Densification and Combustion of Cherry Stones
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.1.1. Plum Stones
2.1.2. Rye Bran
2.2. Methods
2.2.1. Determination of the Physicochemical Properties of the Raw Materials
2.2.2. Pressure Agglomeration Process
2.2.3. Combustion of Pellets
3. Results and Discussion
3.1. Physicochemical Properties of Raw Materials
3.2. Pressure Agglomeration Process
3.3. Combustion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Czyżyk, F.; Strzelczyk, M. Rational utilization of production residues generated in agri-food. Arch. Gospod. Odpad. I Ochr. Środowiska 2015, 17, 99–106. [Google Scholar]
- Stenmarck, Å.; Jensen, C.; Quested, T.; Moates, G. Estimates of European Food Waste Levels; Report of the Project FUSIONS (Contract Number: 311972) Grantem by the European Commission (FP7); IVL Swedish Environmental Research Institute: Stockholm, Sweden, 2016. [Google Scholar]
- Kumider, J.; Zielnica, J. Bioenergetyka Szansą Dla Środowiska Naturalnego—Wybrane Zagadnienia=Bioenergetics as an Opportunity for the Natural Environment—Selected Issues; Wyd. Akademii Ekonomicznej w Poznaniu: Poznań, Poland, 2006; pp. 1–96. [Google Scholar]
- Nayak, A.; Bhushan, B. An overview of the recent trends on the waste valorization techniques for food waste. J. Environ. Manag. 2019, 233, 352–370. [Google Scholar] [CrossRef] [PubMed]
- Czekała, W.; Bartnikowska, S.; Dach, J.; Janczak, D.; Smurzynska, A.; Kozłowski, K.; Bugała, A.; Lewicki, A.; Cieslik, M.; Typanska, D.; et al. The energy value and economic efficiency of solid biofuels produced from digestate and sawdust. Energy 2018, 159, 1118–1122. [Google Scholar] [CrossRef]
- Obidziński, S. Analysis of usability of potato pulp as solid fuel. Fuel Process. Technol. 2012, 94, 67–74. [Google Scholar] [CrossRef]
- Hejft, R. Ciśnieniowa Aglomeracja Materiałów Roślinnych=Pressure Agglomeration of Plant Materials; Biblioteka Problemów Eksploatacji w Radomiu: Białystok, Poland, 2002. [Google Scholar]
- Obidziński, S. Pelletization process of postproduction plant waste. Int. Agrophys. 2012, 26, 279–284. [Google Scholar] [CrossRef]
- Kraiem, N.; Lajili, M.; Limousy, L.; Said, R.; Jeguirim, M. Energy recovery from Tunisian agri-food wastes: Evaluation of combustion performance and emissions characteristics of green pellets prepared from tomato residues and grape. Marc. Energy 2016, 107, 409–418. [Google Scholar] [CrossRef]
- Celma, A.R.; Cuadros, F.; López-Rodríguez, F. Characterization of pellets from industrial tomato residues. Food Bioprod. Process. 2012, 90, 700–706. [Google Scholar] [CrossRef]
- Kang, S.B.; Oh, H.Y.; Kim, J.J.; Choi, K.S. Characteristics of spent coffee ground as a fuel and combustion test in a small boiler (6.5 kW). Renew. Energy 2017, 113, 1208–1214. [Google Scholar] [CrossRef]
- Allesina, G.; Pedrazzi, S.; Allegretti, F.; Tartarini, P. Spent coffee grounds as heat source for coffee roasting plants: Experimental validation and case study. Appl. Therm. Eng. 2017, 126, 730–736. [Google Scholar] [CrossRef]
- Zając, G.; Szyszlak-Bargłowicz, J. Wpływ dodatku otrąb żytnich na własności energetyczne peletów z biomasy ślazowca pensylwańskiego=The influence of rye bran additive on energy properties of pellets from syllab of Columbian mallow. Autobusy Tech. Eksploat. Syst. Transp. 2011, 10, 459–464. [Google Scholar]
