Two-in-One Fuel Synthetic Bioethanol-Lignin from Lignocellulose with Sewage Sludge and Its Air Pollutants Reduction Effects
Abstract
:1. Introduction
2. Experimental Section
2.1. Experimental Materials
2.2. Production of Bioethanol-Lignin Solution
2.3. Preparation of HSF
2.4. Characterization of HSF
3. Results and Discussion
3.1. Fuel Characteristics of HSF
3.2. Combustion Behaviors of HSF at Low Temperature
3.3. Air Pollutants Emissions of HSF
3.4. Ash and Heavy Metal Characterizations
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Akdag, A.S.; Atak, O.; Atomtay, A.T.; Sanin, F.D. Co-combustion of sewage sludge from different treatment processes and a lignite coal in a laboratory scale combustor. Energy 2018, 158, 417–426. [Google Scholar] [CrossRef]
- Cieslik, B.M.; Namiesnik, J.; Konieczka, P. Review of sewage sludge management: Standards, regulations and analytical methods. J. Clean. Prod. 2015, 90, 1–15. [Google Scholar] [CrossRef]
- Huang, L.; Xie, C.; Liu, J.; Zhang, X.; Chang, K.; Kuo, J.; Sun, J.; Xie, W.; Zheng, L.; Sun, S.; et al. Influence of catalysts on co-combustion of sewage sludge and water hyacinth blends as determined by TG-MS analysis. Bioresour. Technol. 2018, 247, 217–225. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Hong, C.; Xing, Y.; Li, Y.; Feng, L.; Jia, M. Combustion behaviors and kinetics of sewage sludge blended with pulverized coal: With and without catalysts. Waste Manag. 2018, 74, 288–296. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.; Song, H.; Wu, J. Thermogravimetric study and kinetic analysis of dried industrial sludge pyrolysis. Waste Manag. 2015, 41, 128–133. [Google Scholar] [CrossRef] [PubMed]
- Niu, S.; Chen, M.; Li, Y.; Xue, F. Evaluation on the oxy-fuel combustion behavior of dried sewage sludge. Fuel 2016, 175, 129–138. [Google Scholar] [CrossRef]
- Korea National Information System. Available online: https://www.hasudoinfo.or.kr (accessed on 3 August 2019).
- Ma, J.; Wang, Z.; Zhu, C.; Xu, Y.; Wu, Z. Electrogenesis reduces the combustion efficiency of sewage sludge. Appl. Energy 2014, 114, 283–289. [Google Scholar] [CrossRef]
- Syed-Hassan, S.S.A.; Wang, Y.; Hu, S.; Su, S.; Xiang, J. Thermochemical processing of sewage sludge to energy and fuel: Fundamentals challenges and considerations. Renew. Sustain. Energy Rev. 2017, 80, 888–913. [Google Scholar] [CrossRef]
- Hao, Z.; Yang, B.; Jahng, D. Combustion characteristics of biodried sewage sludge. Waste Manag. 2018, 72, 296–305. [Google Scholar] [CrossRef]
- Folgueras, M.B.; Alonso, M.; Diaz, R.M. Influence of sewage sludge treatment on pyrolysis and combustion of dry sludge. Energy 2013, 55, 426–435. [Google Scholar] [CrossRef]
- Jingmin, H.; Changqing, X.; Jinglan, H.; Xianfeng, T.; Wei, C. Life cycle assessment of sewage sludge co-incineration in a coal-based power station. Waste Manag. 2013, 33, 1843–1852. [Google Scholar]
- Yoshida, T.; Antal, M.J. Sewage sludge carbonization for terra preta applications. Energy Fuels 2009, 23, 5454–5459. [Google Scholar] [CrossRef]
- Rulkens, W. Sewage sludge as a biomass resource for the production of energy: Overview and assessment of the various options. Energy Fuels 2007, 22, 9–15. [Google Scholar] [CrossRef]
- Cao, Y.; Pawlowski, A. Sewage sludge-to-energy approaches based on anaerobic digestion and pyrolysis: Brief overview and energy efficiency assessment. Renew. Sustain. Energy Rev. 2012, 16, 1657–1665. [Google Scholar] [CrossRef]
