Zn and Cu contents in biomass used for energy production. Acta Sci. Pol. Formatio Circumiectus 2016, 15, 343–351. [Google Scholar]
- Polish Committee for Standardization. Soil Quality—Determination of Ph; Polish Committee for Standardization: Warsaw, Poland, 1997.
- Polish Committee for Standardization. Chemical and Agricultural Analysis of the Soil—Determination of the Content of Absorbable Phosphorus in Mineral Soils; Polish Committee for Standardization: Warsaw, Poland, 1996.
- Polish Committee for Standardization. Chemical and Agricultural Analysis of the Soil—Determination of the Content of Potassium in Mineral Soils; Polish Committee for Standardization: Warsaw, Poland, 2002.
- Polish Committee for Standardization. Chemical and Agricultural Analysis of the Soil— Determination of the Content of Potassium in Mineral Soils; Polish Committee for Standardization: Warsaw, Poland, 2004.
- British Standards Institution. Solid Biofuels—Determination of Total Carbon, Hydrogen and Nitrogen Content—Instrumental Methods; British Standards Institution: London, UK, 2011. [Google Scholar]
- British Standards Institution. Solid Biofuels—Determination of Volatile Part Content; British Standards Institution: London, UK, 2010. [Google Scholar]
- British Standards Institution. Solid Biofuels—Determination of Calorific Value; British Standards Institution: London, UK, 2011. [Google Scholar]
- British Standards Institution. Solid Biofuels—Determination of Calorific Value; British Standards Institution: London, UK, 2010. [Google Scholar]
- Saletnik, B.; Zaguła, G.; Grabek-Lejko, D.; Kasprzyk, I.; Bajcar, M.; Czernicka, M.; Puchalski, Cz. Biosorption of cadmium (II), lead (II) and cobalt (II) from aqueous solution by biochar from cones of larch (Larix decidua Mill. subsp. decidua) and spruce (Picea abies L. H. Karst). Environ. Earth Sci. 2017, 76, 574. [Google Scholar] [CrossRef]
- Milestone. SK-10 High Pressure Rotor; HPR-EN-13 Soil Total Digestion; Milestone: Shelton, CT, USA; Available online: http://subitam.sinop.edu.tr/fileman/Uploads/Subitam/Mikrodalga.pdf (accessed on 16 January 2018).
- Milestone. SK-10 High Pressure Rotor; HPR-PE-19 Carbon Black; Milestone: Shelton, CT, USA; Available online: http://subitam.sinop.edu.tr/fileman/Uploads/Subitam/Mikrodalga.pdf (accessed on 16 January 2018).
- Milestone. SK-10 High Pressure Rotor; HPR-AG-02 Dried Plant Tissue; Milestone: Shelton, CT, USA; Available online: http://subitam.sinop.edu.tr/fileman/Uploads/Subitam/Mikrodalga.pdf (accessed on 16 January 2018).
- Milestone. SK-10 High Pressure Rotor; HPR-EN-04 Fly Ash; Milestone: Shelton, CT, USA; Available online: http://subitam.sinop.edu.tr/fileman/Uploads/Subitam/Mikrodalga.pdf (accessed on 16 January 2018).
