Techno-Economic Optimization of Grid-Connected Photovoltaic (PV) and Battery Systems Based on Maximum Demand Reduction (MDRed) Modelling in Malaysia
Abstract
:1. Introduction
2. Concept of Maximum Demand Reduction (MDRed) Model
3. MATLAB Genetic Algorithm (GA) for MDRed Optimization Model
3.1. Financial Model
3.1.1. Electricity Tariff Model
3.1.2. Solar PV Model
3.1.3. Battery Energy Storage System (BESS) Model
3.2. Economical Model
4. Modeling of System Reliability
- [Condition #1: PMD_limit < Pload_net with solar PV]:-∫Pload_net = ∫Pload_actual − ∫PPV
- [Condition #2: PMD_limit > Pload_net with solar PV]:-Pload_net = [Pload_actual + Pbat_chg] − [PPV + Pbat_dischg]
- [Condition #3: PMD_limit > Pload_net without solar PV]:-Pload_net = [Pload_actual + Pbat_chg] − [Pbat_dischg]
- The total load net consumption reduction will be based on sum of the new net load mainly due to generated PV power. Therefore, total load shaving (Pload_shave) can be calculated as:∑Pload_shave = ∑Pload_actual − ∑PPV
- MD reduction shaving varies according to system performance which mainly relies on total generated PV power and battery capacity. The excess PV power, PPV_suplus will be achieved when generated PV power is more than actual load and it can be calculated as:[Condition #4: PPV > Pload_actual with solar PV]:PPV_suplus = ∑[PPV − Pload_actual]
5. System Optimization
5.1. Problem Formulation
5.1.1. System Constraints
5.1.2. Bounds of Design Variables
5.2. Validation of Numerical Results
6. Optimization Results
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Nomenclature
MDRed | Maximum demand reduction |
PV | Photovoltaic |
BESS | Battery energy storage system |
DOD | Depth of Discharge (%) |
SOC | State of Charge (%) |
MD | Maximum demand |
Pload_net | Net consumption (kW) |
PMD | Maximum demand (kW) |
ROI | Return on Investment (%) |
Pconv | Power rating of the converter (kW) |
PBat | Rated capacity of the battery (kWh) |
Ebat | Optimal size of the battery (kWh) |
UPV | Unit cost of PV array (MYR/kWp) |
Ctotal_PV | Cumulative cost of PV system (MYR) |
CO&M_PV | O&M cost of PV system (MYR) |
CRC_PV | Replacement cost of PV system (MYR) |
CBat | Cumulative cost of batteries (MYR) |
UBat | Unit cost of the batteries (MYR/kWh) |
CLS_bat | Cost of battery lifespan (MYR) |
UConv | Unit cost of the converter (kW) |
Pshave_MD | Maximum demand shaving load (kW) |
Syr_shave | Total energy savings annually (MYR) |
Pload_shave | Total net consumption savings load (kWh) |
PPV_STC | Rated PV power at Standard Testing Condition (kWp) |
Cbill | Cumulative amount of net consumption and MD (MYR) |
Cnet_kWh | Cumulative amount of net consumption (MYR) |
CMD_kW | Cumulative amount of Maximum demand (MYR) |
CPV_inv | Cumulative cost of optimal PV array (MYR) |
C_BESS | Cumulative cost of BESS and converter MYR) |
Cfull_loan | Cumulative cost of overall PV-battery system (MYR) |
Uload_net | Unit price of net consumption (RM/kWh) |
UMD | Unit price of maximum demand (RM/kW |
Eload_net | Total net consumption recorded (kWh) |
EMD | Total maximum demand recorded (kW) |
PPV_rated | Rated dc output power of PV array (kWp) |
PPV_kWp | DC output power of PV array (kWp) |
ηinv | Conversion efficiency of inverter (%) |
ηB | Round trip efficiency of the converter (%) |
PMD_limit | Maximum demand limit (kW) |
Pload_actual | Actual consumed load (kWh) |
Pbat_chg | Battery charging load (kWh) |
Pbat_dischg | Battery discharging load (kWh) |
