Long-Term Electricity Scenarios for the MENA Region: Assessing the Preferences of Local Stakeholders Using Multi-Criteria Analyses
Abstract
:1. Introduction
- Indeed, Brand and Missaoui [18] developed five electricity scenarios combined with a stakeholder-based MCA in Tunisia, that is, applying the same methodology as the one undertaken here. However, their study was conducted against a horizon of 2030 instead of 2050. Several studies apply MCA methodologies for different countries but focus solely on energy production technologies, instead of electricity mix scenarios: Shaaban et al. [19] have studied Egypt, Bohanec et al. [20] Slovenia, Štreimikiene et al. [21] Lithuania and Promentilla et al. [22] the Philippines, for example. Other studies have developed scenarios displaying different electricity mixes in combination with MCA but not for the countries/region in question: Klein and Whalley [23] studied the USA, Santos et al. [24] Portugal, Strantzali et al. [25] a Greek island, Mirjat et al. [26] Pakistan, Santos et al. [27] Brazil and Atilgan and Azapagic [28] Turkey, for instance.
- Alhamwi et al. [29] sought to quantify an optimal mix of renewable power generation in Morocco, using a mismatch energy modelling approach with the aim of minimising the need for storage capacities. Damerau et al. [30] considered three alternative pathways, looking at energy efficiency, carbon intensity and energy exports from the MENA region and studied them with a focus on water demand. However, neither study involved local stakeholders in the development of distinct electricity scenarios against a certain time horizon and did not proceed to rank them based on stakeholders’ preferences with regard to different criteria. Rather, their studies evaluated the pathways against one single criterion respectively: the minimisation of storage capacities or of water use.
2. Methods and Data
2.1. Scenario Development and Modelling
2.2. Identifying Stakeholder Preferences Using Multi-Criteria Analysis
2.2.1. Criteria definition
- Techno-economic criteria: These criteria analyse the technical and economic characteristics of the electricity system. They take electricity production costs, dependency on energy imports and production volatility into consideration.
- -
- System costs: The costs of the electricity system include production, grid extension and storage costs.
- -
- System flexibility: The electricity system’s capacity to react rapidly and flexibly to changes in electricity demand.
- -
- Energy independence: Future capacity of the scenarios to make use of local resources in order to reduce energy dependency.
- Environmental criteria: These criteria analyse the environmental characteristics of the electricity system. They take water consumption, land use, emissions and management of hazardous waste into consideration.
- -
- emissions: Direct emissions of all power plants during the observation period.
- -
- Land use: Soil occupation caused by the operation of all power plants (on-site).
- -
- Water consumption: Direct freshwater consumption during the operation of all power plants (cooling, steam cycle, cleaning).
- -
- Hazardous waste: Quantity and quality of hazardous waste produced by all power plants, including radioactive waste.
- Societal criteria: These criteria analyse the socio-economic characteristics of the electricity system. They take the system’s effects on public health, the risk of serious incidents and the support of the local economy into consideration.
- -
- Contribution to local economy: The scenarios’ capacity to integrate the local economy into the electricity system.
- ∗
- On-site job creation: The scenarios’ capacity to create on-site jobs during the construction and operation of power plants.
- ∗
- Domestic value chain integration: The scenarios’ capacity to encourage the emergence and/or development of national industries and of indirect jobs during the entire life cycle of power plants.
- -
- Safety: The number of fatalities as a result of serious accidents during the operation and maintenance of power plants.
- -
- Air pollution (health): Air quality deterioration resulting from atmospheric pollutants that can bring about health risks.
2.2.2. Evaluation of Scenarios With Regard to the Criteria
2.2.3. The Weighting Process
- a techno-economic group,
- an environmental group,
- a societal group,
- and an equal preference group.
2.2.4. Ranking the Identified Electricity Scenarios
3. Results
3.1. Describing the Scenarios Developed
3.2. Applying an MCA to the Given Scenarios
3.2.1. Results of the Scenario Weighting
3.2.2. Results of the Scenario Ranking
3.3. Comparing the Top-Ranked Scenarios From the Three Study Regions
3.3.1. Top-Ranked Scenarios
3.3.2. A Roadmap to Achieving High Shares of Renewables
3.4. Comparison of Country Results
- The highest preferences were calculated for scenarios from Categories A and B, characterised by high shares of renewable power, especially for 100% renewable scenarios (if available from the respective range of scenarios).
- Lower preference values were calculated for Categories C and D scenarios, which assumed that conventional fossil-based power would continue to play an important role in the decades to come.
- In most cases, nuclear power had already been excluded during the stage of scenario definition. The only scenario that discussed nuclear power (”Mix including nuclear”, in Jordan) ended up receiving the lowest preference results.