pH (KCl) | Carbon | Nitrogen | P2O5 | K2O | Mg | |
---|---|---|---|---|---|---|
% | mg kg−1 | |||||
x ± SD | ||||||
Biochar | 6.59 ± 0.21 | 74.35 ± 0.24 | 0.93 ± 0.07 | 1382 ± 41 | 5752 ± 63 | 645 ± 22 |
Ash | 12.89 ± 0.32 | 1.22 ± 0.22 | 0.17 ± 0.01 | 6394 ± 52 | 91143 ± 4 | 31406 ± 74 |
Water | Ash | Volatile Substances | |
---|---|---|---|
% | |||
x ± SD | |||
Biochar | 9.11 ± 0.03 | 11.57 ± 0.21 | 66.42 ± 0.18 |
Ash | - | - | 94.42 ± 0.27 |
Al | As | Ca | Cd | Cr | Cu | Mn | |
mg kg−1 | |||||||
x ± SD | |||||||
Biochar | < 0.01 | < 0.01 | 18,520 ± 21 | < 0.01 | < 0.01 | 10 ± 0.8 | 240 ± 2.5 |
Ash | < 0.01 | < 0.01 | 131,220 ± 35 | < 0.01 | 50 ± 0.9 | 110 ± 0.7 | 1930 ± 9.5 |
Mo | Na | Ni | Pb | S | Sr | Zn | |
mg kg−1 | |||||||
x ± SD | |||||||
Biochar | < 0.01 | < 0.01 | < 0.01 | < 0.01 | 880 ± 12 | < 0.01 | 130 ± 11.5 |
Ash | < 0.01 | < 0.01 | 40 ± 2.5 | < 0.01 | 19,710 ± 23 | < 0.01 | 710 ± 8.2 |
Year | Fertiliser Used | Macro- and Microelements | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
As | Ca | Cd | Cu | Mn | Na | Ni | Pb | S | Zn | ||
mg kg−1 | |||||||||||
x ± SD | |||||||||||
2015 | - | <0.01 | 2 300 b ± 19 | <0.01 | 20.00 a ± 0.41 | 624 c ± 5 | 174.75 h ± 1.50 | <0.01 | 12.40 a ± 0.41 | 113 a ± 0.87 | 50.03 d ± 2.41 |
2016 | B1/P1 | <0.01 | 2 646 c ± 19 | <0.01 | 53.75 c ± 0.50 | 520 b ± 18 | 91.09 e ± 26.25 | <0.01 | 13.91 b ± 0.69 | 160 c ± 13 | 25.95 a ± 10.70 |
P2 | <0.01 | 2 352 b ± 158 | <0.01 | 50.93 c ± 1.57 | 505 b ± 2 | 93.88 e ± 40.23 | <0.01 | 13.65 b ± 0.82 | 141 c ± 18 | 30.49 ab ± 12.37 | |
P3 | <0.01 | 2 338 b ± 20 | <0.01 | 46.32 b ± 3.12 | 507 b ± 27 | 19.17 a ± 8.47 | <0.01 | 13.89 b ± 0.22 | 149 c ± 19 | 25.49 a ± 10.24 | |
P4 | <0.01 | 2 436 bc ± 93 | <0.01 | 51.54 c ± 2.44 | 527 b ± 12 | 11.48 a ± 0.85 | <0.01 | 16.10 e ± 0.60 | 125 b ± 3 | 33.72 b ± 4.80 | |
B2/P1 | <0.01 | 2 848 c ± 139 | <0.01 | 53.97 c ± 2.17 | 505 b ± 11 | 109.59 f ± 18.75 | <0.01 | 14.70 c ± 0.82 | 196 e ± 6 | 37.07 b ± 3.30 | |
B2/P2 | <0.01 | 3 690 f ± 350 | <0.01 | 54.78 c ± 0.66 | 516 b ± 2 | 125.25 g ± 4.70 | <0.01 | 16.97 e ± 0.73 | 210 f ± 6 | 56.99 d ± 10.02 | |
B2/P3 | <0.01 | 2 893 c ± 150 | <0.01 | 44.89 b ± 3.40 | 484 a ± 3 | 51.71 c ± 20.58 | <0.01 | 14.60 c ± 0.84 | 197 e ± 2 | 26.67 a ± 10.23 | |
B2/P4 | <0.01 | 3 038 d ± 65 | <0.01 | 47.15 b ± 3.55 | 521 b ± 5 | 79.68 d ± 25.23 | <0.01 | 15.29 d ± 0.78 | 213 f ± 8 | 44.69 c ± 0.81 | |
2017 | B1/P1 | <0.01 | 1 959 a ± 7 | <0.01 | 42.55 b ± 0.96 | 460 a ± 5 | 33.60 b ± 1.82 | <0.01 | 13.24 b ± 0.38 | 154 c ± 5 | 25.51 a ± 0.76 |
