Marginal Agricultural Land Low-Input Systems for Biomass Production
Abstract
:1. Introduction
2. Material and Methods
- Mapping the major climatic and biophysical constraints across European marginal agricultural lands;
- Assessing the growth suitability of pre-selected industrial crops under the prevailing climatic and biophysical constraints; and
- The development of social-ecologically friendly marginal agricultural land low-input systems (MALLIS) for industrial crop cultivation.
2.1. The Identification of Marginal Agro-Ecological Zones (M-AEZ)
2.2. Determination of the Growth Suitability of the Pre-Selected Industrial Crops in the Prevailing M-AEZ
2.3. Definition and Methodology of Marginal Land Low-Input Systems (MALLIS) Development for Industrial Crops
- The crop’s performance according to site-specific climatic and geographic conditions, especially under given biophysical constraints;
- The kind and quality of biomass required in the given infrastructure, processing industries and distribution channels (markets);
- The agricultural status of the farm(s), e.g., the techniques, knowledge and resources available to ensure successful cultivation of the crop.
3. Results and Discussion
3.1. Marginal Agro-Ecological Zones in Europe
3.2. The Growth Suitability of the Pre-Selected Industrial Crops in the Prevailing M-AEZ
3.3. Marginal Agricultural Land Low-Input Systems (MALLIS) for Industrial Crop Cultivation
3.3.1. Agricultural Measures for MALLIS Development
3.3.2. Environmental Threats and Social Requirements
3.3.3. Biodiversity Conservation
3.3.4. Explanatory Setup of a MALLIS on a Shallow Stony Soil
3.4. Recommendations and Outlook
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Constraint Category | Factor Category | Thresholds/Specifications |
---|---|---|
Category 1: “Natural constraint based marginality” | Low temperature (insufficient thermal time) | Length of growing period ≤ 180 days |
Thermal time sum ≤ 1500 degree days | ||
Dryness—Too dry conditions | Precipitation/Potential Evapotranspiration (P/ET ≤ 0.5) | |
Limited soil drainage and excess soil moisture | Wet 80 cm > 6 months | |
Wet 40 cm > 11 months | ||
Poorly or very poorly drained | ||
Gleyic colour pattern within 40 cm | ||
Soil moisture above field capacity for >230 days (excessive soil moisture) | ||
Unfavorable soil texture and stoniness | Topsoil with stones (15% of topsoil volume is coarse material, rock outcrop, boulder) | |
Texture class in half of the soil in a profile of 100 cm vertical depth is sand, loamy sand | ||
Organic soil, defined as having organic matter ≥ 30% of at least 40 cm | ||
Topsoil with 30% or more clay and presence of vertical properties within 100 cm | ||
Shallow rooting depth | The physical anchorage of the rooting system (rooting depth ≤ 30 cm) | |
The provision/storage of nutrients and water | ||
The possibility of mechanized tillage | ||
Poor chemical properties (Soil salinity, soil sodicity, soil acidity) | The possibility of mechanized tillage | |
Limitation to plant growth, due to toxic elements in soil | ||
Vulnerability to waterlogging | ||
Damage to soil structure (and consequently increase in risk of erosion) | ||
Limited availability of nutrients for plants | ||
Salinity ≥ 4 dS/m in topsoil | ||
Sodicity ≥ 6 ESP in half or more of the 100-cm surface layer | ||
Soil Acidity of topsoil with pH (H20) ≤ 5 | ||
Steep slope | Slope ≥ 15% | |
Category 2: “Socio-economic-political constraints” | Lack of awareness (alternative strategies—lack of know-how, etc.) | |
Social norms (adoption of same cropping patterns as done by elders) | ||
Economic viability, especially of set-aside, small land holdings | ||
Lack of infrastructure | ||
Lack of policies | ||
Lack of government programs, such as extension services | ||
Category 3: “Endangered Sites” | Lands which are currently productive, but will be transformed into marginal lands in the long term if not managed properly (also, lack of know-how or lack of awareness from farmers/government). |
Crop | Precipitation Classes (mm year−1 or mm (Growth Season of Annuals)−1) | |||||||
---|---|---|---|---|---|---|---|---|
0–100 | 100–200 | 200–300 | 300–400 | 400–500 | 500–600 | 600–800 | 800–1000 | |
Biomass sorghum | 0 | 1 | 2 | 3 | 4 | 4 | 4 | 4 |
Camelina | 3 | 4 | 4 | 4 | 4 | 4 | 2 | 2 |
Cardoon | 0 | 0 | 0 | 1 | 2 | 3 | 3 | 4 |
Castor bean | 1 | 2 | 2 | 3 | 3 | 4 | 4 | 4 |
Crambe | 3 | 4 | 4 | 4 | 4 | 4 | 2 | 2 |
Ethiopian mustard | 2 | 3 | 3 | 3 | 3 | 4 | 4 | 4 |
Giant reed | 0 | 0 | 1 | 1 | 2 | 3 | 4 | 4 |
Hemp | 0 | 1 | 2 | 3 | 4 | 4 | 4 | 3 |
Lupin | 0 | 1 | 2 | 2 | 3 | 4 | 4 | 4 |
Miscanthus | 0 | 0 | 0 | 0 | 1 | 2 | 3 | 4 |
Pennycress | 1 | 1 | 2 | 4 | 4 | 4 | 4 | 4 |
Poplar | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 3 |
Reed canary grass | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 3 |
Safflower | 0 | 1 | 2 | 3 | 4 | 4 | 4 | 3 |
Siberian elm | 0 | 0 | 1 | 2 | 3 | 4 | 4 | 4 |
Switchgrass | 0 | 0 | 0 | 1 | 2 | 3 | 4 | 4 |
Tall wheatgrass | 0 | 0 | 1 | 3 | 4 | 4 | 4 | 4 |
Wild sugarcane | 0 | 1 | 1 | 2 | 3 | 4 | 4 | 4 |
Willow | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 3 |
Crop | AEZ 1 | AEZ 2 | AEZ 3 | AEZ 1–3 | ||||
---|---|---|---|---|---|---|---|---|
km2 | % | km2 | % | km2 | % | Km2 | % | |
Biomass sorghum | 193,118 | 88 | 31,322 | 16 | 6323 | 3 | 230,763 | 36 |
Camelina | 209,761 | 96 | 186,018 | 97 | 183,667 | 78 | 579,446 | 90 |
Cardoon | 172,804 | 79 | 71,822 | 37 | 83,249 | 35 | 327,875 | 51 |
Castor | 160,990 | 74 | 10,658 | 6 | 3412 | 1 | 175,060 | 27 |
Crambe | 216,577 | 99 | 175,244 | 91 | 130,959 | 56 | 522,780 | 86 |
Ethiopian mustard | 184,988 | 84 | 43,177 | 22 | 10,111 | 4 | 238,276 | 37 |
Giant reed | 129,501 | 59 | 2459 | 1 | 1173 | 0 | 133,133 | 21 |
Hemp | 162,794 | 74 | 80,422 | 42 | 17,392 | 7 | 260,608 | 41 |
Lupin | 201,888 | 92 | 36,790 | 19 | 37,162 | 16 | 275,840 | 43 |
Miscanthus | 130,634 | 60 | 83,820 | 44 | 88,010 | 37 | 302,464 | 48 |
Pennycress | 208,388 | 95 | 64,812 | 34 | 76,465 | 32 | 349,665 | 56 |
Poplar | 48,166 | 22 | 159,938 | 83 | 150,428 | 64 | 358,532 | 60 |
Reed canary grass | 45,863 | 21 | 124,828 | 65 | 147,470 | 63 | 318,161 | 53 |
Safflower | 201,689 | 7 | 145,382 | 76 | 16,164 | 92 | 363,235 | 58 |
Siberian elm | 179,148 | 82 | 20,611 | 11 | 28,261 | 12 | 228,020 | 36 |
Switchgrass | 160,238 | 73 | 19,732 | 10 | 26,628 | 11 | 206,598 | 32 |
Tall wheatgrass | 211,255 | 96 | 151,166 | 79 | 172,355 | 73 | 534,776 | 88 |
Wild sugarcane | 46,516 | 21 | 252 | 0 | 0 | 0 | 46,768 | 7 |
Willow | 56,880 | 26 | 164,191 | 85 | 119,536 | 51 | 340,607 | 56 |