PPV | Solar PV generation load (kWh) |
Pmod | Solar PV modelled power (per unit) |
Ctotal_BESS | Capital cost of overall BESS (MYR) |
Co&m_BESS | O&M cost of BESS (MYR) |
Crep_BESS | Replacement cost of BESS (MYR) |
Cdisp_bat | Disposal cost of BESS (MYR) |
PPV_suplus | Surplus PV power (kWh) (kWh) |
E_surplus | Unit price of surplus PV (MYR/kWh) |
Gs (t) | Measured solar irradiance (W/m2) |
γ | PV module temperature correction (%/°C) |
References
- ExxonMobil Energy. Outlook for Energy: A View to 2040; ExxonMobil Energy: Irving, TX, USA, 2013. [Google Scholar]
- Wu, H.; Wang, S.; Zhao, B.; Zhu, C. Energy management and control strategy of a grid-connected PV/battery system. Int. Trans. Electr. Energy Syst. 2015, 25, 1590–1602. [Google Scholar] [CrossRef]
- Castillo, A.; Gayme, D.F. Grid-scale energy storage applications in renewable energy integration: A survey. Energy Conversat. Manag. 2014, 87, 885–894. [Google Scholar] [CrossRef]
- Coordinated Low Emissions Assistance Network. Review of Networks and Platforms for Low Emission and Climate Compatible Development Planning; Coordinated Low Emissions Assistance Network: Witzwort, Germany, 2011. [Google Scholar]
- The Sustainable Energy Development Authority of Malaysia. Available online: http://www.seda.gov.my/ (accessed on 21 September 2014).
- TNB. Electricity Tariff Schedule; Tenaga Nasional Berhad: Kuala Lumpur, Malaysia, 2014. [Google Scholar]
- Braam, F.; Hollinger, R.; Engesser, L.M.; Müller, S.; Kohrs, R.; Wittwer, C. Peak shaving with photovoltaic-battery systems. In Proceedings of the Innovative Smart Grid Technologies Conference Europe, Istanbul, Turkey, 12–15 October 2014; pp. 1–5. [Google Scholar]
- Wang, B.; Zarghami, M.; Vaziri, M. Energy management and peak-shaving in grid-connected photovoltaic systems integrated with battery storage. In Proceedings of the North American Power Symposium, Denver, CO, USA, 18–20 September 2016; pp. 1–5. [Google Scholar]
- Pimm, J.A.; Cockerill, T.T.; Taylor, P.G. The potential for peak shaving on low voltage distribution networks using electricity storage. J. Energy Storage 2018, 16, 231–242. [Google Scholar] [CrossRef]
- Ru, Y.; Kleissl, J.; Martinez, S. Storage size determination for grid-connected photovoltaic systems. IEEE Trans. Sustain. Energy 2013, 4, 68–81. [Google Scholar] [CrossRef]
- Linssen, J.; Stenzel, P.; Fleer, J. Techno-economic analysis of photovoltaic battery systems and the influence of different consumer load profiles. Appl. Energy 2017, 185, 2019–2025. [Google Scholar] [CrossRef]
- Hanna, R.; Kleissl, J.; Nottrott, A.; Ferry, M. Energy dispatch schedule optimization for demand charge reduction using a photovoltaic-battery storage system with solar forecasting. Sol. Energy 2014, 103, 269–287. [Google Scholar] [CrossRef]
- Moghimi, M.; Garmabdari, R.; Stegen, S.; Lu, J. Battery energy storage cost and capacity optimization for university research center. In Proceedings of the IEEE/IAS 54th Industrial and Commercial Power Systems Technical Conference (I&CPS), Niagara Falls, ON, Canada, 7–10 May 2018. [Google Scholar]
- Liu, X.; Gao, B.; Zhu, Z.; Tang, Y. Non-cooperative and cooperative optimisation of battery energy storage system for energy management in multi-microgrid. IET Gener. Transm. Distrib. 2018, 12, 2369–2377. [Google Scholar] [CrossRef]