P2 | <0.01 | 2 303 b ± 105 | <0.01 | 47.89 b ± 1.10 | 478 a ± 4 | 52.93 c ± 6.01 | <0.01 | 14.26 c ± 0.15 | 169 cd ± 2 | 27.67 a ± 0.27 | |
P3 | <0.01 | 2 137 b ± 138 | <0.01 | 44.63 b ± 3.50 | 453 a ± 6 | 52.66 c ± 37.08 | <0.01 | 13.89 b ± 0.42 | 173 d ± 7 | 27.26 a ± 0.21 | |
P4 | <0.01 | 3 303 e ± 858 | <0.01 | 57.96 d ± 3.77 | 495 ab ± 12 | 158.34 g ± 35.16 | <0.01 | 15.97 d ± 0.93 | 189 d ± 10 | 34.33 b ± 1.95 | |
B2/P1 | <0.01 | 2 306 b ± 33 | <0.01 | 44.61 b ± 1.61 | 481 a ± 8 | 55.21 c ± 1.96 | <0.01 | 15.05 c ± 0.11 | 190 d ± 4 | 29.27 ab ± 0.39 | |
B2/P2 | <0.01 | 3 137d ± 297 | <0.01 | 57.80 d ± 2.28 | 511 b ± 17 | 184.87 h ± 37.12 | <0.01 | 14.63 c ± 0.50 | 189 d ± 4 | 32.23 b ± 1.47 | |
B2/P3 | <0.01 | 2 684 c ± 167 | <0.01 | 51.37 c ± 2.67 | 505 b ± 8 | 82.10 d ± 14.84 | <0.01 | 15.29 d ± 0.74 | 187 d ± 5 | 33.32 b ± 2.08 | |
B2/P4 | <0.01 | 2 747 c ± 48 | <0.01 | 48.65 b ± 0.20 | 535 b ± 17 | 48.89 c ± 4.07 | <0.01 | 16.94 e ± 0.57 | 199 e ± 9 | 35.03 b ± 1.19 |
Year | Fertiliser Used | Macroelements | ||||||
---|---|---|---|---|---|---|---|---|
Ca | Fe | K | Mg | Na | P | S | ||
mg kg−1 | ||||||||
x ± SD | ||||||||
2016 | B1/P1 | 2.29 a ± 0.16 | 0.20 a ± 0.05 | 6.66 b ± 0.32 | 0.82 ab ± 0.04 | 0.14 a ± 0.02 | 1.28 b ± 0.08 | 0.92 a ± 0.06 |
P2 | 2.58 b ± 0.09 | 0.20 a ± 0.03 | 7.71 c ± 0.22 | 0.89 bc ± 0.10 | 0.14 a ± 0.02 | 1.43 c ± 0.11 | 1.00 a ± 0.07 | |
P3 | 2.23 a ± 0.21 | 0.19 a ± 0.03 | 6.03 a ± 0.19 | 0.74 a ± 0.11 | 0.13 a ± 0.01 | 1.11 a ± 0.04 | 0.96 a ± 0.04 | |
P4 | 2.38 a ± 0.09 | 0.20 a ± 0.02 | 6.93 b ± 0.29 | 0.91 b ± 0.09 | 0.13 a ± 0.01 | 1.49 c ± 0.03 | 1.06 a ± 0.10 | |
B2/P1 | 2.31 a ± 0.17 | 0.19 a ± 0.09 | 5.75 a ± 0.23 | 0,74 a ± 0.03 | 0.12 a ± 0.01 | 1.25 b ± 0.06 | 0.90 a ± 0.04 | |
B2/P2 | 2.31 a ± 0.15 | 0.10 a ± 0.05 | 7.13 b ± 0.24 | 0.83 ab ± 0.04 | 0.12 a ± 0.02 | 1.29 b ± 0.10 | 0.99 a ± 0.04 | |
B2/P3 | 2.23 a ± 0.18 | 0.19 a ± 0.12 | 7.05 b ± 0.34 | 0.99 c ± 0.08 | 0.12 a ± 0.02 | 1.29 b ± 0.09 | 1.03 a ± 0.06 | |
B2/P4 | 2.33 a ± 0.18 | 0.15 a ± 0.05 | 6.84 b ± 0.42 | 1.03 c ± 0.07 | 0.12 a ± 0.03 | 1.31 b ± 0.11 | 1.06 a ± 0.03 | |
2017 | B1/P1 | 1.06 a ± 0.12 | 0.04 a ± 0.01 | 5.59 c ± 0.12 | 0.31 a ± 0.03 | 0.09 a ± 0.00 | 1.13 c ± 0.09 | 0.38 ab ± 0.01 |
P2 | 1.13 a ± 0.15 | 0.06 a ± 0.02 | 4.90 b ± 0.07 | 0.34 b ± 0.06 | 0.08 a ± 0.00 | 0.97 b ± 0.07 | 0.34 a ± 0.02 | |
P3 | 1.60 c ± 0.06 | 0.06 a ± 0.01 | 5.37 c ± 0.09 | 0.37 b ± 0.04 | 0.09 a ± 0.01 | 1.25 d ± 0.07 | 0.47 c ± 0.02 | |
P4 | 1.26 a ± 0.08 | 0.05 a ± 0.02 | 4.58 a ± 0.12 | 0.36 b ± 0.01 | 0.09 a ± 0.01 | 1.06 c ± 0.04 | 0.37 ab ± 0.02 | |