Average | 153,747 | 66 | 82,771 | 43 | 68,356 | 33 | 304,874 | 49 |
Agricultural Management Options | Biophysical Constraints | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Climatical | Soil/Terrain | ||||||||||||
Low Temperature | High Temperature | Dryness | Excessive Moisture | Poor Soil Drainage | Unfav. Texture/Stoniness | Shallow Rooting Depth | Steep Slope | Low Soil Fertility | Alkalinity | Acidity | Salinity | Other Contamination | |
Structured measures | |||||||||||||
Line irrigation | −1 | 0 | 1 | −3 | −3 | −1 | 1 | −3 | 1 | 0 | 0 | 1 | 0 |
Sprinkler irrigation | 0 | 2 | 2 | −3 | 0 | 2 | 1 | 1 | 1 | 1 | 1 | 1 | 0 |
Microirrigation (drip irrigation) | 0 | 0 | 3 | −3 | 1 | 3 | 3 | 2 | 2 | 0 | 0 | 2 | 0 |
Deficit irrigation technique | 0 | 0 | 3 | −3 | 1 | 2 | 2 | 3 | 3 | 1 | 1 | −1 | 0 |
Terracing | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | 0 | 0 | 0 | 0 | 0 |
Field shaping, planting density and geometry | 0 | 0 | 1 | 1 | 0 | 2 | 2 | 1 | 0 | 0 | 0 | 0 | 0 |
Hedges | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
Water channels | −1 | 0 | −3 | 2 | 3 | 0 | 0 | −3 | 0 | 1 | 1 | 0 | 0 |
Systematic measures | |||||||||||||
Catch crops | 1 | 2 | 1 | 2 | 3 | 1 | −1 | 0 | 1 | 0 | 0 | 1 | 1 |
Crop rotation | 0 | 0 | 1 | 0 | 1 | 2 | 1 | −1 | 2 | 0 | 0 | 1 | 2 |
Agroforestry | 0 | 0 | 1 | 2 | 2 | 2 | 1 | 3 | 2 | 2 | 2 | 0 | 2 |
Intercropping | 1 | 1 | 2 | 2 | 2 | 1 | 0 | 2 | 1 | 1 | 1 | 1 | 1 |
Mixed cropping | 1 | 1 | 1 | 2 | 1 | 2 | 0 | 1 | 2 | 1 | 1 | 1 | 1 |
Crop selection | |||||||||||||
Deep roots | 1 | 2 | 3 | 2 | 3 | −1 | −3 | 2 | 1 | 1 | 1 | 1 | 0 |
Shallow roots | 1 | 0 | −3 | −1 | −2 | 2 | 3 | 1 | 0 | 0 | 0 | 0 | 0 |
C3-Metabolism | 3 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
C4-Metabolism | 1 | 3 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
Annual lifecycle | 0 | 0 | 0 | −2 | −3 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 1 |
Biennial lifecycle | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 2 | 0 | 0 | 1 | 1 |
Perennial lifecycle | 2 | 1 | 3 | 2 | 2 | 1 | 2 | 2 | 3 | 1 | 1 | 2 | 1 |
Components of Management System | Biophysical Constraints | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Climatic | Soil/Terrain | ||||||||||||
Low Temperature | High Temperature | Dryness | Excessive Moisture | Poor Soil Drainage | Unfav. Texture/Stoniness | Shallow Rooting Depth | Steep Slope | Low Soil Fertility | Alkalinity | Acidity | Salinity | Other Contamination | |
Soil cultivation | |||||||||||||
Full till | 1 | −2 | −2 | −3 | −1 | −1 | −1 | −3 | −1 | 1 | 1 | 0 | 1 |
Reduced till | −1 | 1 | 1 | 1 | 1 | 1 | 1 | −1 | 1 | 0 | 0 | 0 | 1 |
Precision tillage | 3 | 2 | 2 | 0 | 2 | 2 | 1 | 1 | 2 | 0 | 0 | 0 | 1 |
No till | 2 | 3 | 3 | 2 | 1 | 2 | 2 | 3 | 2 | 0 | 0 | 0 | 0 |
Living mulch | 1 | −2 | −2 | 3 | 1 | 1 | −1 | 2 | 2 | 1 | 1 | 1 | −1 |
Cover soil with film | 2 | 1 | 2 | −1 | −2 | 2 | 1 | 1 | 1 | 0 | 0 | −1 | −1 |
Harvest residuals | 2 | −1 | −1 | 0 | 1 | 1 | −1 | −3 | 2 | 1 | 1 | 0 | −1 |
Establishment | |||||||||||||
Pesticides a | 1 | 0 | 1 | 1 | 2 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 0 |
Micronutrients a | 1 | 1 | 1 | 1 | 1 | 2 | 1 | 0 | 3 | 0 | 1 | 1 | −1 |
Bio-stimulators a | 0 | 0 | 1 | 1 | 1 | 2 | 1 | 0 | 2 | 1 | 1 | 1 | 0 |
Rhizomes | 1 | 1 | 1 | −1 | 0 | 1 | 1 | 1 | 1 | −1 | −1 | 0 | 0 |
Plantlets | 1 | 2 | 2 | 1 | 1 | 2 | 2 | 2 | 2 | 0 | 0 | 1 | 0 |
Collars | 1 | 2 | 2 | −1 | 0 | 0 | −1 | 1 | 1 | −1 | −1 | −1 | 0 |
Unrooted cuttings | 1 | 2 | 0 | 2 | 1 | 0 | −1 | 2 | 0 | 1 | 1 | 1 | 0 |
Crop protection | |||||||||||||
Pesticides | 1 | 1 | 1 | 1 | −1 | 0 | 0 | 2 | 1 | 1 | 1 | 1 | 0 |
Biological pest control | 1 | 0 | 0 | 2 | 2 | 2 | 0 | 1 | 1 | 0 | 0 | 0 | 0 |
Crop rotation strategy | 2 | 1 | 2 | 1 | 2 | 2 | 1 | 1 | 2 | 1 | 1 | 1 | 2 |
Mechanical weeding | 1 | 1 | 1 | −1 | 0 | −1 | −1 | −3 | 1 | 0 | −1 | −1 | 0 |
Thermal weeding | 3 | 1 | 1 | 2 | 2 | 2 | 0 | 0 | 2 | 0 | 0 | −1 | 0 |
Chemical weeding | 1 | 1 | 1 | 0 | −1 | 2 | 1 | 1 | 0 | 0 | 0 | 1 | 0 |
Biological weeding | 2 | 1 | −1 | 2 | 2 | 1 | 1 | 2 | 1 | 1 | 1 | 1 | 1 |
Cover soil with film | 2 | 1 | 1 | 0 | 0 | 2 | 2 | 2 | −2 | 0 | 0 | 0 | 0 |
Fertilization | |||||||||||||
Broadcast application | −1 | 1 | 1 | −1 | 1 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 0 |
Ground level application | 0 | 1 | 1 | 0 | 0 | 1 | 0 | −1 | 1 | 0 | 0 | −1 | 0 |
Injection | 1 | 2 | 1 | 0 | 2 | 0 | −1 | 1 | 1 | 0 | 0 | 0 | 0 |
Organic fertilizer | 2 | 3 | 3 | −1 | −1 | 2 | 1 | 2 | 3 | 2 | 2 | 2 | 3 |
Liming | 1 | 0 | 0 | 1 | 1 | 2 | 0 | 0 | 2 | −1 | 3 | −2 | 0 |
Chemical fertilizer | 1 | 1 | 1 | −1 | 1 | 1 | 1 | −1 | 3 | −1 | −1 | −2 | 0 |
Solid | 2 | 1 | 2 | 1 | 1 | 2 | 0 | 0 | 1 | 0 | 0 | 1 | 0 |
Liquid | 2 | −3 | −3 | −1 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 0 |
Spring application | −1 | 2 | 2 | 1 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
Summer application | −2 | 1 | 2 | 1 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
Autumn application | 0 | 0 | 0 | −1 | 1 | 0 | 0 | 1 | −1 | 0 | 0 | 0 | 0 |
Winter application | 0 | 0 | 0 | −2 | −1 | 0 | 0 | −1 | 0 | 0 | 0 | 0 | 0 |
One application | 1 | −1 | −1 | 1 | 1 | −1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 |
>1 applications | 1 | 1 | 1 | −1 | −1 | 1 | −1 | −1 | 2 | 0 | 0 | 0 | 0 |
References
- Staffas, L.; Gustavsson, M.; McCormick, K. Strategies and policies for the bioeconomy and bio-based economy: An analysis of official national approaches. Sustainability 2013, 5, 2751–2769. [Google Scholar] [CrossRef]
- Lewandowski, I. Securing a sustainable biomass supply in a growing bioeconomy. Glob. Food Secur. 2015, 6, 34–42. [Google Scholar] [CrossRef]
- Scarlat, N.; Dallemand, J.F.; Monforti-Ferrario, F.; Nita, V. The role of biomass and bioenergy in a future bioeconomy: Policies and facts. Environ. Dev. 2015, 15, 3–34. [Google Scholar] [CrossRef]
- Scarlat, N.; Dallemand, J.F.; Fahl, F. Biogas: Developments and perspectives in Europe. Renew. Energy 2018, 129, 457–472. [Google Scholar] [CrossRef]
- Fernando, A.L.; Boléo, S.; Barbosa, B.; Costa, J.; Duarte, M.P.; Monti, A. Perennial Grass Production Opportunities on Marginal Mediterranean Land. Bioenergy Res. 2015, 8, 1523–1537. [Google Scholar] [CrossRef]
- Biala, K.; Terres, J.M.; Pointereau, P.; Paracchini, M.L. Low Input Farming Systems: An opportunity to develop sustainable agriculture. Proc. JRC Summer Univ. Ranco. 2007, 2–5. [Google Scholar] [CrossRef]
- Lewandowski, I.; Lippe, M.; Castro-Montoya, J.; Dickhöfer, U.; Langenberger, G.; Pucher, J.; Schließmann, U.; Derwenskus, F.; Schmid-Staiger, U.; Lippert, C. Primary Production. In Bioeconomy; Springer: Cham, Switzerland, 2018; pp. 95–175. [Google Scholar]