- Dongol, D.; Feldmann, T.; Schmidt, M.; Bollin, E. A model predictive control based peak shaving application of battery for a household with photovoltaic system in a rural distribution grid. Sustain. Energy Grids Netw. 2018, 16, 1–13. [Google Scholar] [CrossRef]
- Subramani, G.; Ramachandaramurthy, V.K.; Padmanaban, S.; Mihet-Popa, L.; Blaabjerg, F.; Guerrero, J.M. Grid-Tied Photovoltaic and Battery Storage Systems with Malaysian Electricity Tariff—A Review on Maximum Demand Shaving. Energies 2017, 10, 1884. [Google Scholar] [CrossRef]
- Chauhan, A.; Saini, R.P. A review of an integrated renewable energy system-based power generation for stand-alone applications: Configurations, storage options, sizing methodologies and control. Renew. Sustain. Energy Rev. 2014, 38, 99–120. [Google Scholar] [CrossRef]
- Bilal, B.O.; Sambou, V.; Kebe, C.M.F.; Ndiaye, P.A.; Ndongo, M. Methodology to Size an Optimal Stand-Alone PV/wind/diesel/battery System Minimizing the Levelized Cost of Energy and the CO2 Emissions. Energy Procedia 2012, 14, 1636–1647. [Google Scholar] [CrossRef]
- Tudu, B.; Majumder, S.; Mandal, K.K.; Chakraborty, N. Optimal unit sizing of stand-alone renewable hybrid energy system using bees algorithm. In Proceedings of the Energy, Automation, and Signal (ICEAS), Bhubaneswar, India, 28–30 December 2011. [Google Scholar]
- Maleki, A.; Askarzadeh, A. Optimal sizing of a PV/wind/diesel system with battery storage for electrification to an off-grid remote region: A case study of Rafsanjan, Iran. Sustain. Energy Technol. Assess. 2014, 7, 147–153. [Google Scholar] [CrossRef]
- Maleki, A.; Ameri, M.; Keynia, F. Scrutiny of multifarious particle swarm optimization for finding the optimal size of a PV/wind/battery hybrid system. Renew. Energy 2015, 80, 552–563. [Google Scholar] [CrossRef]
- Gupta, R.A.; Kumar, R.; Bansal, A.K. BBO-based small autonomous hybrid power system optimization incorporating wind speed and solar radiation forecasting. Renew. Sustain. Energy Rev. 2015, 41, 1366–1375. [Google Scholar] [CrossRef]
- Alsayed, M.; Cacciato, M.; Scarcella, G.; Scelba, G. Design of hybrid power generation systems based on multi-criteria decision analysis. Sol. Energy 2014, 105, 548–560. [Google Scholar] [CrossRef]
- Lara-Fanego, V.; Ruiz-Arias, J.A.; Pozo-Vazquez, D.; Santos-Alamillos, F.J.; Tovar-Pescador, J. Evaluation of the WRF model solar irradiance forecasts in Andalusia (southern Spain). Sol. Energy 2012, 86, 2200–2217. [Google Scholar] [CrossRef]
- Rus-Casas, C.; Aguilar, J.D.; Rodrigo, P.; Almonacid, F.; Perez-Higueras, P.J. Classification of methods for annual energy harvesting calculations of photovoltaic generators. Energy Convers. Manag. 2014, 78, 527–536. [Google Scholar] [CrossRef]
- Ghazali, A.; Salleh, E.; Haw, L.C.; Sohif, M.; Sopian, K.B. Feasibility of vertical photovoltaic system on a high-rise building in Malaysia: Performance evaluation. Int. J. Low Carbon Technol. 2017, 12, 1–9. [Google Scholar] [CrossRef]
- Divya, K.C.; Østergaard, J. Battery energy storage technology for power systems—An overview. Electr. Power Syst. Res. 2009, 79, 511–520. [Google Scholar] [CrossRef]
- Bulman, P. Tesla’s Powerwall battery production requires ‘super-charged’ supply chain. Renew. Energy Focus 2015, 16, 126–127. [Google Scholar] [CrossRef]
- Akhil, A.A.; Huff, G.; Currier, A.B.; Kaun, B.C.; Rastler, D.M.; Chen, S.B.; Cotter, A.L.; Bradshaw, D.T.; Gauntlett, W.D. DOE/EPRI Electricity Storage Handbook in Collaboration with NRECA; Sandia National Lab.: Albuquerque, NM, USA, 2015.