- With regard to renewables, most scenarios (especially the top-ranked ones) feature a diverse mix of different renewable power sources instead of deploying single technologies such as only wind power or only CSP.
4. Discussion
4.1. MCA Methodology
4.2. High Electricity and Capacity Demand
4.3. Stakeholder Preferences
4.4. Strategic Decisions
4.5. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
Abbreviations
AHP | Analytical Hierarchy Process |
carbon dioxide | |
CSP | Concentrating Solar Power |
cts | Euro cents |
IPCC | Intergovernmental Panel on Climate Change |
JAEC | Jordan Atomic Energy Commission |
LCOE | levelised cost of electricity |
MCA | Multi-Criteria Analysis |
MENA SELECT | Middle East North Africa Sustainable ELECtricity Trajectories |
MENA | Middle East and North Africa |
NDC | Nationally Determined Contribution |
NGO | Non-Governmental Organisation |
PROMETHEE | Preference Ranking Organization Method for Enrichment of Evaluations |
PV | Photovoltaic |
renpassG!S | Renewable Energy Pathway Simulation System GIS |
SRREN | Special Report on Renewable Energy Sources and Climate Change Mitigation |
ST | Sustainability Transitions |
TOPSIS | Technique for Order of Preference by Similarity to Ideal Solution |
WI | Wuppertal Institute for Climate, Environment and Energy |
WSM | Weighted Sum Model |
Appendix A. Installed Capacity, CO2 Emissions and LCOE in the Developed Scenarios
Appendix A.1. Morocco, 2050
Ranking Result | Rank 1 | Rank 2 | Rank 3 | Rank 4 | |
---|---|---|---|---|---|
Technology | Unit | 100% Renewable | Mix 1 | Mix 2 | PV |
Category A | Category B | Category B | Category B | ||
Renewable | |||||
Wind power | MW | 45,000 | 35,000 | 40,000 | 10,000 |
PV | MW | 30,000 | 15,000 | 10,000 | 50,000 |
Hydro power | MW | 3100 | 3100 | 3100 | 3100 |
Biomass | MW | 5000 | 3000 | 3000 | 0 |
CSP | MW | 2000 | 2000 | 1500 | 1300 |
Conventional | |||||
Coal | MW | 0 | 5000 | 6000 | 4937 |
Oil | MW | 0 | 741 | 741 | 741 |
Gas | MW | 0 | 500 | 6172 | 6172 |
Total | MW | 85,100 | 69,341 | 70,513 | 76,250 |
PHS (pump) | MW | 10,000 | 9000 | 10,000 | 23,906 |
PHS (turbine) | MW | 17,926 | 9635 | 7511 | 14,283 |
CO2 | Mt/a | 0.0 | 18.5 | 19.1 | 29.3 |
LCOE | cts/kWh | 9.73 | 8.56 | 8.61 | 9.44 |
Appendix A.2. Jordan, 2050
Ranking Result | Rank 1 | Rank 2 | Rank 3 | Rank 4 | Rank 5 | |
---|---|---|---|---|---|---|
Technology | Unit | No Imports | Medium RE + gas | RE + gas | Current Plans + gas | Mix Incl. Nuclear |
Category B | Category D | Category D | Category D | Category C | ||
Renewable | ||||||
Wind power | MW | 15,000 | 3000 | 4000 | 1200 | 8000 |
PV | MW | 25,000 | 3500 | 4000 | 1000 | 9000 |
Geothermal | MW | 3500 | 0 | 0 | 0 | 750 |
Hydro power | MW | 500 | 12 | 12 | 12 | 250 |
Biomass | MW | 5000 | 1500 | 90 | 90 | 700 |
CSP | MW | 20,000 | 2000 | 2000 | 0 | 5000 |
Conventional | ||||||
Nuclear | MW | 0 | 0 | 0 | 0 | 2000 |
Coal | MW | 0 | 0 | 0 | 0 | 1000 |
Oil | MW | 5000 | 470 | 470 | 470 | 1500 |
Gas | MW | 4000 | 16,000 | 17,500 | 18,000 | 12,000 |
Total | MW | 78,000 | 26,482 | 28,072 | 20,772 | 40,200 |
Batteries | GWh | 40.0 | 2.0 | 2.0 | 0 | 9.0 |
(energy) | ||||||
Batteries | MW | 18,000 | 900 | 900 | 0 | 5,187 |
(power) | ||||||
CO2 | Mt/a | 0.3 | 18.4 | 20.6 | 26.7 | 15.2 |
LCOE | cts/kWh | 28.19 | 9.99 | 10.08 | 9.52 | 13.68 |
Appendix A.3. Tunisia, 2050
Ranking Result | Rank 1 | Rank 2 | Rank 3 | Rank 4 | |
---|---|---|---|---|---|
Technology | Unit | 5 GW mix | Mix | Mix + solar | Solar + gas |
Category A | Category B | Category B | Category C | ||
Renewable | |||||
