Combinatory Finite Element and Artificial Neural Network Model for Predicting Performance of Thermoelectric Generator
Abstract
:1. Introduction
2. Models and Methods
2.1. Thermoelectric Model
2.2. Finite Element Analysis
2.3. Artificial Neural Network (ANN) Model
3. Results
3.1. Effect of Leg Cross-Sectional Area on TEG Performance
3.2. Effect of Leg Length on TEG Performance
3.3. Effect of Resistive Load on TEG Performance
3.4. Comparing ANN Predictions with Prior Studies
4. Conclusions
- An ANN model that has two hidden layers with six neurons in each layer can predict TEG performance with a great degree of accuracy. Increasing the number of neurons above six does not improve the model accuracy, as the root mean square error almost saturates after six neurons.
- The predicted power was found to be within ±0.1 W, and efficiency was found to be within ±0.2%.
- The trained ANN model required only 26.4 ms per data point for predicting TEG performance against the 6.0 min needed by the traditional numerical simulations.
- There exists an optimal TEG leg cross-sectional area where power and efficiency are maximum.
- The effect of leg length on power is not as prominent as the cross-sectional area, although an optimal leg length exists. Efficiency was found to increase with an increase in leg length.
- Under a given range of leg dimensions, TEG was found to have maximum power when legs are cubical (1.5 × 1.5 × 1.5 mm3). On the other hand, the TEG efficiency was found to be maximum when legs are cuboidal (1.5 × 1.5 × 2 mm3) at a resistive load of 6 Ω.
Author Contributions
Acknowledgments
Conflicts of Interest
Nomenclature
TE | Thermoelectric |
TEG | Thermoelectric Generator |
ZT | Figure of merit |
ANN | Artificial neural network |
FEA | Finite element analysis |
T | Temperature |
Ap | Cross-sectional area of p-type leg |
An | Cross-sectional area of n-type leg |
Lp | Length of p-type leg |
Ln | Length of n-type leg |
N | Number of thermocouples |
I | Electric current |
R | Electrical load |
∆T | Temperature difference |
Electrical conductivity | |
κ | Thermal conductivity |
Electrical resistivity | |
S | Seebeck coefficient |
Open circuit voltage | |
Module output voltage | |
Hot side temperature | |
Cold side temperature | |
Seebeck coefficients (p-type material) | |
Seebeck coefficients (n-type material) | |
Seebeck coefficients (thermocouple) | |
π | Peltier coefficient |
Rate of thermal energy absorbed | |
Rate of thermal energy released | |
Internal electrical resistance | |
Internal thermal conductance | |
Output power | |
Heat flux vector | |
Current density vector | |
Electric field intensity | |
Specific heat matrix | |
Dielectric permittivity coefficient matrix | |
Thermal conductivity matrix | |
Seebeck coefficient coupling matrix | |
Electrical conductivity coefficient matrix | |
Nodal temperature vector | |
Nodal electric potential vector | |
Heat flow vectors | |
Peltier heat load vector | |
Nodal current vector | |
Output vector in kth layer | |
Activation function | |
Connection weight matrices | |
Bias weight matrices | |
J | Jacobian matrix |
i | Number of iteration steps |
e | Network errors |
Mean-square error | |
Root-mean-square error |
References
- Vining, C.B. An inconvenient truth about thermoelectrics. Nat. Mater. 2009, 8, 83–85. [Google Scholar] [CrossRef] [PubMed]
- Junior, O.H.A.; Calderon, N.H.; de Souza, S.S. Characterization of a thermoelectric generator (TEG) system for waste heat recovery. Energies 2018, 11, 1555. [Google Scholar] [CrossRef]