- Calvo, A.I.; Tarelho, L.A.C.; Teixeira, E.R.; Alves, C.; Nunes, T.; Duarte, M.; Coz, E.; Custodio, D.; Castro, A.; Artinano, B.; et al. Particulate emissions from the co-combustion of forest biomass and sewage sludge in a bubbling fluidised bed reactor. Fuel Process. Technol. 2013, 114, 58–68. [Google Scholar] [CrossRef]
- Han, X.; Niu, M.; Jiang, X.; Liu, J. Combustion characteristics of sewage sludge in a fluidized bed. Ind. Eng. Chem. Res. 2012, 51, 10565–10570. [Google Scholar] [CrossRef]
- Wzorek, M. Characterisation of the properties of alternative fuels containing sewage sludge. Fuel Process. Technol. 2012, 104, 80–89. [Google Scholar] [CrossRef]
- Kacprzak, M.; Neczaj, E.; Fijalkowski, K.; Grobelak, A.; Grosser, A.; Worwag, M.; Rorat, A.; Brattebo, H.; Almas, A.; Singh, B.R. Sewage sludge disposal strategies for sustainable development. Environ. Res. 2017, 156, 39–46. [Google Scholar] [CrossRef]
- Zhai, Y.; Peng, C.; Xu, B.; Wang, T.; Li, C.; Zeng, G.; Zhu, Y. Hydrothermal carbonisation of sewage sludge for char production with different waste biomass: Effects of reaction temperature and energy recycling. Energy 2017, 127, 167–174. [Google Scholar] [CrossRef]
- Kim, D.; Lee, K.; Park, K.Y. Hydrothermal carbonization of anaerobically digested sludge for solid fuel production and energy recovery. Fuel 2014, 130, 120–125. [Google Scholar] [CrossRef]
- Zhao, P.; Shen, Y.; Ge, S.; Yoshikawa, K. Energy recycling from sewage sludge by producing solid biofuel with hydrothermal carbonization. Energy Convers. Manag. 2014, 78, 815–821. [Google Scholar] [CrossRef] [Green Version]
- He, C.; Giannis, A.; Wang, J.Y. Conversion of sewage sludge to clean solid fuel using hydrothermal carbonization: Hydrochar fuel characteristics and combustion behavior. Appl. Energy 2013, 111, 257–266. [Google Scholar] [CrossRef]
- Ohm, T.-I.; Chae, J.-S.; Kim, J.-E.; Kim, H.-K.; Moon, S.-H. A study on the dewatering of industrial waste sludge by fry-drying technology. J. Hazard. Mater. 2009, 168, 445–450. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; Zhang, J.; Li, Z.; Xie, J.; MuJumdar, A.S. Production of a solid fuel using sewage sludge and spent cooking oil by immersion frying. J. Hazard. Mater. 2012, 243, 357–363. [Google Scholar] [CrossRef] [PubMed]
- Escala, M.; Zumbuhl, T.; Koller, C.; Junge, R.; Krebs, R. Hydrothermal carbonization as an energy-efficient alternative to established drying technologies for sewage sludge: A feasibility study on a laboratory scale. Energy Fuels 2013, 27, 454–460. [Google Scholar] [CrossRef]
- Mumme, J.; Eckervogt, L.; Pielert, J.; Diakite, M.; Rupp, F.; Kern, J. Hydrothermal carbonization of anaerobically digested maize silage. Bioresour. Technol. 2011, 102, 9255–9260. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Xie, C.; Liu, J.; He, Y.; Xie, W.; Zhang, X.; Chang, K.; Kuo, J.; Sun, J.; Zheng, L.; et al. Co-combustion of sewage sludge and coffee grounds under increased O2/CO2 atmospheres: Thermodynamic characteristics, kinetics and artificial neural network modeling. Bioresour. Technol. 2018, 250, 230–238. [Google Scholar] [CrossRef]
- Magdziarz, A.; Wilk, M. Thermogravimetric study of biomass, sewage sludge and coal combustion. Energy Convers. Manag. 2013, 75, 425–430. [Google Scholar] [CrossRef]
- Lee, B.H.; Sh, L.; Bae, J.S.; Choi, Y.C.; Jeon, C.H. Combustion behavior of low-rank coal impregnated with glycerol. Biomass Bioenergy 2016, 87, 122–130. [Google Scholar] [CrossRef]