Wind power | MW | 5000 | 7000 | 1755 | 1755 |
PV | MW | 5000 | 6000 | 10,000 | 5000 |
Geothermal | MW | 5000 | 500 | 500 | 0 |
Hydro power | MW | 63 | 63 | 63 | 63 |
Biomass | MW | 5000 | 1000 | 1000 | 100 |
CSP | MW | 5000 | 1500 | 5000 | 1500 |
Conventional | |||||
Coal | MW | 0 | 0 | 0 | 0 |
Oil | MW | 0 | 0 | 0 | 0 |
Gas | MW | 0 | 8000 | 8000 | 9500 |
Total | MW | 25,063 | 24,063 | 26,318 | 17,918 |
PHS (pump) | MW | 400 | 400 | 400 | 400 |
PHS (turbine) | MW | 400 | 400 | 400 | 400 |
CO2 | Mt/a | 0.0 | 7.24 | 6.90 | 14.01 |
LCOE | cts/kWh | 16.46 | 8.96 | 11.76 | 9.47 |
Appendix B. Resulting Weightings in the Country Workshops
Appendix B.1. Morocco
Techno-Economic Group | Environ-Mental Group | Societal Group | Equal Preference Group | Consensus | |
---|---|---|---|---|---|
System costs | 16 | 1 | 14 | 20 | 16 |
System flexibility | 5 | 2 | 6 | 10 | 12 |
Energy independence | 51 | 8 | 52 | 42 | 25 |
emissions | 1 | 6 | 1 | 1 | 4 |
Land use | 1 | 3 | 1 | 1 | 1 |
Water consumption | 6 | 40 | 6 | 9 | 12 |
Hazardous waste | 6 | 16 | 6 | 3 | 4 |
On-site job creation | 3 | 1 | 1 | 2 | 6 |
Local value chain integration | 8 | 6 | 3 | 8 | 11 |
Safety | 2 | 3 | 3 | 2 | 3 |
Air pollution (health) | 2 | 17 | 8 | 3 | 6 |
Appendix B.2. Jordan
Techno-Economic Group | Environ-Mental Group | Societal Group | Equal Preference Group | Arithmetic Mean | |
---|---|---|---|---|---|
System costs | 15 | 2 | 1 | 3 | 4 |
System flexibility | 21 | 2 | 4 | 1 | 5 |
Energy independence | 31 | 2 | 9 | 10 | 12 |
emissions | 1 | 24 | 1 | 4 | 4 |
Land use | 0 | 3 | 1 | 3 | 2 |
Water consumption | 4 | 24 | 1 | 4 | 4 |
Hazardous waste | 4 | 24 | 5 | 24 | 14 |
On-site job creation | 1 | 0 | 4 | 1 | 1 |
Local value chain integration | 4 | 1 | 1 | 3 | 3 |
Safety | 15 | 15 | 46 | 13 | 27 |
Air pollution (health) | 5 | 4 | 20 | 26 | 14 |
Appendix B.3. Tunisia
Techno-Economic Group | Environ-Mental Group | Societal Group | Equal Preference Group | Consensus | |
---|---|---|---|---|---|
System costs | 49 | 2 | 2 | 3 | 13 |
System flexibility | 8 | 2 | 8 | 9 | 11 |
Energy independence | 20 | 6 | 18 | 21 | 16 |
emissions | 2 | 9 | 5 | 4 | 6 |
Land use | 1 | 3 | 2 | 2 | 2 |
Water consumption | 5 | 35 | 5 | 8 | 13 |
Hazardous waste | 10 | 16 | 2 | 18 | 12 |
On-site job creation | 0 | 3 | 2 | 2 | 5 |
Local value chain integration | 1 | 3 | 5 | 8 | 5 |
Safety | 4 | 3 | 37 | 5 | 4 |
Air pollution (health) | 1 | 16 | 15 | 19 | 13 |
References
- British Petroleum. BP Energy Outlook 2018; Report; British Petroleum: London, UK, 2018. [Google Scholar]
- McKee, M.; Keulertz, M.; Habibi, N.; Mulligan, M.; Woertz, E. Demographic and Economic Material Factors in the MENA Region; Working Paper; IAI: Roma, Italy, 2017. [Google Scholar]
- Waha, K.; Krummenauer, L.; Adams, S.; Aich, V.; Baarsch, F.; Coumou, D.; Fader, M.; Hoff, H.; Jobbins, G.; Marcus, R.; et al. Climate change impacts in the Middle East and Northern Africa (MENA) region and their implications for vulnerable population groups. Reg. Environ. Chang. 2017, 17, 1623–1638. [Google Scholar] [CrossRef]
- Schinke, B.; Klawitter, J.; Zejli, D.; Barradi, T.; Garcia, I.; Leidreiter, A. Background Paper: Country Fact Sheet Morocco. Energy and Development at a Glance 2016. Project: Middle East North Africa Sustainable ELECtricity Trajectories (MENA-SELECT); Germanwatch, Bonn International Center for Conversion GmbH (bicc): Bonn, Germany, 2016. [Google Scholar]
- Ministère de l’Industrie de la République Tunisienne. Débat National Stratégie Energétique—Horizon 2030; Ministère de l’Industrie de la République Tunisienne: Tunis, Tunisia, 2013.