- Pulighe, G.; Bonati, G.; Fabiani, S.; Barsali, T.; Lupia, F.; Vanino, S.; Nino, P.; Arca, P.; Roggero, P.P. Assessment of the Agronomic Feasibility of Bioenergy Crop Cultivation on Marginal and Polluted Land: A GIS-Based Suitability Study from the Sulcis Area, Italy. Energies 2016, 9, 895. [Google Scholar] [CrossRef]
- Dale, V.H.; Kline, K.L.; Wiens, J.; Fargione, J. Biofuels: Implications for Land Use and Biodiversity; Ecological Society of America: Washington, DC, USA, 2010. [Google Scholar]
- Liu, T.T.; McConkey, B.G.; Ma, Z.Y.; Liu, Z.G.; Li, X.; Cheng, L.L. Strengths, Weaknessness, Opportunities and Threats Analysis of Bioenergy Production on Marginal Land. Energy Procedia 2011, 5, 2378–2386. [Google Scholar] [CrossRef] [Green Version]
- Zhuang, D.; Jiang, D.; Liu, L.; Huang, Y. Assessment of bioenergy potential on marginal land in China. Renew. Sustain. Energy Rev. 2011, 15, 1050–1056. [Google Scholar] [CrossRef]
- Elbersen, B.; Van Verzandvoort, M.; Boogaard, S.; Mucher, S.; Cicarelli, T.; Elbersen, W.; Mantel, S.; Bai, Z.; MCallum, I.; Iqbal, Y.; et al. Definition and Classification of Marginal Lands Suitable for Industrial Crops in Europe (EU Deliverable); WUR: Wageningen, The Netherlands, 2018; p. 44. [Google Scholar]
- Edrisi, S.A.; Abhilash, P.C. Exploring marginal and degraded lands for biomass and bioenergy production: An Indian scenario. Renew. Sustain. Energy Rev. 2016, 54, 1537–1551. [Google Scholar] [CrossRef]
- Folke, C. Resilience: The emergence of a perspective for social–ecological systems analyses. Glob. Environ. Chang. 2006, 16, 253–267. [Google Scholar] [CrossRef]
- Elmqvist, T.; Folke, C.; Nyström, M.; Peterson, G.; Bengtsson, J.; Walker, B.; Norberg, J. Response diversity, ecosystem change, and resilience. Front. Ecol. Environ. 2003, 1, 488–494. [Google Scholar] [CrossRef]
- Ciria, C.S.; Sanz, M.; Carrasco, J.; Ciria, P. Identification of Arable Marginal Lands under Rainfed Conditions for Bioenergy Purposes in Spain. Sustainability 2019, 11, 1833. [Google Scholar] [CrossRef]
- Krasuska, E.; Cadórniga, C.; Tenorio, J.L.; Testa, G.; Scordia, D. Potential land availability for energy crops production in Europe. Biofuels Bioprod. Biorefin. 2010, 4, 658–673. [Google Scholar] [CrossRef]
- Elbersen, B.S.; Andersen, E. Low-input farming systems: Their general characteristics, identification and quantification. In Low Input Farming Systems: An. Opportunity to Develop Sustainable Agriculture; OPOCE: Brussels, Belgium, 2008; p. 12. [Google Scholar]
- Fernando, A.L.; Costa, J.; Barbosa, B.; Monti, A.; Rettenmaier, N. Environmental impact assessment of perennial crops cultivation on marginal soils in the Mediterranean Region. Biomass Bioenergy 2018, 111, 174–186. [Google Scholar] [CrossRef]
- Van Orshoven, J.; Terres, J.M.; Tóth, T. Updated common bio-physical criteria to define natural constraints for agriculture in Europe. In JRC Scientific and Technical Reports; Publications Office of the European Union: Brussels, Belgium, 2012. [Google Scholar]
- Van Orshoven, J.; Terres, J.M.; Tóth, T. Updated common bio-physical criteria to define natural constraints for agriculture in Europe—Definition and scientific justification for the common biophysical criteria. In JRC Scientific and Technical Reports; Publications Office of the European Union: Brussels, Belgium, 2014. [Google Scholar] [CrossRef]
- Terres, J.M.; Hagyo, A.; Wania, A. Scientific contribution on combining biophysical criteria underpinning the delineation of agricultural areas affected by specific constraints: Methodology and factsheets for plausible criteria combinations. In JRC Scientific and Technical Reports; Publications Office of the European Union: Brussels, Belgium, 2014. [Google Scholar]
- Hallmann, C.A.; Sorg, M.; Jongejans, E.; Siepel, H.; Hofland, N.; Schwan, H.; Stenmans, W.; Müller, A.; Sumser, H.; Hörren, T. More than 75 percent decline over 27 years in total flying insect biomass in protected areas. PLoS ONE 2017, 12, e0185809. [Google Scholar] [CrossRef] [PubMed]
- Huth, E.; Paltrinieri, S.; Thiele, J. Bioenergy and its effects on landscape aesthetics—A survey contrasting conventional and wild crop biomass production. Biomass Bioenergy 2019, 122, 313–321. [Google Scholar] [CrossRef]
- Potts, S.G.; Imperatriz-Fonseca, V.L.; Ngo, H.T.; Biesmeijer, J.C.; Breeze, T.D.; Dicks, L.V.; Garibaldi, L.A.; Hill, R.; Settele, J.; Vanbergen, A.J. Summary for Policymakers of the Assessment Report of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services on Pollinators, Pollination and Food Production; University of Reading: Reading, UK, 2016; ISBN 978-92-807-3568-0. [Google Scholar]
- Svoboda, N.; Taube, F.; Kluß, C.; Wienforth, B.; Kage, H.; Ohl, S.; Hartung, E.; Herrmann, A. Crop production for biogas and water protection—A trade-off? Agric. Ecosyst. Environ. 2013, 177, 36–47. [Google Scholar] [CrossRef]
- Lewandowski, I. The role of perennial biomass crops in a growing bioeconomy. In Perennial Biomass Crops for a Resource-Constrained World; Springer: Cham, Switzerland, 2016; pp. 3–13. [Google Scholar] [CrossRef]
- Monti, A.; Alexopoulou, E. Non-food crops in marginal land: An illusion or a reality? Biofuels Bioprod. Biorefin. 2017, 11, 937–938. [Google Scholar] [CrossRef]
- Tilman, D.; Socolow, R.; Foley, J.A.; Hill, J.; Larson, E.; Lynd, L.; Pacala, S.; Reilly, J.; Searchinger, T.; Somerville, C. Beneficial biofuels—The food, energy, and environment trilemma. Science 2009, 325, 270–271. [Google Scholar] [CrossRef]
- Araújo, K.; Mahajan, D.; Kerr, R.; Silva, M.D. Global biofuels at the crossroads: An overview of technical, policy, and investment complexities in the sustainability of biofuel development. Agriculture 2017, 7, 32. [Google Scholar] [CrossRef]
- Elbersen, B.; Van Eupen, M.; Verzandvoort, S.; Boogaard, H.; Mucher, S.; Cicarreli, T.; Elbersen, W.; Mantel, S.; Bai, Z.; Mcallum, I.; et al. Methodological Approaches to Identify and Map Marginal Land Suitable for Industrial Crops in Europe; WUR: Wageningen, The Netherlands, 2018; p. 142. [Google Scholar]
- Ramirez-Almeyda, J.; Elbersen, B.; Monti, A.; Staritsky, I.; Panoutsou, C.; Alexopoulou, E.; Schrijver, R.; Elbersen, W. Assessing the Potentials for Nonfood Crops. In Modeling and Optimization of Biomass Supply Chains; Elsevier: Amsterdam, The Netherlands, 2017; pp. 219–251. [Google Scholar]
- FAO Ecocrop. Food and Agriculture Organization of the UN 2007. Available online: http://ecocrop.fao.org/ecocrop/srv/en/cropSearchForm (accessed on 13 August 2019).