- Wilk, M.; Magdziarz, A.; Jayaraman, K.; Szymanska-Chargot, M.; Gokalp, I. Hydrothermal carbonization characteristics of sewage sludge and lignocellulosic biomass. A comparative study. Biomass Bioenergy 2019, 120, 166–175. [Google Scholar] [CrossRef]
- Lee, Y.J.; Lee, D.W.; Park, J.H.; Bae, J.S.; Kim, J.G.; Kim, J.H.; Park, S.J.; Jeon, C.H.; Choi, Y.C. Two-in-One Fuel Combining Sewage Sludge and Bioliquid. ACS Sustain. Chem. Eng. 2016, 4, 3276–3284. [Google Scholar] [CrossRef]
- Lee, D.W.; Jin, M.H.; Park, J.H.; Lee, Y.J.; Choi, Y.C. Flexible Synthetic Strategies for Lignin-Derived Hierarchically Porous Carbon Materials. ACS Sustain. Chem. Eng. 2018, 6, 10454–10462. [Google Scholar] [CrossRef]
- Park, J.H.; Lee, Y.J.; Jin, M.H.; Park, S.J.; Lee, D.W.; Bae, J.S.; Kim, J.G.; Song, K.H.; Choi, Y.C. Enhancement of slurryability and heating value of coal water slurry (CWS) by torrefaction treatment of low rank coal (LRC). Fuel 2017, 203, 607–617. [Google Scholar] [CrossRef]
- Nonaka, M.; Hirajima, T.; Sasaki, K. Upgrading of low rank coal and woody biomass mixture by hydrothermal treatment. Fuel 2011, 90, 2578–2584. [Google Scholar] [CrossRef]
- Peng, C.; Zhai, Y.; Zhu, Y.; Xu, B.; Wang, T.; Li, C.; Zeng, G. Production of char from sewage sludge employing hydrothermal carbonization: Char properties, combustion behavior and thermal characteristics. Fuel 2016, 176, 110–118. [Google Scholar] [CrossRef]
- Huang, L.; Liu, J.; He, Y.; Sun, S.; Chen, J.; Sun, J.; Chang, K.; Kuo, J.; Ning, X. Thermodynamics and kinetics parameters of co-combustion between sewage sludge and water hyacinth in CO2/O2 atmosphere as biomass to solid biofuel. Bioresour. Technol. 2016, 218, 631–642. [Google Scholar] [CrossRef] [PubMed]
- Park, J.H.; Lee, D.W.; Lee, Y.J.; Song, G.S.; Jin, M.H.; Park, S.J.; Namkung, H.; Bae, J.S.; Kim, J.G.; Song, K.H.; et al. Preparation and Characterization of the Glycerol-Embedded Hybrid Coal. ACS Sustain. Chem. Eng. 2019, 7, 4637–4646. [Google Scholar] [CrossRef]
- Tsuji, H.; Shirai, H.; Matsuda, H.; Rajoo, P. Emission characteristics of NOx and unburned carbon in fly ash on high-ash coal combustion. Fuel 2011, 90, 850–853. [Google Scholar] [CrossRef]
- Ikeda, N.; Makino, H.; Morinaga, H.; Higashiyama, K.; Kozai, Y. Emission characteristics of NOx and unburned carbon in fly ash during combustion of blends of bituminous/sub-bituminous coals. Fuel 2003, 82, 1851–1857. [Google Scholar] [CrossRef]
- Lee, Y.J.; Namkung, H.; Park, J.H.; Song, G.S.; Park, S.J.; Kim, J.G.; Choi, J.W.; Jeon, C.H.; Choi, Y.C. Production and characterization of hybrid coal using sugar impurities extracted from pitch pine. Appl. Therm. Eng. 2018, 145, 174–183. [Google Scholar] [CrossRef]
- Osaka, Y.; Kurahara, S.; Kobayashi, N.; Hasatani, M.; Matsuyama, A. Study on SO2-absorption behavior of composite materials for DeSOx filter from diesel exhaust. Heat Transf. Eng. 2015, 36, 325–332. [Google Scholar] [CrossRef]
- Namkung, H.; Lee, Y.J.; Park, J.H.; Song, G.S.; Choi, J.W.; Choi, Y.C.; Park, S.J.; Kim, J.G. Blending effect of sewage sludge and woody biomass into coal on combustion and ash agglomeration behavior. Fuel 2018, 225, 266–276. [Google Scholar] [CrossRef]
Sample | Proximate Analysis (As Received Basis, wt%) | Ultimate Analysis (Dry Basis, wt%) | HHV | LHV | ACV | NCV | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
M | VM | Ash | FC | C | H | N | O | S | (Kcal/kg) | ||||
Bioethanol-lignin | 2.28 | 51.19 | 0.04 | 46.49 | 70.17 | 4.98 | 0.82 | 23.89 | 0.10 | 6580 | 6297 | 6430 | 6166 |
SW-D | 9.32 | 66.27 | 15.26 | 9.15 | 46.97 | 6.36 | 3.58 | 26.87 | 0.96 | 4660 | 4261 | 4226 | 3875 |