- Kishore, R.A.; Sanghadasa, M.; Priya, S. Optimization of segmented thermoelectric generator using taguchi and anova techniques. Sci. Rep. 2017, 7, 16746. [Google Scholar] [CrossRef] [PubMed]
- Anant Kishore, R.; Kumar, P.; Sanghadasa, M.; Priya, S. Taguchi optimization of bismuth-telluride based thermoelectric cooler. J. Appl. Phys. 2017, 122, 025109. [Google Scholar] [CrossRef]
- Teffah, K.; Zhang, Y.; Mou, X.-L. Modeling and experimentation of new thermoelectric cooler—Thermoelectric generator module. Energies 2018, 11, 576. [Google Scholar] [CrossRef]
- Zhang, C.-W.; Xu, K.-J.; Li, L.-Y.; Yang, M.-Z.; Gao, H.-B.; Chen, S.-R. Study on a battery thermal management system based on a thermoelectric effect. Energies 2018, 11, 279. [Google Scholar] [CrossRef]
- Lee, P.-Y.; Lin, P.-H. Evolution of thermoelectric properties of Zn4Sb3 prepared by mechanical alloying and different consolidation routes. Energies 2018, 11, 1200. [Google Scholar] [CrossRef]
- Liu, R.; Ren, G.; Tan, X.; Lin, Y.; Nan, C. Enhanced thermoelectric properties of Cu3SbSe3-based composites with inclusion phases. Energies 2016, 9, 816. [Google Scholar] [CrossRef]
- Lin, C.-K.; Chen, M.-S.; Huang, R.-T.; Cheng, Y.-C.; Lee, P.-Y. Thermoelectric properties of alumina-doped Bi0.4Sb1.6Te3 nanocomposites prepared through mechanical alloying and vacuum hot pressing. Energies 2015, 8, 12573–12583. [Google Scholar] [CrossRef]
- Elsheikh, M.H.; Shnawah, D.A.; Sabri, M.F.M.; Said, S.B.M.; Hassan, M.H.; Bashir, M.B.A.; Mohamad, M. A review on thermoelectric renewable energy: Principle parameters that affect their performance. Renew. Sustain. Energy Rev. 2014, 30, 337–355. [Google Scholar] [CrossRef]
- Xie, D.; Xu, J.; Liu, G.; Liu, Z.; Shao, H.; Tan, X.; Jiang, J.; Jiang, H. Synergistic optimization of thermoelectric performance in P-type Bi0.48Sb1.52Te3/graphene composite. Energies 2016, 9, 236. [Google Scholar] [CrossRef]
- Harman, T.; Walsh, M.; Turner, G. Nanostructured thermoelectric materials. J. Electron. Mater. 2005, 34, L19–L22. [Google Scholar] [CrossRef]
- Venkatasubramanian, R.; Silvola, E.; Colpitts, T.; O’quinn, B. Thin-film thermoelectric devices with high room-temperature figures of merit. In Materials for Sustainable Energy: A Collection of Peer-Reviewed Research and Review Articles from Nature Publishing Group; World Scientific: Singapore, 2011; pp. 120–125. [Google Scholar]
- Hsu, K.F.; Loo, S.; Guo, F.; Chen, W.; Dyck, J.S.; Uher, C.; Hogan, T.; Polychroniadis, E.; Kanatzidis, M.G. Cubic AgPbmSbTe2+m: Bulk thermoelectric materials with high figure of merit. Science 2004, 303, 818–821. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.; Jood, P.; Ohta, M.; Kunii, M.; Nagase, K.; Nishiate, H.; Kanatzidis, M.G.; Yamamoto, A. Power generation from nanostructured PbTe-based thermoelectrics: Comprehensive development from materials to modules. Energy Environ. Sci. 2016, 9, 517–529. [Google Scholar] [CrossRef]
- Chen, J.; Li, K.; Liu, C.; Li, M.; Lv, Y.; Jia, L.; Jiang, S. Enhanced efficiency of thermoelectric generator by optimizing mechanical and electrical structures. Energies 2017, 10, 1329. [Google Scholar] [CrossRef]
- Li, S.; Lam, K.H.; Cheng, K.W.E. The thermoelectric analysis of different heat flux conduction materials for power generation board. Energies 2017, 10, 1781. [Google Scholar] [CrossRef]
- Yazawa, K.; Shakouri, A. Optimization of power and efficiency of thermoelectric devices with asymmetric thermal contacts. J. Appl. Phys. 2012, 111, 024509. [Google Scholar] [CrossRef]