- Poullikkas, A. A comparative overview of large-scale battery systems for electricity storage. Renew. Sustain. Energy Rev. 2013, 27, 778–788. [Google Scholar] [CrossRef]
- Luo, X.; Wang, J.; Dooner, M.; Clarke, J. Overview of current development in electrical energy storage technologies and the application potential in power system operation. Appl. Energy 2015, 137, 511–536. [Google Scholar] [CrossRef] [Green Version]
- Arul, P.G.; Ramachandaramurthy, V.K.; Rajkumar, R.K. Control strategies for a hybrid renewable energy system: A review. Renew. Sustain. Energy Rev. 2015, 42, 597–608. [Google Scholar] [CrossRef]
- Aneke, M.; Wang, M. Energy storage technologies and real-life applications—A state of the art review. Appl. Energy 2016, 179, 350–377. [Google Scholar] [CrossRef]
Tariff | Unit | C1 a | C2 b | E1 c | E2 d |
---|---|---|---|---|---|
Peak | RM (USD)/kWh | 0.0 | 0.365 (0.08) | 0.0 | 0.365 (0.08) |
Off-peak | RM (USD)/kWh | 0.0 | 0.224 (0.05) | 0.0 | 0.219 (0.05) |
Net consumption | RM (USD)/kWh | 0.365 (0.08) | 0.0 | 0.337 (0.08) | 0.0 |
Maximum Demand (MD) | RM (USD)/kW | 30.3 (6.82) | 45.1 (10.2) | 29.6 (6.7) | 37.0 (8.3) |
Technique | Highlights | Strength | Weakness | Ref. |
---|---|---|---|---|
Genetic Algorithm (GA) | Mimics processes of natural evolution, like inheritance, mutation, selection, and crossover | Can solve problems with multiple solutions; easily transferable to existing simulations and models | Convergence speed is slower than other stochastic algorithms | [17,18] |
Particle swarm optimization (PSO) | Mimics bird and fish movement behavior | The speed of their searching is fast; calculation in PSO is simple in comparison to other methods | Cannot work out the problems of non-coordinate system | [17,18] |
Bee-inspired algorithms | Based on the intelligent for aging behavior of honey bee | The algorithm has local search and global search ability; implemented with several optimization problems; easy to use | Random initialization; algorithm has several parameters | [19] |
Harmony search | Based on improvisation process of jazz musicians | Can handle discrete variables as well as continuous variables; ability to perform a global and local search | Complex solving process | [20] |
Biogeography-based optimization (BBO) | Behavior studies of species in nature | Fast computation time; good convergence accuracy | Poor in exploiting the solutions; no provision for selecting the best members of each generation | [21] |
Hybrid optimization technique | Developed by using two or more algorithms | Better accuracy in results; takes less computational time(in some cases) | Increased complexity; difficult to code | [22] |