SW-L-10 | 0.85 | 59.81 | 17.08 | 22.26 | 53.49 | 5.01 | 2.02 | 21.84 | 0.56 | 5350 | 5074 | 5305 | 5044 |
SW-L-20 | 1.67 | 52.13 | 20.24 | 25.96 | 53.80 | 4.43 | 5.34 | 15.26 | 0.93 | 5410 | 5161 | 5320 | 5086 |
SW-L-30 | 0.71 | 51.90 | 21.26 | 26.13 | 55.50 | 4.15 | 6.49 | 12.30 | 0.30 | 5560 | 5332 | 5521 | 5304 |
DS-D | 2.71 | 56.78 | 32.69 | 7.82 | 37.45 | 4.98 | 3.98 | 19.77 | 1.13 | 3710 | 3425 | 3609 | 3344 |
DS-L-10 | 0.61 | 48.16 | 34.22 | 17.01 | 44.40 | 3.77 | 1.75 | 15.00 | 0.86 | 4230 | 4023 | 4204 | 4008 |
SL-D | 8.52 | 50.31 | 32.76 | 8.41 | 33.1 | 5.07 | 1.99 | 26.00 | 1.08 | 3390 | 3065 | 3101 | 2813 |
SL-L-10 | 0.40 | 45.18 | 39.55 | 14.87 | 39.95 | 3.63 | 1.80 | 14.12 | 0.95 | 3780 | 3582 | 3765 | 3576 |
Sample | Surface Area (m2/g) | BET Surface Area (m2/g) | External Surface Area (m2/g) | Total Pore Volume of Pores (cm3/g) |
---|---|---|---|---|
SW-D | 1.43 | 1.64 | 1.58 | 0.0115 |
SW-L-10 | 1.15 | 1.24 | 1.08 | 0.0078 |
Sample | XRF (wt%) | Ash Fusion Characterization (°C) | Slagging and Fouling Indexes | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SiO2 | Al2O3 | Fe2O3 | CaO | MgO | Na2O | K2O | TiO2 | IDT | ST | HT | FT | Fouling Index | Slagging Index | Alkali Index | |
SW-D | 15.08 | 13.86 | 10.54 | 15.54 | 2.23 | 0.00 | 6.42 | 0.87 | 1175 | 1203 | 1236 | 1272 | 7.48 | 1187.20 | 6.42 |
SW-L-10 | 9.08 | 8.26 | 4.70 | 26.30 | 2.55 | 0.00 | 2.56 | 0.46 | 1358 | 1368 | 1376 | 1382 | 5.19 | 1361.30 | 2.56 |
Sample | Hg | Cd | Pb | As | Cr | Sb | Co | Cu | Mn | Ni | Tl | V | Cn | Cr(VI) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ppm | ||||||||||||||
SW-D | 0.01 | 2.43 | 21.60 | 2.43 | 88.10 | 0.00 | 7.10 | 156.00 | 215.00 | 46.10 | 0.00 | 14.80 | - | - |
SW-L-10 | 0.00 | 2.12 | 28.50 | 2.58 | 76.10 | 0.00 | 5.20 | 87.80 | 135.00 | 43.20 | 0.00 | 15.80 | - | - |
DS-D | - | - | - | - | - | - | - | 0.01 | - | - | - | - | - | - |
DS-L-10 | - | - | - | - | - | - | - | 0.02 | - | - | - | - | - | - |
SL-D | - | - | - | 0.12 | - | - | - | 0.69 | - | - | - | - | 0.01 | - |
SL-L-10 | - | - | - | 0.11 | - | - | - | 0.04 | - | - | - | - | 0.08 | - |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, J.-H.; Jin, M.-H.; Lee, Y.-J.; Song, G.-S.; Choi, J.W.; Lee, D.-W.; Choi, Y.-C.; Park, S.-J.; Song, K.H.; Kim, J.-G. Two-in-One Fuel Synthetic Bioethanol-Lignin from Lignocellulose with Sewage Sludge and Its Air Pollutants Reduction Effects. Energies 2019, 12, 3072. https://doi.org/10.3390/en12163072
Park J-H, Jin M-H, Lee Y-J, Song G-S, Choi JW, Lee D-W, Choi Y-C, Park S-J, Song KH, Kim J-G. Two-in-One Fuel Synthetic Bioethanol-Lignin from Lignocellulose with Sewage Sludge and Its Air Pollutants Reduction Effects. Energies. 2019; 12(16):3072. https://doi.org/10.3390/en12163072
Chicago/Turabian StylePark, Ju-Hyoung, Min-Ho Jin, Young-Joo Lee, Gyu-Seob Song, Jong Won Choi, Dong-Wook Lee, Young-Chan Choi, Se-Joon Park, Kwang Ho Song, and Joeng-Geun Kim. 2019. "Two-in-One Fuel Synthetic Bioethanol-Lignin from Lignocellulose with Sewage Sludge and Its Air Pollutants Reduction Effects" Energies 12, no. 16: 3072. https://doi.org/10.3390/en12163072
APA StylePark, J. -H., Jin, M. -H., Lee, Y. -J., Song, G. -S., Choi, J. W., Lee, D. -W., Choi, Y. -C., Park, S. -J., Song, K. H., & Kim, J. -G. (2019). Two-in-One Fuel Synthetic Bioethanol-Lignin from Lignocellulose with Sewage Sludge and Its Air Pollutants Reduction Effects. Energies, 12(16), 3072. https://doi.org/10.3390/en12163072