Thermal Analysis and Improvements of the Power Battery Pack with Liquid Cooling for Electric Vehicles
Abstract
:1. Introduction
2. Model Development
2.1. Mathematical Model
2.2. Geometric Model
2.3. Finite Element Model
2.3.1. Simplification Principle
2.3.2. Parameter Configuration
2.3.3. Mesh Generation
3. Experiment
4. Results and Discussions
- (1)
- In the numerical simulation, the power battery pack was simplified based on the heat transfer path, and the effects of natural convection and radiation heat transfer were not considered;
- (2)
- The thermal properties of each component were treated as constants, but these parameters changed with temperature;
- (3)
- During the experiment, there were some unavoidable errors with the use of the equipment. For example, we could not keep the coolant flow rate to 6 L/min or the temperature to 22 °C all the time, and the errors of the temperature sensors were ±1 °C. Besides, it was challenging to maintain the same initial temperature of the power battery pack.
5. Improvements
5.1. Cooling Strategy
5.2. Analysis
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
Nomenclature
Symbols | Subscript | ||
A | contact area (m2) | a | air or ambient |
cp | specific heat capacity (J/kg/K) | b | battery |
h | convective heat transfer coefficient (W/m2/K) | c | coolant |
I | current (A) | g | generation |
P | pressure (Pa) | j | Joule |
Q | heat generation rate (W) | max | maximum value |
R | electric resistance (Ω) | min | minimum value |
T | temperature (K or °C) | ocv | open circuit voltage |
ΔT | temperature difference (K or °C) | p | polarization |
t | time (s) | pa | pack |
U | voltage (V) | r | reaction |
velocity vector (m/s) | s | solid | |
Acronyms | sr | side reaction | |
BTMS | battery thermal management system | t | total |
CFD | computational fluid dynamics | ||
EVs | electric vehicles | Greek symbols | |
LIBs | Lithium-ion batteries | ρ | density (kg/m3) |
NCM | Nickel-Cobalt-Manganite | μ | dynamic viscosity (Pa·s) |
Re | Reynolds number | λ | Thermal conductivity (W/m/K) |
References
- Thomas, C.S. Transportation options in a carbon-constrained world: Hybrids, plug-in hybrids, biofuels, fuel cell electric vehicles, and battery electric vehicles. Int. J. Hydrog. Energy 2009, 34, 9279–9296. [Google Scholar] [CrossRef]
- Offer, G.; Howey, D.; Contestabile, M.; Clague, R.; Brandon, N. Comparative analysis of battery electric, hydrogen fuel cell and hybrid vehicles in a future sustainable road transport system. Energy Policy 2010, 38, 24–29. [Google Scholar] [CrossRef] [Green Version]
- Panchal, S.; Dincer, I.; Agelin-Chaab, M.; Fraser, R.; Fowler, M. Experimental and theoretical investigation of temperature distributions in a prismatic lithium-ion battery. Int. J. Therm. Sci. 2016, 99, 204–212. [Google Scholar] [CrossRef]
- Broussely, M.; Herreyre, S.; Biensan, P.; Kasztejna, P.; Nechev, K.; Staniewicz, R. Aging mechanism in Li ion cells and calendar life predictions. J. Power Sources 2001, 97, 13–21. [Google Scholar] [CrossRef]
- Wang, Q.; Jiang, B.; Li, B.; Yan, Y. A critical review of thermal management models and solutions of lithium-ion batteries for the development of pure electric vehicles. Renew. Sustain. Energy Rev. 2016, 64, 106–128. [Google Scholar] [CrossRef]
- Deng, Y.; Feng, C.; Jiaqiang, E.; Zhu, H.; Chen, J.; Wen, M.; Yin, H. Effects of different coolants and cooling strategies on the cooling performance of the power lithium ion battery system: A review. Appl. Therm. Eng. 2018, 142, 10–29. [Google Scholar] [CrossRef]