- Wattana, W.; Phethlung, S.; Jakaew, W.; Chumuthai, S.; Sriam, P.; Chanurai, N. Characterization of mixed biomass pellet from oil palm and para-rubber tree residues. Energy Procedia 2017, 138, 1128–1133. [Google Scholar] [CrossRef]
- Wongsiriamnuay, T.; Tippayawong, N. Effect of densification parameters on the properties of maize residue pellets. Biosyst. Eng. 2015, 139, 111–120. [Google Scholar] [CrossRef]
- Mami, M.A.; Mätzing, H.; Gehrmann, H.-J.; Stapf, D.; Bolduan, R.; Lajili, M. Investigation of the Olive Mill Solid Wastes Pellets Combustion in a Counter-Current Fixed Bed Reactor. Energies 2018, 11, 1965. [Google Scholar] [CrossRef]
- Maj, G.; Kuranc, A. Technologie produkcji oraz systemy certyfikacji jakości peletów z biomasy roślinnej. Wybrane problemy z zakresu ekoenergiii środowiska=Production technologies and quality certification systems for pellets from plant biomass. In Selected Problems in the Field of Eco-Energy and the Environment; Libropolis: Lublin, Poland, 2014; pp. 43–56. [Google Scholar]
- Dołżyńska, M.; Obidziński, S.; Simiński, P. Ocena granulatów z odpadów konopi siewnej jako biopaliwa=Evaluation of granulates from hemp waste as a biofuel. Przem. Chem. 2018, 97, 686–688. [Google Scholar]
- Nowicka, P.; Wojdyło, A.; Oszmiański, J. Jakość produktów wiśniowych dostępnych w handlu=The quality of cherry products available in commerce. Przem. Ferment. I Owocowo-Warzy. 2013, 7–8, 40–45. [Google Scholar]
- Kowalczyk, R.; Piwnicki, Ł. Pestki owoców jako cenny surowiec wtórny przemysłu spożywczego=Pips of fruit as a valuable raw material of the food industry. Postęp. Tech. Przetwórstwa Spożywczego 2007, 2, 61–66. [Google Scholar]
- Yilmaz, C.; Gokmen, V. Compositional characteristics of sour cherry kernel and its oil as influenced by different extraction and roasting conditions. Ind. Crops Prod. 2013, 49, 130–135. [Google Scholar] [CrossRef]
- Nowicka, P.; Gładzik, M.; Wojdyło, A.; Oszmiański, J. Pestka wiśni—Surowiec odpadowy o wysokim potencjale prozdrowotnym=Cherry seed—A waste material with a high pro-health potential. In Monogr. Bioact. Compon. Raw Mater. Plant Prod; Oddział Małopolski Polskiego Towarzystwa Technologów Żywności: Kraków, Poland, 2018; pp. 154–164. [Google Scholar]
- Olivares-Marín, M.; Del Prete, V.; Garcia-Moruno, E.; Fernández-González, C.; Macías-García, A.; Gómez-Serrano, V. The development of an activated carbon from cherry stones and its use in the removal of ochratoxin A from red wine. Food Control 2009, 20, 298–303. [Google Scholar] [CrossRef]
- Tósaki, A.; Vecsernyés, M.; Fésüs, L.; Bak, I.; Juhász, B.; Papp, L.; Toth, S. The Application of the Oil Fraction Obtained from Sour Cherry (Prunus Cerasus) Seed Kernel. Patent Number WO2008035129 A2, September 2006. [Google Scholar]
- Purgał, P.; Pasternak, J. Mixed biomass as an alternative energy fuel. Environment 2016, 8, 266–272. [Google Scholar]
- Rzeźnik, W.; Mielcarek, P.; Rzeźnik, I. Assessment of energetic potential of cherry stones in Poland. J. Res. Appl. Agric. Eng. 2016, 61, 84–87. [Google Scholar]