- Jordanian Ministry of Energy & Mineral Resources. Annual Report 2015; Jordanian Ministry of Energy & Mineral Resources: Amman, Jordan, 2015.
- Jordanian Ministry of Energy & Mineral Resources. Annual Report 2017; Jordanian Ministry of Energy & Mineral Resources: Amman, Jordan, 2017.
- Mitchell, T. Carbon democracy. Econ. Soc. 2009, 38, 399–432. [Google Scholar] [CrossRef]
- Szeman, I.; Boyer, D. Energy Humanities: An Anthology; Johns Hopkins University Press: Baltimore, MA, USA, 2017. [Google Scholar]
- Loorbach, D.; Frantzeskaki, N.; Avelino, F. Sustainability Transitions Research: Transforming Science and Practice for Societal Change. Ann. Rev. Environ. Resour. 2017, 42, 599–626. [Google Scholar] [CrossRef]
- Rip, A.; Kemp, R.; Schaeffer, G.J.; van Lente, H. Technological Change. In Human Choice and Climate Change; Rayner, S., Malone, E., Eds.; Battelle Press: Columbus, OH, USA, 1997; Volume II, pp. 327–399. [Google Scholar]
- Geels, F.W. Technological transitions as evolutionary reconfiguration processes: A multi-level perspective and a case-study. Res. Policy 2002, 31, 1257–1274. [Google Scholar] [CrossRef]
- Smith, A.; Voss, J.P.; Grin, J. Innovation studies and sustainability transitions: The allure of the multi-level perspective and its challenges. Res. Policy 2010, 39, 435–448. [Google Scholar] [CrossRef]
- Rotmans, J.; Kemp, R.; van Asselt, M. More evolution than revolution: transition management in public policy. Foresight 2001, 3, 15–31. [Google Scholar] [CrossRef]
- Loorbach, D. Transition Management for Sustainable Development: A Prescriptive, Complexity-Based Governance Framework. Gov. Int. J. Policy Adm. Ins. 2010, 23, 161–183. [Google Scholar] [CrossRef]
- Markard, J.; Raven, R.; Truffer, B. Sustainability transitions: An emerging field of research and its prospects. Res. Policy 2012, 41, 955–967. [Google Scholar] [CrossRef]
- Sovacool, B.K. What are we doing here? Analyzing fifteen years of energy scholarship and proposing a social science research agenda. Energy Res. Soc. Sci. 2014, 1, 1–29. [Google Scholar] [CrossRef]
- Brand, B.; Missaoui, R. Multi-criteria analysis of electricity generation mix scenarios in Tunisia. Renew. Sustain. Energy Rev. 2014, 39, 251–261. [Google Scholar] [CrossRef] [Green Version]
- Shaaban, M.; Scheffran, J.; Böhner, J.; Elsobki, M. Sustainability assessment of electricity generation technologies in Egypt using multi-criteria decision analysis. Energies 2018, 11, 1117. [Google Scholar] [CrossRef]
- Bohanec, M.; Trdin, N.; Kontić, B. A qualitative multi-criteria modelling approach to the assessment of electric energy production technologies in Slovenia. Cent. Eur. J. Oper. Res. 2017, 25, 611–625. [Google Scholar] [CrossRef]
- Štreimikiene, D.; Šliogeriene, J.; Turskis, Z. Multi-criteria analysis of electricity generation technologies in Lithuania. Renew. Energy 2016, 85, 148–156. [Google Scholar] [CrossRef]
- Promentilla, M.; Tapia, J.; Aviso, K.; Tan, R. Optimal selection of Low carbon technologies using a Stochastic Fuzzy multi-criteria decision modelling approach. Chem. Eng. Trans. 2017, 61, 253–258. [Google Scholar] [CrossRef]
- Klein, S.; Whalley, S. Comparing the sustainability of U.S. electricity options through multi-criteria decision analysis. Energy Policy 2015, 79, 127–149. [Google Scholar] [CrossRef]
- Santos, M.; Ferreira, P.; Araújo, M. Multicriteria scenario analysis on electricity production. In Proceedings of the 2015 12th International Conference on the European Energy Market (EEM), Lisbon, Portugal, 19–22 May 2015. [Google Scholar] [CrossRef]
- Strantzali, E.; Aravossis, K.; Livanos, G. Evaluation of future sustainable electricity generation alternatives: The case of a Greek island. Renew. Sustain. Energy Rev. 2017, 76, 775–787. [Google Scholar] [CrossRef]
- Mirjat, N.; Uqaili, M.; Harijan, K.; Mustafa, M.; Rahman, M.; Khan, M. Multi-criteria analysis of electricity generation scenarios for sustainable energy planning in Pakistan. Energies 2018, 11, 757. [Google Scholar] [CrossRef]