- Arora, S. Selection of thermal management system for modular battery packs of electric vehicles: A review of existing and emerging technologies. J. Power Sources 2018, 400, 621–640. [Google Scholar] [CrossRef]
- Wu, W.; Wang, S.; Wu, W.; Chen, K.; Hong, S.; Lai, Y. A critical review of battery thermal performance and liquid based battery thermal management. Energy Convers. Manag. 2019, 182, 262–281. [Google Scholar] [CrossRef]
- Xia, G.; Cao, L.; Bi, G. A review on battery thermal management in electric vehicle application. J. Power Sources 2017, 367, 90–105. [Google Scholar] [CrossRef]
- Khan, M.; Swierczynski, M.; Kær, S. Towards an ultimate battery thermal management system: A review. Batteries 2017, 3, 9. [Google Scholar] [CrossRef]
- Rao, Z.; Huo, Y.; Liu, X. Experimental study of an OHP-cooled thermal management system for electric vehicle power battery. Exp. Therm. Fluid Sci. 2014, 57, 20–26. [Google Scholar] [CrossRef]
- Nithyanandam, K.; Pitchumani, R. Analysis and optimization of a latent thermal energy storage system with embedded heat pipes. Int. J. Heat Mass Transf. 2011, 54, 4596–4610. [Google Scholar] [CrossRef]
- Nasir, F.M.; Abdullah, M.Z.; Ismail, M.A. Experimental Investigation of Water-Cooled Heat Pipes in the Thermal Management of Lithium-Ion EV Batteries. Arab. J. Sci. Eng. 2019, 44, 7541–7552. [Google Scholar] [CrossRef]
- Nazir, H.; Batool, M.; Osorio, F.J.B.; Isaza-Ruiz, M.; Xu, X.; Vignarooban, K.; Phelan, P.; Kannan, A.M. Recent developments in phase change materials for energy storage applications: A review. Int. J. Heat Mass Transf. 2019, 129, 491–523. [Google Scholar] [CrossRef]
- Zou, D.; Liu, X.; He, R.; Zhu, S.; Bao, J.; Guo, J.; Hu, Z.; Wang, B. Preparation of a novel composite phase change material (PCM) and its locally enhanced heat transfer for power battery module. Energy Convers. Manag. 2019, 180, 1196–1202. [Google Scholar] [CrossRef]
- Koyama, R.; Arai, Y.; Yamauchi, Y.; Takeya, S.; Endo, F.; Hotta, A.; Ohmura, R. Thermophysical properties of trimethylolethane (TME) hydrate as phase change material for cooling lithium-ion battery in electric vehicle. J. Power Sources 2019, 427, 70–76. [Google Scholar] [CrossRef]
- Zhao, D.; Tan, G. A review of thermoelectric cooling: Materials, modeling and applications. Appl. Therm. Eng. 2014, 66, 15–24. [Google Scholar] [CrossRef]
- Siddique, A.R.M.; Mahmud, S.; Van Heyst, B. A comprehensive review on a passive (phase change materials) and an active (thermoelectric cooler) battery thermal management system and their limitations. J. Power Sources 2018, 401, 224–237. [Google Scholar] [CrossRef]
- Li, X.; Zhong, Z.; Luo, J.; Wang, Z.; Yuan, W.; Zhang, G.; Yang, C.; Yang, C. Experimental Investigation on a Thermoelectric Cooler for Thermal Management of a Lithium-Ion Battery Module. Int. J. Photoenergy 2019, 2019. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, Y.; Zhang, J.; Liu, Z. Shortcut computation for the thermal management of a large air-cooled battery pack. Appl. Therm. Eng. 2014, 66, 445–452. [Google Scholar] [CrossRef]
- Park, H. A design of air flow configuration for cooling lithium ion battery in hybrid electric vehicles. J. Power Sources 2013, 239, 30–36. [Google Scholar] [CrossRef]
- Fan, L.; Khodadadi, J.M.; Pesaran, A.A. A parametric study on thermal management of an air-cooled lithium-ion battery module for plug-in hybrid electric vehicles. J. Power Sources 2013, 238, 301–312. [Google Scholar] [CrossRef]