- Arendt, E.K.; Zannini, E. Rye Cereal Grains for the Food and Beverage Industries, 1st ed.; Woodhead Publishing Series in Food Science, Technology and Nutrition: Cambridge, UK, 2013; pp. 220–243. [Google Scholar]
- Bushuk, W. Rye. In Encyclopedia of Grain Science; Wrigley: Chicago, IL, USA; Elsevier: Oxford, UK, 2004. [Google Scholar]
- Shewry, P.R.; Bechtel, D.B. Morphology and Chemistry of the Rye Grain. Rye: Production, Chemistry and Technology, 2nd ed.; AACC International, Inc.: St Paul, MN, USA, 2001. [Google Scholar]
- Wójtowicz, A.; Kozak, M.; Lewandowska, Z. Wybrane właściwości prażynek ziemniaczanych z dodatkiem otrąb zbożowych=Selected properties of potato fritters with the addition of cereal bran. Zesz. Probl. Postęp. Nauk Rol. 2014, 577, 115–124. [Google Scholar]
- Śmiechowska, M.; Jurasz, M. Zawartość włókna surowego w wybranych produktach zbożowych=The content of crude fiber in selected cereal products. Probl. Hig.Epidemiol. 2014, 95, 429–432. [Google Scholar]
- Obidziński, S.; Dołżyńska, M.; Stasiełuk, W. Production of fuel pellets from a mixture of sawdust and rye bran IOP Conf. Series. Earth Environ. Sci. 2019, 214. [Google Scholar]
- Szyszlak-Bargłowicz, J.; Piekarski, W.; Słowik, T.; Zając, G.; Krzaczek, P.; Sobczak, P. Właściwości mechaniczne peletów z biomasy ślazowca pensylwańskiego=Mechanical properties of pellets from syllabus moths. Autobusy Tech. Eksploat. Syst. Transport. 2011, 12, 420–424. [Google Scholar]
- PN-EN ISO 16948: 2015 Solid biofuels—Determination of total carbon, hydrogen and nitrogen content.
- PN-EN ISO 16994: 2016 Solid biofuels—Determination of total sulfur and chlorine content.
- PN-EN ISO 18134: 2017 Solid biofuels—Determination of moisture content—Drying method—Part 2: Total moisture—Simplified method.
- PN-EN ISO 18123: 2016 Solid biofuels—Determination of volatile matter.
- PN-EN ISO 18122: 2016 Solid biofuels—Determination of ash content.
- PN-ISO 1928: 2002 Solid fuels—Determination of heat of combustion by calorimetric bomb method and calorific value calculation.
- PN-EN ISO 17828: 2016 Solid biofuels—Determination of bulk density.
- Obidziński, S.; Hejft, R.; Dołżyńska, M. Badanie Procesu Granulowania Odpadów Zbożowych=Research on the Granulation Process of Cereal Waste. Przem. Chem. 2017, 96, 2360–2363. [Google Scholar]
- Obidziński, S.; Hejft, R. Influence of technical and technological factors of the fodders pelleting process on the quality of obtained product. J. Res. Appl. Agric. Eng. 2012, 57, 94–99. [Google Scholar]
- Obidziński, S.; Hejft, R. The influence of potato pulp addition to the oat bran on the energy consumption of the pelletisation process and pellets quality. J. Res. Appl. Agric. Eng. 2013, 58, 133–138. [Google Scholar]
- PN-R-64834: 1998 Feed—Study of kinetic strength of granules.
- Gonzalez, J.F.; Gonzalez-Garca, C.M.; Ramiro, A.; Gonzalez, J.; Sabio, E.; Ganan, J.; Rodrguez, M.A. Combustion optimisation of biomass residue pellets for domestic heating with a mural boiler. Biomass Bioenergy 2004, 27, 145–154. [Google Scholar] [CrossRef]
- Środa, K.; Kijo-Kleczkowska, A.; Schab, M.; Pietrasik, M.; Ptak, T.; Pytlos, J. Specificity of the Properties of sewage sludge with reference to coal fuels and biomass. Archi. Gospod. Odpad. I Ochr.Środowiska 2015, 17, 69–82. [Google Scholar]