- Metzger, M.J.; Bunce, R.G.H.; Jongman, R.H.; Mücher, C.A.; Watkins, J.W. A climatic stratification of the environment of Europe. Glob. Ecol. Biogeogr. 2005, 14, 549–563. [Google Scholar] [CrossRef]
- Altieri, M.A.; Nicholls, C.I.; Montalba, R. Technological Approaches to Sustainable Agriculture at a Crossroads: An Agroecological Perspective. Sustainability 2017, 9, 349. [Google Scholar] [CrossRef]
- Altieri, M.A.; Nicholls, C.I.; Henao, A.; Lana, M.A. Agroecology and the design of climate change-resilient farming systems. Agron. Sustain. Dev. 2015, 35, 869–890. [Google Scholar] [CrossRef] [Green Version]
- Arthurson, V.; Jäderlund, L. Utilization of natural farm resources for promoting high energy efficiency in low-input organic farming. Energies 2011, 4, 804–817. [Google Scholar] [CrossRef]
- Francis, C.; Lieblein, G.; Gliessman, S.; Breland, T.A.; Creamer, N.; Harwood, R.; Salomonsson, L.; Helenius, J.; Rickerl, D.; Salvador, R.; et al. Agroecology: The ecology of food systems. J. Sustain. Agric. 2003, 22, 99–118. [Google Scholar] [CrossRef]
- Altieri, M.A.; Merrick, L. In situ conservation of crop genetic resources through maintenance of traditional farming systems. Econ. Bot. 1987, 41, 86–96. [Google Scholar] [CrossRef]
- De Jesus Duarte, S.; Glaser, B.; Cerri, C.E.P. Effect of biochar particle size on physical, hydrological and chemical properties of loamy and sandy tropical soils. Agronomy 2019, 9, 165. [Google Scholar] [CrossRef]
- Sánchez-Monedero, M.A.; Cayuela, M.L.; Sánchez-García, M.; Vandecasteele, B.; D’Hose, T.; López, G.; Martínez-Gaitán, C.; Kuikman, P.J.; Sinicco, T.; Mondini, C. Agronomic evaluation of biochar, compost and biochar-blended compost across different cropping systems: Perspective from the European project FERTIPLUS. Agronomy 2019, 9, 225. [Google Scholar] [CrossRef]
- Horel, Á.; Tóth, E.; Gelybó, G.; Dencso, M.; Farkas, C. Biochar amendment affects soil water and CO2 regime during Capsicum annuum plant growth. Agronomy 2019, 9, 58. [Google Scholar] [CrossRef]
- Speratti, A.B.; Johnson, M.S.; Sousa, H.M.; Torres, G.N.; Couto, E.G. Impact of different agricultural waste biochars on maize biomass and soil water content in a Brazilian Cerrado Arenosol. Agronomy 2017, 7, 49. [Google Scholar] [CrossRef]
- Zhang, Y.; Idowu, O.J.; Brewer, C.E. Using agricultural residue biochar to improve soil quality of desert soils. Agriculture 2016, 6, 10. [Google Scholar] [CrossRef]
- O’toole, A.; Moni, C.; Weldon, S.; Schols, A.; Carnol, M.; Bosman, B.; Rasse, D.P. Miscanthus biochar had limited effects on soil physical properties, microbial biomass, and grain yield in a four-year field experiment in Norway. Agriculture 2018, 8, 171. [Google Scholar] [CrossRef]
- Guizani, C.; Jeguirim, M.; Valin, S.; Limousy, L.; Salvador, S. Biomass chars: The effects of pyrolysis conditions on their morphology, structure, chemical properties and reactivity. Energies 2017, 10, 796. [Google Scholar] [CrossRef]
- Qian, K.; Kumar, A.; Patil, K.; Bellmer, D.; Wang, D.; Yuan, W.; Huhnke, R.L. Effects of biomass feedstocks and gasification conditions on the physiochemical properties of char. Energies 2013, 6, 3972–3986. [Google Scholar] [CrossRef]
- Lehmann, J.; Rillig, M.C.; Thies, J.; Masiello, C.A.; Hockaday, W.C.; Crowley, D. Biochar effects on soil biota—A review. Soil Biol. Biochem. 2011, 43, 1812–1836. [Google Scholar] [CrossRef]
- Ahmad, M.; Rajapaksha, A.U.; Lim, J.E.; Zhang, M.; Bolan, N.; Mohan, D.; Vithanage, M.; Lee, S.S.; Ok, Y.S. Biochar as a sorbent for contaminant management in soil and water: A review. Chemosphere 2014, 99, 19–33. [Google Scholar] [CrossRef] [PubMed]
- Ehmann, A.; Bach, I.M.; Laopeamthong, S.; Bilbao, J.; Lewandowski, I. Can phosphate salts recovered from manure replace conventional phosphate fertilizer? Agriculture 2017, 7, 1. [Google Scholar] [CrossRef]
- Bergfeldt, B.; Morgano, M.T.; Leibold, H.; Richter, F.; Stapf, D. Recovery of phosphorus and other nutrients during pyrolysis of chicken manure. Agriculture 2018, 8, 187. [Google Scholar] [CrossRef]
- Tilman, D.; Hill, J.; Lehman, C. Carbon-Negative Biofuels from Low-Input High-Diversity Grassland Biomass. Science 2006, 314, 1598–1600. [Google Scholar] [CrossRef] [Green Version]
- Weigelt, A.; Weisser, W.W.; Buchmann, N.; Scherer-Lorenzen, M. Biodiversity for multifunctional grasslands: Equal productivity in high-diversity low-input and low-diversity high-input systems. Biogeosciences 2009, 6, 1695–1706. [Google Scholar] [CrossRef]
- Altieri, M.A. The ecological role of biodiversity in agroecosystems. Agric. Ecosyst. Environ. 1999, 74, 19–31. [Google Scholar] [CrossRef] [Green Version]
- Mockshell, J.; Kamanda, J. Beyond the Agroecological and Sustainable Agricultural Intensification Debate: Is Blended Sustainability the Way Forward? In Discussion Paper; Deutsches Institut für Entwicklungspolitik gGmbH: Bonn, Germany, 2017; pp. 1–42. [Google Scholar]
- Galatsidas, S.; Gounaris, N.; Vlachaki, D.; Dimitriadis, E.; Kiourtsis, F.; Keramitzis, D.; Gerwin, W.; Repmann, F.; Rettenmaier, N.; Reinhardt, G. Revealing Bioenergy Potentials: Mapping Marginal Lands in Europe-The SEEMLA Approach. In Proceedings of the 26th European Biomass Conference and Exhibition, Copenhagen, Denmark, 14–18 May 2018; Available online: https://opus4.kobv.de/opus4-UBICO/frontdoor/index/index/docId/22081 (accessed on 9 July 2019).
- Monti, A.; Zegada-Lizarazu, W.; Zanetti, F.; Casler, M. Chapter Two—Nitrogen Fertilization Management of Switchgrass, Miscanthus and Giant Reed: A Review. In Advances in Agronomy; Sparks, D.L., Ed.; Academic Press: Cambridge, MA, USA, 2019; Volume 153, pp. 87–119. [Google Scholar]
- Von Cossel, M.; Winkler, B.; Wagner, M.; Lask, J.; Magenau, E.; Bauerle, A.; Von Cossel, V.; Warrach-Sagi, K.; Elbersen, B.; Staritsky, I.; et al. The future of bioenergy crops cultivation. Agronomy. unpublished.