- Santos, M.; Ferreira, P.; Araújo, M.; Portugal-Pereira, J.; Lucena, A.; Schaeffer, R. Scenarios for the future Brazilian power sector based on a multi-criteria assessment. J. Clean. Prod. 2018, 167, 938–950. [Google Scholar] [CrossRef]
- Atilgan, B.; Azapagic, A. Energy challenges for Turkey: Identifying sustainable options for future electricity generation up to 2050. Sustain. Prod. Consum. 2017, 12, 234–254. [Google Scholar] [CrossRef] [Green Version]
- Alhamwi, A.; Kleinhans, D.; Weitemeyer, S.; Vogt, T. Optimal mix of renewable power generation in the MENA region as a basis for an efficient electricity supply to europe. EDP Sci. 2014, 79. [Google Scholar] [CrossRef]
- Damerau, K.; van Vliet, O.; Patt, A. Direct impacts of alternative energy scenarios on water demand in the Middle East and North Africa. Clim. Chang. 2015, 130, 171–183. [Google Scholar] [CrossRef]
- Berg, M.; Bohm, S.; Fink, T.; Komendantova, N.; Soukup, O. Summary of Workshop Results: Scenario Development and Multi-Criteria Analysis for Morocco’s Future Electricity System in 2050; Europa-Universitat Flensburg, Wuppertal Institute, International Institute for Applied Systems Analysis: Flensburg, Germany, 2016. [Google Scholar]
- Amroune, S.; Blohm, M.; Bohm, S.; Komendantova, N.; Soukup, O. Summary of Workshop Results: Scenario Development and Multi-Criteria Analysis for Jordan’s Future Electricity System in 2050; Europa-Universitat Flensburg, Wuppertal Institute, International Institute for Applied Systems Analysis: Flensburg, Germany, 2018. [Google Scholar]
- Amroune, S.; Blohm, M.; Bohm, S.; Far, S.; Zelt, O. Summary of Workshop Results: Scenario Development and Multi-Criteria Analysis for Tunisia’s Future Electricity System in 2050; Europa-Universitat Flensburg, Wuppertal Institute, International Institute for Applied Systems Analysis: Flensburg, Germany, 2018. [Google Scholar]
- Wiese, F. Renpass Renewable Energy Pathways Simulation System. Manual; Europa-Universität Flensburg: Flensburg, Germany, 2014. [Google Scholar]
- Wiese, F. renpass Renewable Energy Pathways Simulation System. Open Source as an Approach to Meet Challenges in Energy Modeling. Ph.D. Thesis, Europa-Universität Flensburg, Flensburg, Germany, 2015. [Google Scholar]
- Bohm, S. OEMoF and RenpassG!S. The fRamework and the Model. Mena Select Capacity Building Workshop, University of Jordan, Amman, 09.03.2017; Europa-Universität Flensburg: Flensburg, Germany, 2017. [Google Scholar]
- Wiese, F.; Hilpert, S.; Kaldemeyer, C.; Pießmann, G. A qualitative evaluation approach for energy system modelling frameworks. Energy Sustain. Soc. 2018, 8. [Google Scholar] [CrossRef]
- Christ, M.; Wiese, F.; Degel, M. Broadening the Energy Pathway Map: Integration of Socio-Ecological Dimensions into Techno-Economic Modeling; Europa-Universität Flensburg: Flensburg/Berlin, Germany, 2016. [Google Scholar]
- Sachverständigenrat für Umweltfragen (SRU). Wege zur 100% Erneuerbaren Stromversorgung. Sondergutachten; Sachverständigenrat für Umweltfragen (SRU): Berlin, Germany, 2011. [Google Scholar]
- Scholz, Y. Möglichkeiten und Grenzen der Integration Verschiedener Regenerativer Energiequellen zu einer 100% Regenerativen Stromversorgung der Bundesrepublik Deutschland bis zum Jahr 2050. Endbericht. Erstellt für den Sachverständigenrat für Umwelfragen; Deutsches Zentrum für Luft- und Raumfahrt (DLR), Sachverständigenrat für Umweltfragen (SRU): Stuttgart/Berlin, Germany, 2010. [Google Scholar]
- National Aeronautics and Space Administration (NASA), Global Modeling and Assimilation Office. Modern-Era Retrospective Analysis for Research and Applications, Version 2; National Aeronautics and Space Administration (NASA), Global Modeling and Assimilation Office: Washington, DC, USA, 2016. Available online: http://gmao.gsfc.nasa.gov/reanalysis/MERRA-2/ (accessed on 12 April 2016).