B2/P1 | 1.17 a ± 0.12 | 0.05 a ± 0.02 | 4.74 b ± 0.10 | 0.28 a ± 0.03 | 0.08 a ± 0.01 | 0.95 b ± 0.01 | 0.32 a ± 0.01 | |
B2/P2 | 1.22 a ± 0.19 | 0.05 a ± 0.03 | 4.34 a ± 0.08 | 0.29 a ± 0.05 | 0.07 a ± 0.01 | 0.81 a ± 0.09 | 0.33 a ± 0.03 | |
B2/P3 | 1.15 a ± 0.03 | 0.04 a ± 0.02 | 4.78 b ± 0.11 | 0.39 b ± 0.10 | 0.07 a ± 0.01 | 0.79 a ± 0.08 | 0.39 ab ± 0.03 | |
B2/P4 | 1.44 b ± 0.07 | 0.05 a ± 0.01 | 4.66 a ± 0.12 | 0.40 b ± 0.05 | 0.09 a ± 0.00 | 1.09 c ± 0.07 | 0.42 b ± 0.02 |
Year | Fertiliser Used | Microelements | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Al | As | Cd | Cr | Cu | Mo | Ni | Pb | Mn | Sr | Zn | ||
mg kg−1 | ||||||||||||
x ± SD | ||||||||||||
2016 | B1/P1 | 0.14 a ± 0.04 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | 0.14 a ± 0.00 | 0.01 a ± 0.00 | 0.07 a ± 0.03 |
P2 | 0.18 a ± 0.06 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | 0.14 a ± 0.02 | 0.02 a ± 0.00 | 0.07 a ± 0.02 | |
P3 | 0.14 a ± 0.05 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | 0.13 a ± 0.01 | 0.01 a ± 0.00 | 0.06 a ± 0.02 | |
P4 | 0.19 a ± 0.03 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | 0.13 a ± 0.01 | 0.01 a ± 0.00 | 0.07 a ± 0.04 | |
B2/P1 | 0.16 a ± 0.03 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | 0.12 a ± 0.01 | 0.01 a ± 0.00 | 0.03 a ± 0.02 | |
B2/P2 | 0.13 a ± 0.03 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | 0.12 a ± 0.02 | 0.03 a ± 0.04 | 0.06 a ± 0.05 | |
B2/P3 | 0.17 a ± 0.02 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | 0.12 a ± 0.02 | 0.01 a ± 0.00 | 0.05 a ± 0.03 | |
B2/P4 | 0.16 a ± 0.03 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | 0.12 a ± 0.01 | 0.01 a ± 0.00 | 0.05 a ± 0.02 | |
2017 | B1/P1 | 0.02 a ± 0.00 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | 0.09 a ± 0.02 | <0.001 | 0.03 a ± 0.01 |
P2 | 0.03 a ± 0.00 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | 0.08 a ± 0.03 | <0.001 | 0.02 a ± 0.00 | |
P3 | 0.05 a ± 0.00 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | 0.09 a ± 0.01 | <0.001 | 0.03 a ± 0.01 | |
P4 | 0.04 a ± 0.02 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | 0.09 a ± 0.01 | <0.001 | 0.02 a ± 0.01 | |
B2/P1 | 0.02a ± 0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | 0.08 a ± 0.03 | <0.001 | 0.02 a ± 0.00 | |
B2/P2 | 0.03 a ± 0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | 0.07 a ± 0.02 | <0.001 | 0.01 a ± 0.00 | |
B2/P3 | 0.03 a ± 0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | 0.07 a ± 0.02 | <0.001 | 0.02 a ± 0.01 | |