- Sun, Y.; Druecker, H.; Hartung, E.; Hueging, H.; Cheng, Q.; Zeng, Q.; Sheng, W.; Lin, J.; Roller, O.; Paetzold, S.; et al. Map-based investigation of soil physical conditions and crop yield using diverse sensor techniques. Soil Tillage Res. 2011, 112, 149–158. [Google Scholar] [CrossRef]
- Kiesel, A.; Nunn, C.; Iqbal, Y.; Van der Weijde, T.; Wagner, M.; Özgüven, M.; Tarakanov, I.; Kalinina, O.; Trindade, L.M.; Clifton-Brown, J.; et al. Site-specific management of miscanthus genotypes for combustion and anaerobic digestion: A comparison of energy yields. Front. Plant Sci. 2017, 8, 927. [Google Scholar] [CrossRef] [PubMed]
- Gerwin, W.; Repmann, F.; Galatsidas, S.; Vlachaki, D.; Gounaris, N.; Baumgarten, W.; Volkmann, C.; Keramitzis, D.; Kiourtsis, F.; Freese, D. Assessment and quantification of marginal lands for biomass production in Europe using soil-quality indicators. Soil 2018, 4, 267–290. [Google Scholar] [CrossRef] [Green Version]
- Bu, L.; Liu, J.; Zhu, L.; Luo, S.; Chen, X.; Li, S.; Lee Hill, R.; Zhao, Y. The effects of mulching on maize growth, yield and water use in a semi-arid region. Agric. Water Manag. 2013, 123, 71–78. [Google Scholar] [CrossRef]
- Lazdina, D.; Bardule, A.; Lazdins, A.; Stola, J. Use of waste water sludge and wood ash as fertiliser for Salix cultivation in acid peat soils. Agron. Res. 2011, 9, 305–314. [Google Scholar]
- Holzschuh, A.; Dainese, M.; González-Varo, J.P.; Mudri-Stojnić, S.; Riedinger, V.; Rundlöf, M.; Scheper, J.; Wickens, J.B.; Wickens, V.J.; Bommarco, R.; et al. Mass-flowering crops dilute pollinator abundance in agricultural landscapes across Europe. Ecol. Lett. 2016, 19, 1228–1236. [Google Scholar] [CrossRef]
- Allan, J.D. LANDSCAPES AND RIVERSCAPES: The Influence of Land Use on Stream Ecosystems. Annu. Rev. Ecol. Evol. Syst. 2004, 35, 257–284. [Google Scholar] [CrossRef]
- Fahrig, L. How much habitat is enough? Biol. Conserv. 2001, 100, 65–74. [Google Scholar] [CrossRef]
- Fischer, J.; Brosi, B.; Daily, G.C.; Ehrlich, P.R.; Goldman, R.; Goldstein, J.; Lindenmayer, D.B.; Manning, A.D.; Mooney, H.A.; Pejchar, L.; et al. Should agricultural policies encourage land sparing or wildlife-friendly farming? Front. Ecol. Environ. 2008, 6, 380–385. [Google Scholar] [CrossRef]
- Von Cossel, M. Agricultural Diversification of Biogas Crop Cultivation; University of Hohenheim: Stuttgart, Germany, 2019; Available online: http://opus.uni-hohenheim.de/volltexte/2019/1600/ (accessed on 13 August 2019).
- Von Cossel, M.; Mangold, A.; Iqbal, Y.; Hartung, J.; Lewandowski, I.; Kiesel, A. How to Generate Yield in the First Year—A Three-Year Experiment on Miscanthus (Miscanthus × giganteus (Greef et Deuter)) Establishment under Maize (Zea mays L.). Agronomy 2019, 9, 237. [Google Scholar] [CrossRef]
- Wagner, M. Methodological Approaches for Assessing the Environmental Performance of Perennial Crop-Based Value Chains. Dissertation, University of Hohenheim, Hohenheim, Germany, 2018. Available online: http://opus.uni-hohenheim.de/volltexte/2018/1433/ (accessed on 13 August 2019).
- Barbosa, B.; Costa, J.; Fernando, A.L.; Papazoglou, E.G. Wastewater reuse for fiber crops cultivation as a strategy to mitigate desertification. Ind. Crop. Prod. 2015, 68, 17–23. [Google Scholar] [CrossRef]
- Soldatos, P. Economic aspects of bioenergy production from perennial grasses in marginal lands of South Europe. Bioenergy Res. 2015, 8, 1562–1573. [Google Scholar] [CrossRef]
- Fernando, A.L.; Rettenmaier, N.; Soldatos, P.; Panoutsou, C. Sustainability of Perennial Crops Production for Bioenergy and Bioproducts. In Perennial Grasses for Bioenergy and Bioproducts; Alexopoulou, E., Ed.; Academic Press: Cambridge, MA, USA, 2018; pp. 245–283. [Google Scholar]
- Barbosa, B.; Costa, J.; Fernando, A.L. Production of Energy Crops in Heavy Metals Contaminated Land: Opportunities and Risks. In Land Allocation for Biomass Crops: Challenges and Opportunities with Changing Land Use; Li, R., Monti, A., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 83–102. [Google Scholar]
- Leopold, A. A Sand County Almanac; Oxford University Press: Oxford, UK, 1949. [Google Scholar]
- Alvarez, S.; Timler, C.J.; Michalscheck, M.; Paas, W.; Descheemaeker, K.; Tittonell, P.; Andersson, J.A.; Groot, J.C.J. Capturing farm diversity with hypothesis-based typologies: An innovative methodological framework for farming system typology development. PLoS ONE 2018, 13, e0194757. [Google Scholar] [CrossRef] [PubMed]
- Michalscheck, M. On Smallholder Farm and Farmer Diversity; Wageningen University & Research: Wageningen, The Netherlands, 2019. [Google Scholar]
- Winkler, B.; Lemke, S.; Ritter, J.; Lewandowski, I. Integrated assessment of renewable energy potential: Approach and application in rural South Africa. Environ. Innov. Soc. Transit. 2017, 24, 17–31. [Google Scholar] [CrossRef]
- Kiesel, A.; Wagner, M.; Lewandowski, I. Environmental performance of miscanthus, switchgrass and maize: Can C4 perennials increase the sustainability of biogas production? Sustainability 2017, 9, 5. [Google Scholar] [CrossRef]
- De Groot, R.S.; Wilson, M.A.; Boumans, R.M. A typology for the classification, description and valuation of ecosystem functions, goods and services. Ecol. Econ. 2002, 41, 393–408. [Google Scholar] [CrossRef] [Green Version]
- Chauvat, M.; Perez, G.; Hedde, M.; Lamy, I. Establishment of bioenergy crops on metal contaminated soils stimulates belowground fauna. Biomass Bioenergy 2014, 62, 207–211. [Google Scholar] [CrossRef]
- Hedde, M.; van Oort, F.; Renouf, E.; Thénard, J.; Lamy, I. Dynamics of soil fauna after plantation of perennial energy crops on polluted soils. Appl. Soil Ecol. 2013, 66, 29–39. [Google Scholar] [CrossRef]
- Bourgeois, E.; Dequiedt, S.; Lelièvre, M.; van Oort, F.; Lamy, I.; Maron, P.A.; Ranjard, L. Positive effect of the Miscanthus bioenergy crop on microbial diversity in wastewater-contaminated soil. Environ. Chem. Lett. 2015, 13, 495–501. [Google Scholar] [CrossRef]
- TEEB. Guidance Manual for TEEB Country Studies-Version 1.0; Institute for European Environmental Policy: Geneva, Switzerland, 2013. [Google Scholar]
- Von Cossel, M.; Lewandowski, I. Perennial wild plant mixtures for biomass production: Impact of species composition dynamics on yield performance over a five-year cultivation period in southwest Germany. Eur. J. Agron. 2016, 79, 74–89. [Google Scholar] [CrossRef]
- Vollrath, B.; Werner, A.; Degenbeck, M.; Illies, I.; Zeller, J.; Marzini, K. Energetische Verwertung von Kräuterreichen Ansaaten in der Agrarlandschaft und im Siedlungsbereich-Eine Ökologische und Wirtschaftliche Alternative bei der Biogasproduktion; Energie aus Wildpflanzen; Bayerische Landesanstalt für Weinbau und Gartenbau: Veitshöchheim, Germany, 2012; p. 207. [Google Scholar]
- Von Cossel, M.; Steberl, K.; Hartung, J.; Agra Pereira, L.; Kiesel, A.; Lewandowski, I. Methane yield and species diversity dynamics of perennial wild plant mixtures established alone, under cover crop maize (Zea mays L.) and after spring barley (Hordeum vulgare L.). GCB Bioenergy 2019. [Google Scholar] [CrossRef]
- Weißhuhn, P.; Reckling, M.; Stachow, U.; Wiggering, H. Supporting Agricultural Ecosystem Services through the Integration of Perennial Polycultures into Crop Rotations. Sustainability 2017, 9, 2267. [Google Scholar] [CrossRef]