- National Renewable Energy Laboratory (NREL). System Advisory Model SAM. Financial Metrics: Levelized Cost of Energy (LCOE); National Renewable Energy Laboratory (NREL): Golden, CO, USA, 2016. Available online: https://www.nrel.gov/analysis/sam/help/html-php/index.html?mtf_lcoe.htm (accessed on 12 April 2016).
- Nørgaard, P.; Holttinen, H. A multi-turbine power curve approach. In Proceedings of the 4th Nordic Wind Power Conference (NWPC’04), Gothenburg, Sweden, 1–4 March 2004; pp. D1–D5. [Google Scholar]
- Zopounidis, C.; Pardalos, P.M. Handbook of Multicriteria Analysis, 1st ed.; Applied Optimization; Springer: Berlin/Heidelberg, Germany, 2010. [Google Scholar]
- Wang, J.J.; Jing, Y.Y.; Zhang, C.F.; Zhao, J.H. Review on multi-criteria decision analysis aid in sustainable energy decision-making. Renew. Sustain. Energy Rev. 2009, 13, 2263–2278. [Google Scholar] [CrossRef]
- Schinke, B.; Klawitter, J.; Döring, M.; Komendantova, N.; Irshaid, J.; Bayer, J. Working Paper—Electricity Planning for Sustainable Development in the MENA Region. Criteria and Indicators for Conducting a Sustainability Assessment of Different Electricity Generation Technologies in Morocco, Jordan and Tunisia; Germanwatch: Bonn, Germany; IIASA: Laxenburg, Austria, 2018. [Google Scholar]
- Saaty, T.L. Decision making with the analytic hierarchy process. Int. J. Serv. Sci. 2008, 1, 83–98. [Google Scholar] [CrossRef]
- Trieb, F.; Hass, D.; Kern, J.; Fichter, T.; Moser, M.; Pfenning, U.; Caldez, N.; de la Rua, C.; Türk, A.; Frieden, D.; et al. Bringing Europe and Third Countries Closer Together through Renewable Energies (BETTER); Deutsches Zentrum für Luft und Raumfahrt (DLR): Köln, Germany, 2015. [Google Scholar]
- Fichter, T.; Kern, J.; Trieb, F. The challenges of Jordan’s electricity sector. In Jordanien und Deutschland—Über die Vielfalt kultureller Brücken. Festschrift zum 50jährigen Bestehen der Deutsch-Jordanischen Gesellschaft e.V.; Präsidium der Deutsch-Jordanischen Gesellschaft e.V.: Cloppenburg, Germany, 2013; pp. 199–204. [Google Scholar]
- United Nations Conference on Trade and Development (UNCTAD). Development Status Groups and Composition; United Nations Conference on Trade and Development (UNCTAD): Geneva, Switzerland, 2018. [Google Scholar]
- Office National de l’Electricité et de l’Eau Potable du Maroc. Rapport d’Aktivités 2014; Office National de l’Electricité et de l’Eau Potable du Maroc: Rabat, Morocco, 2014. [Google Scholar]
- Office National de l’Electricité et de l’Eau Potable du Maroc. Rapport d’Activités 2016; Office National de l’Electricité et de l’Eau Potable du Maroc: Rabat, Morocco, 2016. [Google Scholar]
- United Nations Framework Convention on Climate Change (UNFCCC). Paris Agreement; UNFCCC: Bonn, Germany, 2015. [Google Scholar]
- Central Inteligent Agency (CIA). The World Factbook Morocco; Central Inteligent Agency (CIA): Langley, VA, USA, 2018.