Tariff | Unit | Category | Total Bill |
---|---|---|---|
Net consumption, Pload_net | MYR/kWh, Uload_net | C1 & E1 | Cnet |
Maximum Demand, PMD | MYR/kW, UMD | C1, C2, E1 & E2 | CMD |
Month-Year | Time | Load (kW) | Total Cost (MYR) |
---|---|---|---|
Jan-17 | 9:30:00 | 1260 | 38,178.00 |
Feb-17 | 9:00:00 | 1300 | 39,390.00 |
Mar-17 | 10:00:00 | 1220 | 36,966.00 |
Apr-17 | 8:30:00 | 1290 | 39,087.00 |
Year | 2010 a | 2011 a | 2012 a | 2013 a | 2014 a | 2015 a | 2016 a | 2017 |
---|---|---|---|---|---|---|---|---|
Price (MYR)/kWp | 19,120 | 11,000 | 9000 | 7500 | 8500 | 7500 | 7300 | - |
Technology | DOD a | Round Trip b | Cycle Life c | Cost of Energy b (RM/kWh) | ||
---|---|---|---|---|---|---|
(%) | Efficiency (%) | Low | High | Low | High | |
LA | 50 | 85 | 500 | 2800 | 185 | 1147 |
VRB | 100 | 85 | 12,000 | 13,342 | 648 | 3700 |
ZnBr | 100 | 75 | 1500 | 2000 | 740 | 2220 |
Li-ion | 85 | 90 | 1000 | 10,000 | 2220 | 9250 |
Concept | Control Algorithm | Peak Hours [8.00 a.m.–10.00 p.m.] | Off Peak Hours [10.00 p.m.–8.00 a.m. ] | ||
---|---|---|---|---|---|
Scenario | |||||
Actual load below the MD limit Pload_actual < PMD_limit | Solar PV | Efficient | |||
Battery | PPV_surplus = Pload_actual-PPV when PPV > Polad_actual [Battery will not operate] | [Battery will not change since 0% DOD] | |||
Fully charged | DOD: 0% | ||||
Actual load above the MD limit Pload_actual > PMD_limit | Solar PV | Intermittent or Zero | |||
Battery | Pload_net = [Pload_Actual + Pbat_chg] – [PPV + Pbat_discha] [Battery will discharge] | [Battery will change to achieve 0% DOD] | |||
Fully charged | DOD: >50% |
Component | Unit | PV-Inverter | Battery | Converter |
---|---|---|---|---|
Cost of the system | MYR (USD)/kWp | 7000 (1600) | ||
MYR (USD)/kWh | 2200 (500) | |||
MYR (USD)/kW | 1100 (250) | |||
Lifespan | Years | 21 | 12 | |
Efficiency | % | 90 | 95 | 90 |
DOD | % | 85 | ||
O&M cost | 5% of CPV_INV | 10% of CBESS | ||
RC cost | 5% of CPV_INV | 10% of CBESS | ||
Interest Rate | % | 7 | 7 | 7 |
Pmod = PPV_Kwp* (Gs/GSTC) [1 − γ * (TC − TSTC)] | PPV_rated = PPV_kWp/ηinv | 50 kWp PV System (Actual) | |||||||
---|---|---|---|---|---|---|---|---|---|
Time (Hr) | Gs (W/m2) | GSTC (W/m2) | γ | Tc (DegC) | TSTC (DegC) | Pmod (In Per Unit) | Pmod (kW) (DC) | PV Modelled Power, | Actual PV Generated Power |
Pmod (KW)(DC) | PPV_Actual_AC | ||||||||
00:00 MYT | 0 | 1000 | 0.005 | 0.0 | 0.0 | 0.00 | 0.0 | 0.0 | 0.0 |
01:00 MYT | 0 | 1000 | 0.005 | 0.0 | 0.0 | 0.00 | 0.0 | 0.0 | 0.0 |
02:00 MYT | 0 | 1000 | 0.005 | 0.0 | 0.0 | 0.00 | 0.0 | 0.0 | 0.0 |