- Emmerling, C.; Schmidt, A.; Ruf, T.; von Francken-Welz, H.; Thielen, S. Impact of newly introduced perennial bioenergy crops on soil quality parameters at three different locations in W-Germany. J. Plant Nutr. Soil Sci. 2017, 180, 759–767. [Google Scholar] [CrossRef]
- Gansberger, M.; Montgomery, L.F.R.; Liebhard, P. Botanical characteristics, crop management and potential of Silphium perfoliatum L. as a renewable resource for biogas production: A review. Ind. Crop. Prod. 2015, 63, 362–372. [Google Scholar] [CrossRef]
- Mast, B.; Lemmer, A.; Oechsner, H.; Reinhardt-Hanisch, A.; Claupein, W.; Graeff-Hönninger, S. Methane yield potential of novel perennial biogas crops influenced by harvest date. Ind. Crop. Prod. 2014, 58, 194–203. [Google Scholar] [CrossRef]
- Bufe, C.; Korevaar, H. Evaluation of Additional Crops for Dutch List of Ecological Focus Area: Evaluation of Miscanthus, Silphium Perfoliatum, Fallow Sown in with Melliferous Plants and Sunflowers in Seed Mixtures for Catch Crops; Wageningen Research Foundation (WR) business unit Agrosystems Research: Lelystad, The Netherlands, 2018. [Google Scholar]
- Nabel, M.; Barbosa, D.B.P.; Horsch, D.; Jablonowski, N.D. Energy Crop (Sida Hermaphrodita) Fertilization Using Digestate under Marginal Soil Conditions: A Dose-response Experiment. Energy Procedia 2014, 59, 127–133. [Google Scholar] [CrossRef] [Green Version]
- Nabel, M.; Temperton, V.M.; Poorter, H.; Lücke, A.; Jablonowski, N.D. Energizing marginal soils—The establishment of the energy crop Sida hermaphrodita as dependent on digestate fertilization, NPK, and legume intercropping. Biomass Bioenergy 2016, 87, 9–16. [Google Scholar] [CrossRef]
- Jablonowski, N.D.; Kollmann, T.; Nabel, M.; Damm, T.; Klose, H.; Müller, M.; Bläsing, M.; Seebold, S.; Krafft, S.; Kuperjans, I.; et al. Valorization of Sida (Sida hermaphrodita) biomass for multiple energy purposes. GCB Bioenergy 2017, 9, 202–214. [Google Scholar] [CrossRef]
- Von Cossel, M.; Möhring, J.; Kiesel, A.; Lewandowski, I. Methane yield performance of amaranth (Amaranthus hypochondriacus L.) and its suitability for legume intercropping in comparison to maize (Zea mays L.). Ind. Crops Prod. 2017, 103, 107–121. [Google Scholar] [CrossRef]
- Eberl, V.; Fahlbusch, W.; Fritz, M.; Sauer, B. Screening und Selektion von Amarantsorten und Linien als Spurenelementreiches Biogassubstrat; Berichte aus dem TFZ; Technologie-und Förderzentrum im Kompetenzzentrum für Nachwachsende Rohstoffe: Straubing, Germany, 2014; p. 120. [Google Scholar]
- Eberl, V.; Fritz, M. Amarant als Spurenelementreiches Biogassubstrat; Biogas Forum Bayern; Technologie-und Förderzentrum (TFZ) im Kompetenzzentrum für Nachwachsende Rohstoffe: Straubing, Germany, 2018. [Google Scholar]
- Righini, D.; Zanetti, F.; Martínez-Force, E.; Mandrioli, M.; Toschi, T.G.; Monti, A. Shifting sowing of camelina from spring to autumn enhances the oil quality for bio-based applications in response to temperature and seed carbon stock. Ind. Crop. Prod. 2019, 137, 66–73. [Google Scholar] [CrossRef]
- Stolarski, M.J.; Krzyżaniak, M.; Kwiatkowski, J.; Tworkowski, J.; Szczukowski, S. Energy and economic efficiency of camelina and crambe biomass production on a large-scale farm in north-eastern Poland. Energy 2018, 150, 770–780. [Google Scholar] [CrossRef]
- Stolarski, M.J.; Krzyżaniak, M.; Tworkowski, J.; Załuski, D.; Kwiatkowski, J.; Szczukowski, S. Camelina and crambe production – Energy efficiency indices depending on nitrogen fertilizer application. Ind. Crop. Prod. 2019, 137, 386–395. [Google Scholar] [CrossRef]
- Righini, D.; Zanetti, F.; Monti, A. The bio-based economy can serve as the springboard for camelina and crambe to quit the limbo. OCL 2016, 23, 23. [Google Scholar] [CrossRef]
- Dordas, C.A.; Sioulas, C. Dry matter and nitrogen accumulation, partitioning, and retranslocation in safflower (Carthamus tinctorius L.) as affected by nitrogen fertilization. Field Crop. Res. 2009, 110, 35–43. [Google Scholar] [CrossRef]
- Bassil, E.S.; Kaffka, S.R. Response of safflower (Carthamus tinctorius L.) to saline soils and irrigation II. Crop response to salinity. Agric. Water Manag. 2002, 54, 81–92. [Google Scholar] [CrossRef]
- Rodrigues, M.L.; Pacheco, C.M.A.; Chaves, M.M. Soil-plant water relations, root distribution and biomass partitioning in Lupinus albus L. under drought conditions. J. Exp. Bot. 1995, 46, 947–956. [Google Scholar] [CrossRef]
- Huyghe, C. White lupin (Lupinus albus L.). Field Crop. Res. 1997, 53, 147–160. [Google Scholar] [CrossRef]
- Mauromicale, G.; Sortino, O.; Pesce, G.R.; Agnello, M.; Mauro, R.P. Suitability of cultivated and wild cardoon as a sustainable bioenergy crop for low input cultivation in low quality Mediterranean soils. Ind. Crop. Prod. 2014, 57, 82–89. [Google Scholar] [CrossRef]
- Francaviglia, R.; Bruno, A.; Falcucci, M.; Farina, R.; Renzi, G.; Russo, D.E.; Sepe, L.; Neri, U. Yields and quality of Cynara cardunculus L. wild and cultivated cardoon genotypes. A case study from a marginal land in Central Italy. Eur. J. Agron. 2016, 72, 10–19. [Google Scholar] [CrossRef]
- Pučka, I.; Lazdiņa, D. Review about investigations of Salix spp. in Europe. In Proceedings of the Annual 19th International Scientific Conference Proceedings, “Research for Rural Development”, Jelgava, Latvia, 15–17 May 2013; Latvia University of Agriculture: Jelgava, Latvia, 2013; Volume 2, pp. 13–19. [Google Scholar]
- Stolarski, M.J.; Niksa, D.; Krzyżaniak, M.; Tworkowski, J.; Szczukowski, S. Willow productivity from small-and large-scale experimental plantations in Poland from 2000 to 2017. Renew. Sustain. Energy Rev. 2019, 101, 461–475. [Google Scholar] [CrossRef]
- Boob, M.; Truckses, B.; Seither, M.; Elsäs ser, M.; Thumm, U.; Lewandowski, I. Management effects on botanical composition of species-rich meadows within the Natura 2000 network. Biodivers. Conserv. 2019, 28, 729–750. [Google Scholar] [CrossRef]
- Dauber, J.; Brown, C.; Fernando, A.L.; Finnan, J.; Krasuska, E.; Ponitka, J.; Styles, D.; Thrän, D.; Van Groenigen, K.J.; Weih, M. Bioenergy from“ surplus” land: Environmental and socio-economic implications. BioRisk 2012, 7, 5–50. [Google Scholar] [CrossRef]
- Felten, D.; Emmerling, C. Effects of bioenergy crop cultivation on earthworm communities—A comparative study of perennial (Miscanthus) and annual crops with consideration of graded land-use intensity. Appl. Soil Ecol. 2011, 49, 167–177. [Google Scholar] [CrossRef]
- Emmerling, C.; Pude, R. Introducing Miscanthus to the greening measures of the EU Common Agricultural Policy. Gcb Bioenergy 2017, 9, 274–279. [Google Scholar] [CrossRef]
- Cosentino, S.L.; Copani, V.; Scalici, G.; Scordia, D.; Testa, G. Soil erosion mitigation by perennial species under Mediterranean environment. BioEnergy Res. 2015, 8, 1538–1547. [Google Scholar] [CrossRef]
- Anderson, E.; Arundale, R.; Maughan, M.; Oladeinde, A.; Wycislo, A.; Voigt, T. Growth and agronomy of Miscanthus x giganteus for biomass production. Biofuels 2011, 2, 71–87. [Google Scholar] [CrossRef]
- MAGIC. Marginal Lands for Growing Industrial Crops: Turning a Burden into an Opportunity. Available online: http://magic-h2020.eu/ (accessed on 14 June 2019).