- National Electric Power Co. (NEPCO). Annual Report 2014; National Electric Power Co. (NEPCO): Amman, Jorda, 2014. [Google Scholar]
- Central Inteligent Agency (CIA). Country Comparison: Natural Gas—Proved Reserves; Central Inteligent Agency (CIA): Langley, VA, USA, 2017. [Google Scholar]
- Société Tunisienne de l’Electricité et du Gaz. Rapport Annuel 2014; Société Tunisienne de l’Electricité et du Gaz: Tunis, Tunisia, 2014. [Google Scholar]
- El Khazen, A. Le Cadre Tunisien de Développement des Energies Renouvelables; Agence Nationale pour la Mâtrise de l’Energie (ANME): Tunis, Tunisia, 2017. [Google Scholar]
- Renewable Energy Solutions for the Mediterranean (RES4MED). Country Profiles Tunisia; Renewable Energy Solutions for the Mediterranean (RES4MED): Roma, Italy, 2016. [Google Scholar]
- Agence Nationale pour la Mâtrise de l’Energie (ANME). Nouvelle Version du Plan Solaire Tunisien. Programmation, Conditions et Moyens de Mise en œuvre; Agence Nationale pour la Mâtrise de l’Energie (ANME): Tunis, Tunisia, 2012. [Google Scholar]
- Sahara Wind. De la Genèse des Phosphates à une Transition Energétique: vers un Maroc Esportateur d’Energie Eolienne à Grande Echelle; Sahara Wind: Rabat, Morocco, 2016. [Google Scholar]
- Enefit. Oil Shale in Jordan. 2018. Available online: https://www.enefit.jo/en/oilshale/in-jordan (accessed on 14 May 2019).
- Harris, J.M.; Roach, B. Environmental and Natural Resource Economics. A Contemporary Approach; Routledge: New York, NY, USA; London, UK, 2018; Volume 4. [Google Scholar]
- Dettner, F. External Cost of Energy Generation in Morocco. Master’s Thesis, Europa-Universität Flensburg, Flensburg, Germany, 2018. [Google Scholar]
- Maas, H. Towards CO2eq-Neutral Cities: A Participatory Approach Using Backcasting and Transition Management. Ph.D. Thesis, University Flensburg, Flensburg, Germany, 2014. [Google Scholar]
- Komendantova, N.; Irshaid, J.; Marashdeh, L.; Al-Salaymeh, A.; Ekenberg, L.; Linnerooth-Bayer, J. Background Paper: Country Fact Sheet, Jordan. Energy and Development at a Glance; Bonn International Center for Conversion: Bonn, Germany, 2017. [Google Scholar]
- The World Bank. World Development Indicators; The World Bank: Washington, DC, USA, 2018. [Google Scholar]
- Crawford, G.; Williams, C. A note on the analysis of subjective judgment matrices. J. Math. Psychol. 1985, 29, 387–405. [Google Scholar] [CrossRef]
- Viebahn, P.; Soukup, O.; Samadi, S.; Teubler, J.; Wiesen, K.; Ritthoff, M. Assessing the need for critical minerals to shift the German energy system towards a high proportion of renewables. Renew. Sustain. Energy Rev. 2015, 49, 655–671. [Google Scholar] [CrossRef] [Green Version]
- Teske, S. (Ed.) Achieving the Paris Climate Agreement Goals: Global and Regional 100% Renewable Energy Scenarios with Non-Energy GHG Pathways for +1.5 °C and +2 °C; Springer International Publishing: Basel, Switzerland, 2019. [Google Scholar]
- Palzer, A.; Henning, H.M. A comprehensive model for the German electricity and heat sector in a future energy system with a dominant contribution from renewable energy technologies—Part II: Results. Renew. Sustain. Energy Rev. 2014, 30, 1019–1034. [Google Scholar] [CrossRef]
- Blakers, A.; Lu, B.; Stocks, M. 100% renewable electricity in Australia. Energy 2017, 133, 471–482. [Google Scholar] [CrossRef]
- Connolly, D.; Lund, H.; Mathiesen, B.V. Smart Energy Europe: The technical and economic impact of one potential 100% renewable energy scenario for the European Union. Renew. Sustain. Energy Rev. 2016, 60, 1634–1653. [Google Scholar] [CrossRef]
- Brown, T.W.; Bischof-Niemz, T.; Blok, K.; Breyer, C.; Lund, H.; Mathiesen, B.V. Response to ‘Burden of proof: A comprehensive review of the feasibility of 100% renewable-electricity systems’. Renew. Sustain. Energy Rev. 2018, 92, 834–847. [Google Scholar] [CrossRef]