03:00 MYT | 0 | 1000 | 0.005 | 0.0 | 0.0 | 0.00 | 0.0 | 0.0 | 0.0 |
04:00 MYT | 0 | 1000 | 0.005 | 0.0 | 0.0 | 0.00 | 0.0 | 0.0 | 0.0 |
05:00 MYT | 0 | 1000 | 0.005 | 0.0 | 0.0 | 0.00 | 0.0 | 0.0 | 0.0 |
06:00 MYT | 0 | 1000 | 0.005 | 35.0 | 25.0 | 0.00 | 0.0 | 0.0 | 0.0 |
07:00 MYT | 0 | 1000 | 0.005 | 38.0 | 25.0 | 0.00 | 0.00 | 0.0 | 0.0 |
08:00 MYT | 42 | 1000 | 0.005 | 40.0 | 25.0 | 0.04 | 1.94 | 1.7 | 1.0 |
09:00 MYT | 227 | 1000 | 0.005 | 45.0 | 25.0 | 0.20 | 10.22 | 9.2 | 7.5 |
10:00 MYT | 690 | 1000 | 0.005 | 45.0 | 25.0 | 0.62 | 31.05 | 27.9 | 23.0 |
11:00 MYT | 736 | 1000 | 0.005 | 55.0 | 25.0 | 0.63 | 31.28 | 28.2 | 27.0 |
12:00 MYT | 872 | 1000 | 0.005 | 60.0 | 25.0 | 0.72 | 35.97 | 32.4 | 31.5 |
13:00 MYT | 1027 | 1000 | 0.005 | 60.0 | 25.0 | 0.85 | 42.36 | 38.1 | 35.8 |
14:00 MYT | 755 | 1000 | 0.005 | 60.0 | 25.0 | 0.62 | 31.14 | 28.0 | 30.5 |
15:00 MYT | 393 | 1000 | 0.005 | 60.0 | 25.0 | 0.32 | 16.21 | 14.6 | 16.7 |
16:00 MYT | 204 | 1000 | 0.005 | 55.0 | 25.0 | 0.17 | 8.67 | 7.8 | 9.9 |
17:00 MYT | 141 | 1000 | 0.005 | 50.0 | 25.0 | 0.12 | 6.17 | 5.6 | 6.6 |
18:00 MYT | 19 | 1000 | 0.005 | 45.0 | 25.0 | 0.02 | 0.86 | 0.8 | 0.7 |
19:00 MYT | 18 | 1000 | 0.005 | 40.0 | 25.0 | 0.02 | 0.83 | 0.7 | 0.6 |
20:00 MYT | 0 | 1000 | 0.005 | 0.0 | 0.0 | 0.00 | 0.0 | 0.0 | 0.0 |
21:00 MYT | 0 | 1000 | 0.005 | 0.0 | 0.0 | 0.00 | 0.0 | 0.0 | 0.0 |
22:00 MYT | 0 | 1000 | 0.005 | 0.0 | 0.0 | 0.00 | 0.0 | 0.0 | 0.0 |
23:00 MYT | 0 | 1000 | 0.005 | 0.0 | 0.0 | 0.00 | 0.0 | 0.0 | 0.0 |
PMD_Limit = 750 kW | MDRed scheme During Perfect Weather Condition (Sunny Day) | |||||
---|---|---|---|---|---|---|
Time (Hr) | Load Profile | PPV = 1200 kWp (Based on Equation (4)) | Battery Capacity, Pbat_kWh = 48 kWh | New Net Load | Control Algorithm | |
Pload_Actual, kW | Pbat_DOD | Pbat_SOC | Pload_net (kW) | |||
00:00 MYT | 390 | 0 | 0 | −11 | 401 | Condition #2 |
01:00 MYT | 360 | 0 | 0 | −11 | 371 | |
02:00 MYT | 360 | 0 | 0 | −11 | 371 | |
03:00 MYT | 340 | 0 | 0 | −11 | 351 | |
04:00 MYT | 320 | 0 | 0 | 0 | 320 | No operation |
05:00 MYT | 320 | 0 | 0 | 0 | 320 | |
06:00 MYT | 310 | 0 | 0 | 0 | 310 | |
07:00 MYT | 310 | 0 | 0 | 0 | 310 | |
08:00 MYT | 520 | 46.6 | 0 | 0 | 473 | Condition #1 |
09:00 MYT | 1050 | 252.0 | 48 | 0 | 750 | Condition #2 |
10:00 MYT | 1020 | 724.5 | 0 | 0 | 296 | Condition #1 |
11:00 MYT | 990 | 772.8 | 0 | 0 | 217 | |
12:00 MYT | 900 | 915.6 | 0 | 0 | −16 | Condition #4 |
13:00 MYT | 940 | 1078.4 | 0 | 0 | −138 | |
14:00 MYT | 980 | 675.2 | 0 | 0 | 305 | Condition #1 |
15:00 MYT | 970 | 412.7 | 0 | 0 | 557 | |
16:00 MYT | 970 | 214.2 | 6 | 0 | 750 | Condition #2 |