B2/P4 | 0.03 a ± 0.00 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | 0.09 a ± 0.01 | <0.001 | 0.02 a ± 0.01 |
Item | Parameter | Research Method |
---|---|---|
1 | pH w KCl | PN-ISO 10390:1997 [71] |
2 | Content of absorbable forms of phosphorus (P2O5) | PN-R-04023:1996 [72] |
3 | Content of absorbable forms of potassium (K2O) | PN-R-04022:1996/Az1:2002 [73] |
4 | Content of absorbable form of magnesium (Mg) | PN-R-04020:1996/Az1:2004 [74] |
5 | Content of carbon, nitrogen and hydrogen | PN-EN 15104:2011 [75] |
6 | Ash content | PN-EN 14775:2010 [76] |
7 | Content of volatile substances | PN-EN 15148:2011 [77] |
8 | Calorific value | PN-EN 14918:2010 [78] |
9 | Total content of selected macro- and microelements | Method using atomic emission spectrometry with excitation in argon plasma (ICP-OES) |
Material | Acid | Temperature and Time | Power | Application Note |
---|---|---|---|---|
Soil | 8 mL HNO3 65% 5 mL HCl 37% 1 mL HF 40% 5 mL H3BO3 5% | -temperature increase to 200 °C, time: 15 min; - maintaining at temperature of 200 °C, time: 15 min | 1500 W | HPR-EN-13 [80] |
Biochar | 7 mL HNO3 65% 1 mL H2O2 30% | HPR-PE-19 [81] | ||
Plant biomass | 6 mL HNO3 65% 2 mL H2O2 30% | HPR-AG-02 [82] | ||
Ash from biomass | 7 mL HNO3 65% 1 mL HCl 37% 1.5 mL HF 40% | - temperature increase to 220 °C, time: 20 min; - maintaining at temperature of 220 °C, time: 15 min | HPR-EN-04 [83] |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saletnik, B.; Zagula, G.; Bajcar, M.; Czernicka, M.; Puchalski, C. Biochar and Biomass Ash as a Soil Ameliorant: The Effect on Selected Soil Properties and Yield of Giant Miscanthus (Miscanthus x giganteus). Energies 2018, 11, 2535. https://doi.org/10.3390/en11102535
Saletnik B, Zagula G, Bajcar M, Czernicka M, Puchalski C. Biochar and Biomass Ash as a Soil Ameliorant: The Effect on Selected Soil Properties and Yield of Giant Miscanthus (Miscanthus x giganteus). Energies. 2018; 11(10):2535. https://doi.org/10.3390/en11102535
Chicago/Turabian StyleSaletnik, Bogdan, Grzegorz Zagula, Marcin Bajcar, Maria Czernicka, and Czeslaw Puchalski. 2018. "Biochar and Biomass Ash as a Soil Ameliorant: The Effect on Selected Soil Properties and Yield of Giant Miscanthus (Miscanthus x giganteus)" Energies 11, no. 10: 2535. https://doi.org/10.3390/en11102535
APA StyleSaletnik, B., Zagula, G., Bajcar, M., Czernicka, M., & Puchalski, C. (2018). Biochar and Biomass Ash as a Soil Ameliorant: The Effect on Selected Soil Properties and Yield of Giant Miscanthus (Miscanthus x giganteus). Energies, 11(10), 2535. https://doi.org/10.3390/en11102535