- Montecucco, A.; Siviter, J.; Knox, A.R. Constant heat characterisation and geometrical optimisation of thermoelectric generators. Appl. Energy 2015, 149, 248–258. [Google Scholar] [CrossRef]
- Dunham, M.T.; Barako, M.T.; LeBlanc, S.; Asheghi, M.; Chen, B.; Goodson, K.E. Power density optimization for micro thermoelectric generators. Energy 2015, 93, 2006–2017. [Google Scholar] [CrossRef] [Green Version]
- Kumar, S.; Heister, S.D.; Xu, X.; Salvador, J.R. Optimization of thermoelectric components for automobile waste heat recovery systems. J. Electron. Mater. 2015, 44, 3627–3636. [Google Scholar] [CrossRef]
- Sahin, A.Z.; Yilbas, B.S. The thermoelement as thermoelectric power generator: Effect of leg geometry on the efficiency and power generation. Energy Convers. Manag. 2013, 65, 26–32. [Google Scholar] [CrossRef]
- Yilbas, B.; Sahin, A. Thermoelectric device and optimum external load parameter and slenderness ratio. Energy 2010, 35, 5380–5384. [Google Scholar] [CrossRef]
- Rowe, D.; Min, G. Design theory of thermoelectric modules for electrical power generation. IEE Proc. Sci. Meas. Technol. 1996, 143, 351–356. [Google Scholar] [CrossRef]
- Mitrani, D.; Salazar, J.; Turó, A.; García, M.J.; Chávez, J.A. One-dimensional modeling of te devices considering temperature-dependent parameters using spice. Microelectron. J. 2009, 40, 1398–1405. [Google Scholar] [CrossRef]
- Wang, X.-D.; Huang, Y.-X.; Cheng, C.-H.; Lin, D.T.-W.; Kang, C.-H. A three-dimensional numerical modeling of thermoelectric device with consideration of coupling of temperature field and electric potential field. Energy 2012, 47, 488–497. [Google Scholar] [CrossRef]
- Cheng, C.-H.; Huang, S.-Y.; Cheng, T.-C. A three-dimensional theoretical model for predicting transient thermal behavior of thermoelectric coolers. Int. J. Heat Mass Transf. 2010, 53, 2001–2011. [Google Scholar] [CrossRef]
- Solarsystem.nasa.gov. Radioisotope Power Systems: Radioisotope Thermoelectric Generator. Available online: https://solarsystem.nasa.gov/missions/rps/rtg (accessed on 17 December 2017).
- Von Lukowicz, M.; Abbe, E.; Schmiel, T.; Tajmar, M. Thermoelectric generators on satellites—An approach for waste heat recovery in space. Energies 2016, 9, 541. [Google Scholar] [CrossRef]
- Green Car Congress. BMW Provides An Update on Waste Heat Recovery Projects; Turbosteamer and the Thermoelectric Generator. Available online: http://www.greencarcongress.com/2011/08/bmwthermal-20110830.html (accessed on 17 December 2017).
- Mirhosseini, M.; Rezaniakolaei, A.; Rosendahl, L. Numerical study on heat transfer to an arc absorber designed for a waste heat recovery system around a cement kiln. Energies 2018, 11, 671. [Google Scholar] [CrossRef]
- Li, Z.; Li, W.; Chen, Z. Performance analysis of thermoelectric based automotive waste heat recovery system with nanofluid coolant. Energies 2017, 10, 1489. [Google Scholar] [CrossRef]
- Cheng, K.; Feng, Y.; Lv, C.; Zhang, S.; Qin, J.; Bao, W. Performance evaluation of waste heat recovery systems based on semiconductor thermoelectric generators for hypersonic vehicles. Energies 2017, 10, 570. [Google Scholar] [CrossRef]
- Candle Powered Teg (Teg-Can-1). Available online: http://www.tegmart.com/diy-teg-kits/diy-candle-powered-teg-with-led-options/ (accessed on 17 December 2017).
- 10 Watt Direct Flame Thermoelectric Generator (Aka “Camp Teg”). Available online: http://www.tegpower.com/pro2.htm (accessed on 17 December 2017).