- GRACE. GRowing Advanced Industrial Crops on Marginal Lands for Biorefineries. Available online: https://www.grace-bbi.eu/project/ (accessed on 14 June 2019).
- Von Cossel, M.; Lewandowski, I. Miscanthus (Miscanthus x giganteus Greef et Deuter) cultivation on a shallow stony soil in southwest Germany. Manuscript unpublished.
- Mangold, A.; Winkler, B.; Von Cossel, M.; Iqbal, Y.; Kiesel, A.; Lewandowski, I. Implementing miscanthus into sustainable farming systems: A review on agronomic practices, capital and labor demand. Review article, under review, unpublished.
- Fajardy, M.; Chiquier, S.; Mac Dowell, N. Investigating the BECCS resource nexus: Delivering sustainable negative emissions. Energy Environ. Sci. 2018, 11, 3408–3430. [Google Scholar] [CrossRef]
- Heaton, E.; Voigt, T.; Long, S.P. A quantitative review comparing the yields of two candidate C4 perennial biomass crops in relation to nitrogen, temperature and water. Biomass Bioenergy 2004, 27, 21–30. [Google Scholar] [CrossRef]
- Iqbal, Y.; Kiesel, A.; Wagner, M.; Nunn, C.; Kalinina, O.; Hastings, A.F.S.J.; Clifton-Brown, J.C.; Lewandowski, I. Harvest Time Optimization for Combustion Quality of Different Miscanthus Genotypes across Europe. Front. Plant Sci. 2017, 8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lewandowski, I.; Schmidt, U. Nitrogen, energy and land use efficiencies of miscanthus, reed canary grass and triticale as determined by the boundary line approach. Agric. Ecosyst. Environ. 2006, 112, 335–346. [Google Scholar] [CrossRef] [Green Version]
- Sastre, C.M.; Carrasco, J.; Barro, R.; González-Arechavala, Y.; Maletta, E.; Santos, A.M.; Ciria, P. Improving bioenergy sustainability evaluations by using soil nitrogen balance coupled with life cycle assessment: A case study for electricity generated from rye biomass. Appl. Energy 2016, 179, 847–863. [Google Scholar] [CrossRef]
- Tuck, G.; Glendining, M.J.; Smith, P.; House, J.I.; Wattenbach, M. The potential distribution of bioenergy crops in Europe under present and future climate. Biomass Bioenergy 2006, 30, 183–197. [Google Scholar] [CrossRef]
- Cosentino, S.L.; Testa, G.; Scordia, D.; Alexopoulou, E. Future yields assessment of bioenergy crops in relation to climate change and technological development in Europe. Ital. J. Agron. 2012, 7, 22. [Google Scholar] [CrossRef]
- Cai, X.; Zhang, X.; Wang, D. Land availability for biofuel production. Environ. Sci. Technol. 2011, 45, 334–339. [Google Scholar] [CrossRef] [PubMed]
- Iqbal, Y.; Lewandowski, I. Inter-annual variation in biomass combustion quality traits over five years in fifteen Miscanthus genotypes in south Germany. Fuel Process. Technol. 2014, 121, 47–55. [Google Scholar] [CrossRef]
- Kalinina, O.; Nunn, C.; Sanderson, R.; Hastings, A.F.S.; van der Weijde, T.; Özgüven, M.; Tarakanov, I.; Schüle, H.; Trindade, L.M.; Dolstra, O.; et al. Extending Miscanthus Cultivation with Novel Germplasm at Six Contrasting Sites. Front. Plant Sci. 2017, 8, 185. [Google Scholar] [CrossRef]
- Clifton-Brown, J.; Hastings, A.; Mos, M.; McCalmont, J.P.; Ashman, C.; Awty-Carroll, D.; Cerazy, J.; Chiang, Y.-C.; Cosentino, S.; Cracroft-Eley, W.; et al. Progress in upscaling Miscanthus biomass production for the European bio-economy with seed-based hybrids. GCB Bioenergy 2017, 9, 6–17. [Google Scholar] [CrossRef]
- Johnson, R.C.; Petrie, S.E.; Franchini, M.C.; Evans, M. Yield and yield components of winter-type safflower. Crop. Sci. 2012, 52, 2358–2364. [Google Scholar] [CrossRef]
- Jamshidmoghaddam, M.; Pourdad, S.S. Genotype$\times$ environment interactions for seed yield in rainfed winter safflower (Carthamus tinctorius L.) multi-environment trials in Iran. Euphytica 2013, 190, 357–369. [Google Scholar] [CrossRef]
- Gesch, R.W.; Matthees, H.L.; Alvarez, A.L.; Gardner, R.D. Winter camelina: Crop growth, seed yield, and quality response to cultivar and seeding rate. Crop. Sci. 2018, 58, 2089. [Google Scholar] [CrossRef]
- Walia, M.K.; Wells, M.S.; Cubins, J.; Wyse, D.; Gardner, R.D.; Forcella, F.; Gesch, R. Winter camelina seed yield and quality responses to harvest time. Ind. Crop. Prod. 2018, 124, 765–775. [Google Scholar] [CrossRef]
- MAGIC DSS MAGIC Decision Support System Marginal Lands and Industrial Crops. Available online: https://iiasa-spatial.maps.arcgis.com/apps/webappviewer/index.html?id=a813940c9ac14c298238c1742dd9dd3c (accessed on 28 April 2019).
- Kort, J.; Collins, M.; Ditsch, D. A review of soil erosion potential associated with biomass crops. Biomass Bioenergy 1998, 14, 351–359. [Google Scholar] [CrossRef]
- Vaughan, D.H.; Cundiff, J.S.; Parrish, D.J. Herbaceous crops on marginal sites Erosion and economics. Biomass 1989, 20, 199–208. [Google Scholar] [CrossRef]
- Fagnano, M.; Impagliazzo, A.; Mori, M.; Fiorentino, N. Agronomic and environmental impacts of giant reed (Arundo donax L.): Results from a long-term field experiment in hilly areas subject to soil erosion. Bioenergy Res. 2015, 8, 415–422. [Google Scholar] [CrossRef]
- Dauber, J.; Jones, M.B.; Stout, J.C. The impact of biomass crop cultivation on temperate biodiversity. Gcb Bioenergy 2010, 2, 289–309. [Google Scholar] [CrossRef]
- Folke, C.; Carpenter, S.; Walker, B.; Scheffer, M.; Elmqvist, T.; Gunderson, L.; Holling, C.S. Regime shifts, resilience, and biodiversity in ecosystem management. Annu. Rev. Ecol. Evol. Syst. 2004, 35, 557–581. [Google Scholar] [CrossRef]
- Deutsch, L.; Folke, C.; Skånberg, K. The critical natural capital of ecosystem performance as insurance for human well-being. Ecol. Econ. 2003, 44, 205–217. [Google Scholar] [CrossRef]
- Teuling, A.J. A hot future for European droughts. Nat. Clim. Chang. 2018, 8, 364. [Google Scholar] [CrossRef]
- Samaniego, L.; Thober, S.; Kumar, R.; Wanders, N.; Rakovec, O.; Pan, M.; Zink, M.; Sheffield, J.; Wood, E.F.; Marx, A. Anthropogenic warming exacerbates European soil moisture droughts. Nat. Clim. Chang. 2018, 8, 421. [Google Scholar] [CrossRef]
- Garbolino, E.; Daniel, W.; Hinojos Mendoza, G. Expected Global Warming Impacts on the Spatial Distribution and Productivity for 2050 of Five Species of Trees Used in the Wood Energy Supply Chain in France. Energies 2018, 11, 3372. [Google Scholar] [CrossRef]
- Von Cossel, M.; Mohr, V.; Elbersen, B.; Staritsky, I.; Van Eupen, M.; Mantel, S.; Iqbal, I.; Happe, S.; Scordia, D.; Cosentino, S.L.; et al. How to feed the European bioeconomy in the future? Climate change-forced shifts in growth suitability of industrial crops until 2100. unpublished.