- IPCC. IPCC Special Report on Renewable Energy Sources and Climate Change Mitigation. Prepared by Working Group III of the Intergovernmental Panel on Climate Change; Technical Report; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2011. [Google Scholar]
- Krey, V.; Clarke, L. Role of renewable energy in climate mitigation: A synthesis of recent scenarios. Clim. Policy 2011, 11, 1131–1158. [Google Scholar] [CrossRef]
- World Nuclear Association. Nuclear Power in Jordan; World Nuclear Association: London, UK, 2019. [Google Scholar]
Category | Criterion | Sub-Criterion |
---|---|---|
Techno-economic criteria | System costs | |
System flexibility | ||
Energy independence | ||
Environmental criteria | emissions | |
Land use | ||
Water consumption | ||
Hazardous waste | ||
Societal criteria | Contribution to local economy | On-site job creation |
Domestic value chain integration | ||
Safety | ||
Air pollution (health) |
Scenario Name (Category) | Techno-Economic Group | Environ-mental Group | Societal Group | Equal Preference Group | Group Average | Consensus |
---|---|---|---|---|---|---|
100% renewable (Category A) | 1 | 1 | 1 | 1 | 1 | 1 |
Mix 2 (Category B) | 2 | 2 | 2 | 2 | 2 | 3 |
Mix 1 (Category B) | 3 | 3 | 3 | 3 | 3 | 2 |
PV (Category B) | 4 | 4 | 4 | 4 | 4 | 4 |
Scenario Name (Category) | Techno-Economic Group | Environ-Mental Group | Societal Group | Equal Preference Group | Group Average |
---|---|---|---|---|---|
No imports (Category B) | 1 | 1 | 1 | 1 | 1 |
Medium RE + gas (Category D) | 2 | 2 | 2 | 3 | 2 |
RE + gas (Category D) | 3 | 3 | 3 | 4 | 3 |
Current plan + gas (Category D) | 4 | 4 | 4 | 5 | 4 |
Mix including nuclear (Category C) | 5 | 5 | 5 | 2 | 5 |
Scenario Name (Category) | Techno-Economic Group | Environ-Mental Group | Societal Group | Equal Preference Group | Group Average | Consensus |
---|---|---|---|---|---|---|
5 GW mix (Category A) | 4 | 1 | 1 | 1 | 1 | 1 |
Mix (Category B) | 1 | 2 | 3 | 3 | 2 | 2 |
Mix + solar (Category B) | 3 | 3 | 2 | 2 | 3 | 3 |
Solar + gas (Category C) | 2 | 4 | 4 | 4 | 4 | 4 |
Countries | Morocco | Jordan | Tunisia | |||
---|---|---|---|---|---|---|
Scenario | 100% renewable | No imports | 5 GW mix | |||
Capacity (MW) | Energy (TWh/year) | Capacity (MW) | Energy (TWh/year) | Capacity (MW) | Energy (TWh/year) | |
Wind power | 45,000 | 126.6 | 15,000 | 30.4 | 5000 | 12.6 |
PV | 30,000 | 43.6 | 25,000 | 44.1 | 5000 | 8.7 |
Geothermal | 0 | 0 | 3500 | 19.3 | 5000 | 27.5 |
Hydro power | 3100 | 1.0 | 500 | 0.0 | 63 | 0.1 |
Biomass | 5000 | 20.0 | 5000 | 16.7 | 5000 | 21.4 |
CSP | 2000 | 2.4 | 20,000 | 6.5 | 5000 | 0.2 |
Coal | 0 | 0 | 0 | 0 | 0 | 0 |
Oil | 0 | 0 | 5000 | 0.3 | 0 | 0 |
Gas | 0 | 0 | 4000 | 0.0 | 0 | 0 |
Total | 85,100 | 193.7 | 74,000 | 117.4 | 25,063 | 70.5 |
LCOE (Euro cts/kWh) | 9.73 | 28.19 | 16.46 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zelt, O.; Krüger, C.; Blohm, M.; Bohm, S.; Far, S. Long-Term Electricity Scenarios for the MENA Region: Assessing the Preferences of Local Stakeholders Using Multi-Criteria Analyses. Energies 2019, 12, 3046. https://doi.org/10.3390/en12163046
Zelt O, Krüger C, Blohm M, Bohm S, Far S. Long-Term Electricity Scenarios for the MENA Region: Assessing the Preferences of Local Stakeholders Using Multi-Criteria Analyses. Energies. 2019; 12(16):3046. https://doi.org/10.3390/en12163046
Chicago/Turabian StyleZelt, Ole, Christine Krüger, Marina Blohm, Sönke Bohm, and Shahrazad Far. 2019. "Long-Term Electricity Scenarios for the MENA Region: Assessing the Preferences of Local Stakeholders Using Multi-Criteria Analyses" Energies 12, no. 16: 3046. https://doi.org/10.3390/en12163046
APA StyleZelt, O., Krüger, C., Blohm, M., Bohm, S., & Far, S. (2019). Long-Term Electricity Scenarios for the MENA Region: Assessing the Preferences of Local Stakeholders Using Multi-Criteria Analyses. Energies, 12(16), 3046. https://doi.org/10.3390/en12163046