- Duran, O.; Capaldo, A.; Duran Acevedo, P.A. Lean maintenance applied to improve maintenance efficiency in thermoelectric power plants. Energies 2017, 10, 1653. [Google Scholar] [CrossRef]
- Digi-Key. Energy Harvesting in the Smart Grid. 2015. Available online: https://www.digikey.com/en/articles/techzone/2015/sep/energy-harvesting-in-the-smart-grid (accessed on 17 January 2018).
- Subbarayan, G.; Li, Y.; Mahajan, R.L. Reliability simulations for solder joints using stochastic finite element and artificial neural network models. Trans. Am. Soc. Mech. Eng. J. Electron. Packag. 1996, 118, 148–156. [Google Scholar] [CrossRef]
- Mahajan, R.L.; Wang, X. Neural network models for thermally based microelectronic manufacturing processes. J. Electrochem. Soc. 1993, 140, 2287–2293. [Google Scholar] [CrossRef]
- Li, Y.; Mahajan, R.L.; Nikmanesh, N. Fine pitch stencil printing process modeling and optimization. J. Electron. Packag. 1996, 118, 1–6. [Google Scholar] [CrossRef]
- Calmidi, V.; Mahajan, R.L. Optimization for thermal and electrical performance for a flip-chip package using physical-neural network modeling. In Proceedings of the 47th Electronic Components and Technology Conference, San Jose, CA, USA, 18–21 May 1997; pp. 1163–1169. [Google Scholar]
- Ang, Z.Y.A.; Woo, W.L.; Mesbahi, E. Artificial neural network based prediction of energy generation from thermoelectric generator with environmental parameters. J. Clean Energy Technol. 2017, 5, 458–463. [Google Scholar] [CrossRef]
- Ang, Z.Y.A.; Woo, W.L.; Mesbahi, E. Prediction and analysis of energy generation from thermoelectric energy generator with operating environmental parameters. In Proceedings of the 2017 International Conference on Green Energy and Applications (ICGEA), Singapore, 25–27 March 2017; pp. 80–84. [Google Scholar]
- Ciylan, B. Determination of output parameters of a thermoelectric module using artificial neural networks. Electron. Electr. Eng. 2011, 116, 63–66. [Google Scholar] [CrossRef]
- Goldsmid, H.J. Introduction to Thermoelectricity; Springer: Berlin, Germany, 2010; Volume 121. [Google Scholar]
- Rowe, D.M. Thermoelectrics Handbook: Macro to Nano; CRC Press: Boca Raton, FL, USA, 2005. [Google Scholar]
- Zheng, X.; Liu, C.; Yan, Y.; Wang, Q. A review of thermoelectrics research—Recent developments and potentials for sustainable and renewable energy applications. Renew. Sustain. Energy Rev. 2014, 32, 486–503. [Google Scholar] [CrossRef]
- Zhu, W.; Deng, Y.; Wang, Y.; Wang, A. Finite element analysis of miniature thermoelectric coolers with high cooling performance and short response time. Microelectron. J. 2013, 44, 860–868. [Google Scholar] [CrossRef]
- Kishore, R.A.; Kumar, P.; Priya, S. A comprehensive optimization study on Bi2Te3-based thermoelectric generators using the taguchi method. Sustain. Energy Fuels 2018, 2, 175–190. [Google Scholar] [CrossRef]
- ANSYS. Ansys Mechanical Apdl Theory Reference; ANSYS Inc.: Canonsburg, PA, USA, 2012. [Google Scholar]
- Mengali, O.; Seiler, M. Contact resistance studies on thermoelectric materials. Adv. Energy Convers. 1962, 2, 59–68. [Google Scholar] [CrossRef]
- Högblom, O.; Andersson, R. Analysis of thermoelectric generator performance by use of simulations and experiments. J. Electron. Mater. 2014, 43, 2247–2254. [Google Scholar] [CrossRef]
- Chen, W.-H.; Wang, C.-C.; Hung, C.-I. Geometric effect on cooling power and performance of an integrated thermoelectric generation-cooling system. Energy Convers. Manag. 2014, 87, 566–575. [Google Scholar] [CrossRef]
- Astrain, D.; Vián, J.; Martínez, A.; Rodríguez, A. Study of the influence of heat exchangers’ thermal resistances on a thermoelectric generation system. Energy 2010, 35, 602–610. [Google Scholar] [CrossRef]
- Hao, F.; Qiu, P.; Tang, Y.; Bai, S.; Xing, T.; Chu, H.-S.; Zhang, Q.; Lu, P.; Zhang, T.; Ren, D. High efficiency Bi2Te3-based materials and devices for thermoelectric power generation between 100 and 300 °C. Energy Environ. Sci. 2016, 9, 3120–3127. [Google Scholar] [CrossRef]
- Schalkoff, R.J. Artificial Neural Networks; McGraw-Hill: New York, NY, USA, 1997; Volume 1. [Google Scholar]
- McGonagle, J. Feedforward Neural Networks. Available online: https://brilliant.Org/wiki/feedforward-neural-networks/ (accessed on 18 December 2017).