- Pachauri, R.K.; Allen, M.R.; Barros, V.R.; Broome, J.; Cramer, W.; Christ, R.; Church, J.A.; Clarke, L.; Dahe, Q.; Dasgupta, P. Climate Change 2014: Synthesis Report, Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; IPCC: Geneva, Switzerland, 2014. [Google Scholar]
Crop | Physiology | |||
---|---|---|---|---|
Common Name | Binomial Name | Life Cycle | Photo-Synzthetic Pathway | Purpose/Type of Use |
Biomass sorghum | Sorghum bicolor L. Moench | Annual | C4 | Multipurpose |
Camelina | Camelina sativa L. Crantz | Annual | C3 | Oil |
Cardoon | Cynara cardunculus L. | Perennial | C3 | Multipurpose |
Castor bean | Ricinus communis L. | Annual | C3 | Oil |
Crambe | Crambe abyssinica Hochst Ex Re Fries | Annual | C3 | Oil |
Ethiopian mustard | Brassica carinata A. Braun | Annual | C3 | Oil |
Giant reed | Arundo donax L. | Perennial | C3 | Lignocellulosic |
Hemp | Cannabis sativa L. | Annual | C3 | Multipurpose |
Lupin | Lupinus mutabilis Sweet | Perennial | C3 | Multipurpose |
Miscanthus | Miscanthus × giganteus Greef et Deuter | Perennial | C4 | Lignocellulosic |
Pennycress | Thlaspi arvense L. | Annual | C3 | Oil |
Poplar | Populus spp. | Perennial | C3 | Lignocellulosic |
Reed canary grass | Phalaris arundinacea L. | Perennial | C3 | Lignocellulosic |
Safflower | Carthamus tinctorius L. | Annual | C3 | Oil |
Siberian elm | Ulmus pumila L. | Perennial | C3 | Lignocellulosic |
Switchgrass | Panicum virgatum L. | Perennial | C4 | Lignocellulosic |
Tall wheatgrass | Thinopyrum ponticum Podp. Z.-W. Liu and R.-C. Wang | Perennial | C3 | Lignocellulosic |
African fodder cane | Saccharum spontaneum L. ssp. aegyptiacum (Willd.) Hack. | Perennial | C4 | Lignocellulosic |
Willow | Salix spp. | Perennial | C3 | Lignocellulosic |
Constraint(-s) a | AEZ 1 | AEZ 2 | AEZ 3 | AEZ 1-3 |
---|---|---|---|---|
RT | 62,247 | 51,823 | 41,449 | 155,519 |
CL | 27,752 | 4564 | 79,780 | 112,096 |
WT | 2526 | 65,322 | 40,233 | 108,081 |
TR | 31,332 | 5710 | 11,362 | 48,404 |
RT-TR | 15,636 | 14,656 | 2157 | 32,449 |
CL-RT | 25,675 | 593 | 6064 | 32,332 |
CL-WT | 701 | 13,141 | 16,263 | 30,105 |
FE | 15,205 | 3087 | 5246 | 23,538 |
CH | 6883 | 3642 | 11,987 | 22,512 |
CL-FE | 14,527 | 291 | 3524 | 18,342 |
WT-RT | 348 | 10,541 | 1745 | 12,634 |
CL-TR | 2920 | 1577 | 4189 | 8686 |
CL-RT-TR | 4240 | 1072 | 1150 | 6462 |
CL-WT-RT | 95 | 1531 | 3472 | 5098 |
CL-WT-TR | 12 | 4663 | 61 | 4736 |
CL-FE-RT | 4272 | 47 | 97 | 4416 |
CL-FE-RT-TR | 4272 | 47 | 97 | 4416 |
CL-WT-RT-TR | 603 | 2361 | 1421 | 4385 |
CL-FE-TR | 151 | 2361 | 1421 | 3933 |
WT-TR | 51 | 1935 | 976 | 2962 |
FE-RT | 1268 | 603 | 289 | 2160 |
CL-WT-FE | 0 | 1344 | 594 | 1938 |
WT-RT-TR | 4 | 1158 | 58 | 1220 |
WT-FE | 11 | 986 | 198 | 1195 |
CL-CH | 1173 | 0 | 0 | 1173 |
FE-CH | 200 | 1 | 950 | 1151 |
CH-TR | 273 | 46 | 654 | 973 |
CL-WT-FE-RT | 0 | 185 | 697 | 882 |
CH-RT | 280 | 107 | 195 | 582 |
WT-CH | 37 | 239 | 154 | 430 |
CL-WT-FE-TR | 0 | 417 | 1 | 418 |
CL-WT-FE-RT-TR | 1 | 143 | 106 | 250 |
CL-FE-CH | 244 | 0 | 0 | 244 |
FE-TR | 117 | 49 | 51 | 217 |
WT-FE-RT | 0 | 87 | 10 | 97 |
WT-FE-TR | 0 | 77 | 1 | 78 |
CL-CH-RT | 54 | 0 | 0 | 54 |
FE-RT-TR | 7 | 32 | 6 | 45 |
CH-RT-TR | 26 | 2 | 16 | 44 |
CL-CH-TR | 18 | 0 | 0 | 18 |
FE-CH-TR | 1 | 0 | 17 | 18 |
FE-CH-RT | 4 | 0 | 7 | 11 |
CL-WT-CH | 5 | 0 | 0 | 5 |
WT-FE-CH | 0 | 0 | 1 | 1 |
Total marginal | 218,962 | 192,302 | 235,569 | 646,833 |
Total not marginal | 422,565 | 538,855 | 704,818 | 1,666,238 |
Total | 641,527 | 731,157 | 940,387 | 2,313,071 |
Crop | Factors of Thermal Growth Requirements | ||
---|---|---|---|
Base Temperature (°C) | Minimum Length of Growing Season (d) | Minimum of Growing Degree Days a (Thermal Time, °C d) | |
Biomass sorghum | 8 | 100 | 1500 |
Camelina | 5 | 90 | 1000 |
Cardoon | 7.5 | 120 | 1100 |
Castor bean | 10 | 135 | 1500 |
Crambe | 5 | 100 | 1200 |
Ethiopian mustard | 5 | 120 | 2000 |
Giant reed | 5 | 210 | 1843 |
Hemp | 6 | 90 | 1400 |
Lupin | 0 | 222 | 2260 |
Miscanthus | 5 | 78 | 1700 |
Pennycress | 4 | 90 | 1200 |
Poplar | 0 | 180 | 2200 |
Reed canary grass | 0 | 111 | 2000 |
Safflower | 2 | 120 | 1800 |
Siberian elm | 6 | 150 | 2000 |
Switchgrass | 6 | 140 | 2060 |
Tall wheatgrass | 4 | 90 | 1200 |
Wild sugarcane | 10 | 210 | 2400 |
Willow | 2 | 180 | 2000 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Von Cossel, M.; Lewandowski, I.; Elbersen, B.; Staritsky, I.; Van Eupen, M.; Iqbal, Y.; Mantel, S.; Scordia, D.; Testa, G.; Cosentino, S.L.; et al. Marginal Agricultural Land Low-Input Systems for Biomass Production. Energies 2019, 12, 3123. https://doi.org/10.3390/en12163123
Von Cossel M, Lewandowski I, Elbersen B, Staritsky I, Van Eupen M, Iqbal Y, Mantel S, Scordia D, Testa G, Cosentino SL, et al. Marginal Agricultural Land Low-Input Systems for Biomass Production. Energies. 2019; 12(16):3123. https://doi.org/10.3390/en12163123
Chicago/Turabian StyleVon Cossel, Moritz, Iris Lewandowski, Berien Elbersen, Igor Staritsky, Michiel Van Eupen, Yasir Iqbal, Stefan Mantel, Danilo Scordia, Giorgio Testa, Salvatore Luciano Cosentino, and et al. 2019. "Marginal Agricultural Land Low-Input Systems for Biomass Production" Energies 12, no. 16: 3123. https://doi.org/10.3390/en12163123
APA StyleVon Cossel, M., Lewandowski, I., Elbersen, B., Staritsky, I., Van Eupen, M., Iqbal, Y., Mantel, S., Scordia, D., Testa, G., Cosentino, S. L., Maliarenko, O., Eleftheriadis, I., Zanetti, F., Monti, A., Lazdina, D., Neimane, S., Lamy, I., Ciadamidaro, L., Sanz, M., ... Alexopoulou, E. (2019). Marginal Agricultural Land Low-Input Systems for Biomass Production. Energies, 12(16), 3123. https://doi.org/10.3390/en12163123