- Al-Zareer, M.; Dincer, I.; Rosen, M.A. A review of novel thermal management systems for batteries. Int. J. Energy Res. 2018, 42, 3182–3205. [Google Scholar] [CrossRef]
- Fisher, T.S. Optimal Shapes of Fully Embedded Channels for Conjugate Cooling. IEEE Trans. Adv. Packag. 2001, 24, 555–562. [Google Scholar] [CrossRef]
- Yu, S.H.; Sohn, S.; Nam, J.H.; Kim, C.J. Numerical study to examine the performance of multi-pass serpentine flow-fields for cooling plates in polymer electrolyte membrane fuel cells. J. Power Sources 2009, 194, 697–703. [Google Scholar] [CrossRef]
- Huo, Y.; Rao, Z.; Liu, X.; Zhao, J. Investigation of power battery thermal management by using mini-channel cold plate. Energy Convers. Manag. 2015, 89, 387–395. [Google Scholar] [CrossRef]
- Chung, Y.; Kim, M.S. Thermal analysis and pack level design of battery thermal management system with liquid cooling for electric vehicles. Energy Convers. Manag. 2019, 196, 105–116. [Google Scholar] [CrossRef]
- Tang, A.; Li, J.; Lou, L.; Shan, C.; Yuan, X. Optimization design and numerical study on water cooling structure for power lithium battery pack. Appl. Therm. Eng. 2019, 159, 113760. [Google Scholar] [CrossRef]
- Yeow, K.; Teng, H.; Thelliez, M.; Tan, E. Thermal analysis of a Li-ion battery system with indirect liquid cooling using finite element analysis approach. SAE Int. J. Altern. Powertrains 2012, 1, 65–78. [Google Scholar] [CrossRef]
- Sato, N. Thermal behavior analysis of lithium-ion batteries for electric and hybrid vehicles. J. Power Sources 2001, 99, 70–77. [Google Scholar] [CrossRef]
- Bernardi, D.; Pawlikowski, E.; Newman, J. A general energy balance for battery systems. J. Electrochem. Soc. 1985, 132, 5–12. [Google Scholar] [CrossRef]
Rated Capacity (Ah) | Rated Energy (kWh) | Rated Voltage (V) | Weight (kg) | Length (mm) | Width (mm) | Height (mm) |
---|---|---|---|---|---|---|
37 | 1.62 | 43.8 | 11.3 | 355 | 151.5 | 108 |
Component | ρ (kg/m3) | λ (W/m/K) | cp (J/kg/K) | μ (Pa·s) |
---|---|---|---|---|
Cell | 2300 | Thickness: 4 | 1132 | - |
Width: 20 | ||||
Height: 13 | ||||
Insulating film | 1200 | 0.2 | 1200 | - |
Module case | 2702 | 180 | 903 | - |
Thermal pad | 1200 | 2 | 1200 | - |
Cold plate | 2702 | 180 | 903 | - |
Coolant | 1069.5 | 0.395 | 3341.38 | 0.00373 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xia, B.; Liu, Y.; Huang, R.; Yang, Y.; Lai, Y.; Zheng, W.; Wang, H.; Wang, W.; Wang, M. Thermal Analysis and Improvements of the Power Battery Pack with Liquid Cooling for Electric Vehicles. Energies 2019, 12, 3045. https://doi.org/10.3390/en12163045
Xia B, Liu Y, Huang R, Yang Y, Lai Y, Zheng W, Wang H, Wang W, Wang M. Thermal Analysis and Improvements of the Power Battery Pack with Liquid Cooling for Electric Vehicles. Energies. 2019; 12(16):3045. https://doi.org/10.3390/en12163045
Chicago/Turabian StyleXia, Bizhong, Yifan Liu, Rui Huang, Yadi Yang, Yongzhi Lai, Weiwei Zheng, Huawen Wang, Wei Wang, and Mingwang Wang. 2019. "Thermal Analysis and Improvements of the Power Battery Pack with Liquid Cooling for Electric Vehicles" Energies 12, no. 16: 3045. https://doi.org/10.3390/en12163045
APA StyleXia, B., Liu, Y., Huang, R., Yang, Y., Lai, Y., Zheng, W., Wang, H., Wang, W., & Wang, M. (2019). Thermal Analysis and Improvements of the Power Battery Pack with Liquid Cooling for Electric Vehicles. Energies, 12(16), 3045. https://doi.org/10.3390/en12163045