Use of Cyclic Voltammetry to Describe the Electrochemical Behavior of a Dual-Chamber Microbial Fuel Cell
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Device
2.2. Operation of the Dual-Chamber MFC
2.3. Electrochemical Characterization
3. Results and Discussion
3.1. Biodegradation of Wastewater and Generation of Electricity in the MFC
3.2. Electrochemical Behavior of the MFC under Vacuum and Non-Pressurized Conditions (S 1)
3.3. Electrochemical Behavior of the MFC during Degradation of Domestic Wastewater (S 2)
3.4. Electrochemical Behavior of the MFC at Different Reaction Times and under Vacuum Conditions (S 3)
3.5. Electrochemical Behavior of the MFC at Different Reaction Times and under Non-Pressurized Conditions (S4)
3.6. Electrochemical Behavior of the MFC during Degradation of Domestic Wastewater at Different Reaction Times and under Vacuum Conditions (S 5)
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Zhou, M.; Yang, J.; Wang, H.; Jin, T.; Hassett, D.J.; Gu, T. Bioelectrochemistry of microbial fuel cells and their potential applications in bioenergy. In Bioenergy Research: Advances and Applications; Elsevier: Amsterdam, The Netherlands, 2014; pp. 131–152. [Google Scholar]
- Virdis, B.; Freguia, S.; Rozendal, R.A.; Rabaey, K.; Yuan, Z.; Keller, J. Microbial fuel cells. In Treatise on Water Science, Water Quality Engineering; Wilderer, P., Hanaki, K., Vereijken, T., Eds.; Elsevier: London, UK, 2011; Volume 4, pp. 641–665. [Google Scholar]
- Logan, B. Microbial fuel Cells; Wiley: Hoboken, NJ, USA, 2008. [Google Scholar]
- Logan, B.; Hamelers, B.; Rozendal, R.; Schröder, U.; Keller, J.; Freguia, S.; Aelterman, P.; Verstraete, W.; Rabaey, K. Microbial fuel cells: Methodology and technology. Environ. Sci. Technol. 2006, 40, 5181–5192. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Fernández, F.J.; Pérez de los Ríos, A.; Salar-García, M.J.; Ortiz- Martínez, V.M.; Lozano-Blanco, L.J.; Godínez, C.; Tomás-Alonso, F.; Quesada-Medina, J. Recent progress and perspectives in microbial fuel cells for bioenergy generation and wastewater treatment. Fuel Process. Technol. 2015, 138, 284–297. [Google Scholar] [CrossRef]
- Zhou, M.; Gu, T. The next breakthrough in microbial fuel cells and microbial electrolysis cells for bioenergy and bioproducts. J. Microb. Biochem. Technol. S 2013, 12, 003. [Google Scholar] [CrossRef]
- Hasani-Sadrabadi, M.M.; Dashtimoghadam, E.; Majedi, F.S.; Kabiri, K.; Solati-Hashjin, M.; Moaddel, H. Novel nanocomposite proton exchange membranes based on Nafion® and AMPS-modified montmorillonite for fuel cell. J. Membr. Sci. 2010, 365, 286–293. [Google Scholar] [CrossRef]
- López Zavala, M.Á.; Torres Delenne, P.R.; González Peña, O.I. Improvement of Wastewater Treatment Performance and Power Generation in Microbial Fuel Cells by Enhancing Hydrolysis and Acidogenesis, and by Reducing Internal Losses. Energies 2018, 11, 2309. [Google Scholar] [CrossRef]
- Babauta, J.; Renslow, R.; Lewandosky, Z.; Beyenal, H. Electrochemically active biofilms: Facts and fiction. A review. Biofouling 2012, 28, 789–812. [Google Scholar] [CrossRef] [PubMed]
- Bart, A.J.; Faulkner, L.R. Electrochemical Methods Fundamentals and Applications, 1st ed.; John Wiley & Sons Inc.: New York, NY, USA, 1980. [Google Scholar]