17:00 MYT | 880 | 148.1 | 0 | 0 | 732 | Condition #1 |
18:00 MYT | 630 | 20.0 | 0 | 0 | 610 | |
19:00 MYT | 580 | 0 | 0 | 0 | 580 | MD monitoring |
20:00 MYT | 620 | 0 | 0 | 0 | 620 | |
21:00 MYT | 540 | 0 | 0 | 0 | 540 | |
22:00 MYT | 510 | 0 | 0 | 510 | ||
23:00 MYT | 500 | 0 | 0 | −11 | 511 | Condition #2 |
Control Algorithm | Status | PV Status | Numerical Formula |
---|---|---|---|
Condition #1 | PMD_limit < Pload_net | Yes | ∫Pload_net = ∫Pload_actual − ∫PPV |
Condition #2 | PMD_limit > Pload_net | Yes | Pload_net = [Pload_actual + Pbat_chg] − [PPV + Pbat_dischg] |
Condition #3 | PMD_limit > Pload_net | No | Pload_net = [Pload_actual + Pbat_chg] − [Pbat_dischg] |
Condition #4 | PPV > Pload_actual | Yes | PPV_suplus = PPV − Pload_actual |
Load Profile | Energy Savings | Percentage of Total Energy Savings | Optimal Sizing | MD Limit | |
---|---|---|---|---|---|
PV | Battery | ||||
(Actual MD) | (MYR) | (%) | (kWp) | (kWh) | (kW) |
Jan-17 [1260 kW] | 42,534.14 | 23.7 | 869 | 228 | 1062 |
Feb-17 [1300 kW] | 46,661.90 | 25.4 | 970 | 225 | 1098 |
Mar-17 [1220 kW] | 47,021.84 | 26.5 | 986 | 330 | 1025 |
Apr-17 [1290 kW] | 46,850.45 | 25.4 | 980 | 232.3 | 1093 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Subramani, G.; K. Ramachandaramurthy, V.; Sanjeevikumar, P.; Holm-Nielsen, J.B.; Blaabjerg, F.; Zbigniew, L.; Kostyla, P. Techno-Economic Optimization of Grid-Connected Photovoltaic (PV) and Battery Systems Based on Maximum Demand Reduction (MDRed) Modelling in Malaysia. Energies 2019, 12, 3531. https://doi.org/10.3390/en12183531
Subramani G, K. Ramachandaramurthy V, Sanjeevikumar P, Holm-Nielsen JB, Blaabjerg F, Zbigniew L, Kostyla P. Techno-Economic Optimization of Grid-Connected Photovoltaic (PV) and Battery Systems Based on Maximum Demand Reduction (MDRed) Modelling in Malaysia. Energies. 2019; 12(18):3531. https://doi.org/10.3390/en12183531
Chicago/Turabian StyleSubramani, Gopinath, Vigna K. Ramachandaramurthy, P. Sanjeevikumar, Jens Bo Holm-Nielsen, Frede Blaabjerg, Leonowicz Zbigniew, and Pawel Kostyla. 2019. "Techno-Economic Optimization of Grid-Connected Photovoltaic (PV) and Battery Systems Based on Maximum Demand Reduction (MDRed) Modelling in Malaysia" Energies 12, no. 18: 3531. https://doi.org/10.3390/en12183531
APA StyleSubramani, G., K. Ramachandaramurthy, V., Sanjeevikumar, P., Holm-Nielsen, J. B., Blaabjerg, F., Zbigniew, L., & Kostyla, P. (2019). Techno-Economic Optimization of Grid-Connected Photovoltaic (PV) and Battery Systems Based on Maximum Demand Reduction (MDRed) Modelling in Malaysia. Energies, 12(18), 3531. https://doi.org/10.3390/en12183531