- Rybak, W.; Moroń, W.; Ferens, W. Dust ignition characteristics of different coal ranks, biomass and solid waste. Fuel 2019, 237, 606–618. [Google Scholar] [CrossRef]
- Hansen, U.E.; Nygaard, I. Sustainable energy transitions in emerging economies: The formation of a palm oil biomass waste-to-energy in Malaysia 1990–2011. Energy Policy 2014, 66, 666–676. [Google Scholar] [CrossRef]
- Zając, G.; Szyszlak-Bargłowicz, J.; Gołębiowski, W.; Szczepanik, M. Chemical Characteristics of Biomass Ashes. Energies 2018, 11, 2885. [Google Scholar] [CrossRef]
- Eriksson, J.-E.; Khazraie, T.; Hupa, L. Different methods for the characterization of ash compositions in co-firing boilers. In Energy Technology; The Minerals, Metals & Materials Series; Springer: Cham, Switzerland, 2018; pp. 253–263. [Google Scholar]
- Nussbaumer, T. Combustion and co-combustion of biomass. In Proceedings of the 12th European Biomass Conference, Amsterdam, The Netherlands, 17–21 June 2002. [Google Scholar]
- Glarborg, P.; Miller, J.A.; Ruscic, B.; Klippenstein, S.J. Modeling nitrogen chemistry in combustion. Prog. Energy Combust. Sci. 2018, 67, 31–68. [Google Scholar] [CrossRef] [Green Version]
- Chou, C.S.; Lin, S.H.; Lu, W.C. Preparation and characterization of solid biomass fuel made from rice straw and rice bran. Fuel Process. Technol. 2009, 90, 980–987. [Google Scholar] [CrossRef]
- Chou, C.S.; Lin, S.H.; Peng, C.C.; Lu, W.C. The optimum conditions for preparing solid fuel briquette of rice straw by a piston-mold process using the Taguchi method. Fuel Process. Technol. 2009, 90, 1041–1046. [Google Scholar] [CrossRef]
- Obidziński, S. Doctoral dissertation. In Pelleting of Plant Materials in an Annular Granulator Working System; Bialystok University of Technology: Białystok, Poland, 2005. [Google Scholar]
- Miranda, T.; Arranz, J.I.; Montero, I.; Román, S.; Rojas, C.V.; Nogales, S. Characterization and combustion of olive pomace and forest residue pellets. Fuel Process. Technol. 2012, 103, 91–96. [Google Scholar] [CrossRef]
- Kamel, B.S.; Kakuda, Y. Characterization of the seed oil and meal from apricot, cherry, nectarine, peach and plum. J. AOCS 1992, 69, 492–494. [Google Scholar] [CrossRef]
- Hycnar, J.J.; Borowski, G.; Józefiak, T.; Malec, A. Granulowanie i brykietowanie stałych produktów odsiarczania spalin=Granulating and briquetting of solid flue gas desulfurization products. Ecol. Eng. 2015, 45, 51–58. [Google Scholar]
- Buksa, K. Extraction and characterization of rye grain starch and its susceptibility to resistant starch formation. Carbohydr. Polym. 2018, 194, 184–192. [Google Scholar] [CrossRef]
- Pudlik, W. Termiczna przeróbka odpadów. Podstawy teoretyczne=Thermal waste treatment. In Theoretical Basics; Wydawnictwo Politechniki Gdańskiej: Gdańsk, Poland, 2014. [Google Scholar]
- Wandrasz, J.W.; Wandrasz, A.J. Paliwa Formowane Biopaliwa I Paliwa Z Odpadów W ProcesachTermicznych=Fuels Formed by Biofuels and Fuels from Waste in Thermal Processes; Wyd. Seidel-Przywecki: Warszawa, Poland, 2006. [Google Scholar]
- PN EN-303-5: 2012 Heating boilers—Part 5: Heating boilers for solid fuels with manual and automatic fuel hopper of nominal power up to 500 kW—Terminology, requirements, testing and marking.