- MathWorks. Create, Configure, and Initialize Multilayer Neural Networks. Available online: https://www.mathworks.com/help/nnet/ug/create-configure-and-initialize-multilayer-neural-networks.html (accessed on 19 December 2017).
- MathWorks. Levenberg-Marquardt Algorithm. Available online: https://www.mathworks.com/help/nnet/ref/trainlm.html (accessed on 20 December 2017).
- MathWorks. Improve Neural Network Generalization and Avoid Overfitting. Available online: https://www.mathworks.com/help/nnet/ug/improve-neural-network-generalization-and-avoid-overfitting.html (accessed on 18 December 2017).
- Marwah, M.; Li, Y.; Mahajan, R.L. Integrated neural network modeling for electronic manufacturing. J. Electron. Manuf. 1996, 6, 79–91. [Google Scholar] [CrossRef]
- Watson, P.; Gupta, K.; Mahajan, R.L. Applications of knowledge-based artificial neural network modeling to microwave components. Int. J. RF Microw. Comput. Aided Eng. 1999, 9, 254–260. [Google Scholar] [CrossRef]
- Marwah, M.; Mahajan, R.L. Building neural network equipment models using model modifier techniques. IEEE Trans. Semicond. Manuf. 1999, 12, 377–381. [Google Scholar] [CrossRef]
- Rowe, D.; Min, G. Evaluation of thermoelectric modules for power generation. J. Power Sources 1998, 73, 193–198. [Google Scholar] [CrossRef]
Input Parameters | Range | |||||
---|---|---|---|---|---|---|
(A) | Leg length (mm) | 1.0 | 1.25 | 1.5 | 1.75 | 2.0 |
(B) | Leg cross-sectional area (mm2) | 1.0 × 1.0 | 1.25 × 1.25 | 1.5 × 1.5 | 1.75 × 1.75 | 2.0 × 2.0 |
(C) | External resistance (Ω) | 2.0 | 4.0 | 6.0 | 8.0 | 10.0 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kishore, R.A.; Mahajan, R.L.; Priya, S. Combinatory Finite Element and Artificial Neural Network Model for Predicting Performance of Thermoelectric Generator. Energies 2018, 11, 2216. https://doi.org/10.3390/en11092216
Kishore RA, Mahajan RL, Priya S. Combinatory Finite Element and Artificial Neural Network Model for Predicting Performance of Thermoelectric Generator. Energies. 2018; 11(9):2216. https://doi.org/10.3390/en11092216
Chicago/Turabian StyleKishore, Ravi Anant, Roop L. Mahajan, and Shashank Priya. 2018. "Combinatory Finite Element and Artificial Neural Network Model for Predicting Performance of Thermoelectric Generator" Energies 11, no. 9: 2216. https://doi.org/10.3390/en11092216
APA StyleKishore, R. A., Mahajan, R. L., & Priya, S. (2018). Combinatory Finite Element and Artificial Neural Network Model for Predicting Performance of Thermoelectric Generator. Energies, 11(9), 2216. https://doi.org/10.3390/en11092216