- Kordylewski, W.; Mościcki, K. Charakterystyka procesu spalania granulatów biomasowych w palenisku retortowym=Characteristics of the combustion process of biomass granulates in a retort furnace. Arch.Spal. 2010, 10, 99–108. [Google Scholar]
- Mustafa, B.G.; Kiah, M.H.M.; Irshad, A.; Andrews, G.E.; Phylaktou, H.N.; Li, H.; Gibbs, B.M. Rich biomass combustion: Gaseous and particle number emissions. Fuel 2019, 248, 221–231. [Google Scholar] [CrossRef]
- Ravichandran, P.; Corscadden, K. Comparison of gaseous and particle emissions produced from leached and un-leached agricultural biomass briquettes. Fuel Process. Technol. 2014, 128, 359–366. [Google Scholar] [CrossRef]
- Wielgosiński, G.; Łechtańska, P.; Namiecińska, O. Emission of some pollutants from biomass combustion in comparison to hard coal combustion. J. Energy Inst. 2017, 90, 787–796. [Google Scholar] [CrossRef]
- Mladenović, M.; Paprika, M.; Marinković, A. Denitrification techniques for biomass combustion. Renew. Sustain. Energy Rev. 2018, 82, 3350–3364. [Google Scholar] [CrossRef]
- Williams, A.; Jones, J.M.; Ma, L.; Pourkashanian, M. Pollutants from the combustion of solid biomass fuels. Prog. Energy Combust. Sci. 2012, 38, 113–137. [Google Scholar] [CrossRef]
- Ren, X.; Sun, R.; Chi, H.-H.; Meng, X.; Li, Y.; Levendis, Y.A. Hydrogen chloride emissions from combustion of raw and torrefied biomass. Fuel 2017, 200, 37–46. [Google Scholar] [CrossRef]
- Król, D.J. Biomasa i paliwa formowane z odpadów w niskoemisyjnych technologiach spalania=Biomass and fuels formed from waste in low-emission combustion technologies. In Monografia; Wydawnictwo Politechniki Śląskiej: Gliwice, Poland, 2013. [Google Scholar]
- Liu, K.; Gao, Y.; Riley, J.T.; Pan, W.-P. An investigation of mercury emission from FBC systems fired with high-chlorine coals. Energy Fuels 2001, 15, 1173–1180. [Google Scholar] [CrossRef]
- Szczepaniak, W. Frakcjonowanie Metali w Procesach Termicznego Przetwarzania Biomasy I Stałych Odpadów Komunalnych=Metal Fractionation in the Processes of Thermal Processing of Biomass and Solid Municipal Waste; Wydawnictwo Ossolineum: Wrocław, Poland, 2005. [Google Scholar]
Property | Cherry Stones | Rye Bran |
---|---|---|
Moisture (%) wb | 9.30 ± 0.08 | 10.54 ± 0.16 |
Bulk density (kg·m−3) wb | 472.88 ± 6.84 | 279.85 ± 2.02 |
Volatile matter (%) db | 70.20 ± 0.25 | 69.71 ± 0.45 |
Ash (%) db | 1.40 ± 0.001 | 3.77 ± 0.01 |
Carbon (%) db | 52.72 ± 0.06 | 46.33 ± 0.04 |
Hydrogen (%) db | 6.50 ± 0.02 | 6.00 ± 0.02 |
Nitrogen (%) db | 1.34 ± 0.01 | 2.42 ± 0.01 |
Sulphur (%) db | 0.107 ± 0.001 | 0.095 ± 0.005 |
Chlorine (%) db | 0.001 | 0.002 |
Oxygen 1(%) db | 37.93 | 41.38 |
HHV (MJ·kg−1) db | 22.32 ± 0.10 | 18.86 ± 0.15 |
LHV (MJ·kg−1) db | 20.618 | 17.45 |
Parameter | Value | |
---|---|---|
Pellets | Cherry Stones | |
CO2 (%) | 7.20 | 7.76 |
CO (mg·Nm−3) | 432.45 | 745.91 |
SO2 (mg·Nm−3) | 38.62 | 56.29 |
NO (mg·Nm−3) | 264.69 | 356.44 |
HCl (mg·Nm−3) | 4.38 | 8.99 |
The actual oxygen concentration in the exhaust (%) | 10.96 | 14.19 |
λ | 2.04 | 2.94 |
Average flue gas temperature in the boiler outlet (°C) | 170 | 160 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dołżyńska, M.; Obidziński, S.; Kowczyk-Sadowy, M.; Krasowska, M. Densification and Combustion of Cherry Stones. Energies 2019, 12, 3042. https://doi.org/10.3390/en12163042
Dołżyńska M, Obidziński S, Kowczyk-Sadowy M, Krasowska M. Densification and Combustion of Cherry Stones. Energies. 2019; 12(16):3042. https://doi.org/10.3390/en12163042
Chicago/Turabian StyleDołżyńska, Magdalena, Sławomir Obidziński, Małgorzata Kowczyk-Sadowy, and Małgorzata Krasowska. 2019. "Densification and Combustion of Cherry Stones" Energies 12, no. 16: 3042. https://doi.org/10.3390/en12163042
APA StyleDołżyńska, M., Obidziński, S., Kowczyk-Sadowy, M., & Krasowska, M. (2019). Densification and Combustion of Cherry Stones. Energies, 12(16), 3042. https://doi.org/10.3390/en12163042