- Fricke, K.; Harnish, F.; Schöder, U. On the use of cyclic voltammetry for the study of anodic electron transfer in microbial fuel cells. Energy Environ. Sci. 2008, 1, 144–147. [Google Scholar] [CrossRef]
- Yuan, Y.; Zhou, S.; Xu, N.; Zhuang, L. Electrochemical characterization of anodic biofilms enriched with glucose and acetate in single chamber microbial fuel cells. Colloids Surf. B 2011, 82, 641–646. [Google Scholar] [CrossRef] [PubMed]
- Laviron, E. Adsorption autoinhibition and autocatalysis in polarography and linear potential sweep voltammetry. J. Electroanal. Chem. 1974, 52, 8692–8887. [Google Scholar] [CrossRef]
- Velvizhi, G.; Venkata Mohan, S. Biocatalyst behavior under self-induced electrogenic microenvironmental in comparison with anaerobic treatment: Evaluation with pharmaceutical wastewater for multi-pollutant removal. Bioresour. Technol. 2011, 102, 10784–10793. [Google Scholar] [CrossRef] [PubMed]
- Scott, K.; Yu, E.H. Microbial Electrochemical and Fuel Cells Fundamentals and Applications, 1st ed.; Woodhead Publishing: Cambridge, UK, 2016. [Google Scholar]
- Lin, Y.; Zhao, H.; Yu, F.; Yang, J. Design of an extended experiment with electrical double layer capacitors: Electrochemical energy storage devices in green chemistry. Sustainability 2018, 10, 3630. [Google Scholar] [CrossRef]
- APHA; AWWA; WEF. Standard Methods for the Examination of Water and Wastewater, 21st ed.; American Public Health Association: Washington, DC, USA, 2005. [Google Scholar]
- Mohan, S.V.; Srikanth, S.; Sarma, P.N. Non-catalyzed microbial fuel cell (MFC) with open air cathode for bioelectricity generation during acidogenic wastewater treatment. Bioelectrochemistry 2009, 75, 130–135. [Google Scholar] [CrossRef] [PubMed]
- Jadhav, D.A.; Ghangrekar, M.M. Effective ammonium removal by anaerobic oxidation in microbial fuel cells. Environ. Technol. 2014, 36, 767–776. [Google Scholar] [CrossRef] [PubMed]
- Peixoto, L.; Parpot, P.; Martins, G. Assessment of Electron Transfer Mechanisms during a Long-Term Sediment Microbial Fuel Cell Operation. Energies 2018, 12, 481. [Google Scholar] [CrossRef]
- Nourbakhsh, F.; Pazouki, M.; Mohsennia, M. Impact of modified electrodes on boosting power density of microbial fuel cell for effective domestic wastewater treatment: A case study of Tehran. J. Fuel. Chem. Technol. 2017, 45, 871–879. [Google Scholar] [CrossRef]
- Mohan, S.V.; Mohanakrishna, G.; Velvizhi, G.; Babu, V.L.; Sarma, P.N. Bio-catalyzed electrochemical treatment of real field dairy wastewater with simultaneous power generation. Biochem. Eng. J. 2010, 51, 32–39. [Google Scholar] [CrossRef]
- Mohan, S.V.; Mohanakrishna, G.; Sarma, P.N. Composite vegetable waste as renewable resource for bioelectricity generation through non-catalyzed open-air cathode microbial fuel cell. Bioresour. Technol. 2010, 101, 970–976. [Google Scholar] [CrossRef] [PubMed]
- Raghavulu, S.V.; Mohan, S.V.; Reddy, M.V.; Mohanakrishna, G.; Sarma, P.N. Behavior of single chambered mediatorless microbial fuel cell (MFC) at acidophilic, neutral and alkaline microenvironments during chemical wastewater treatment. Int. J. Hydrog. Energy 2009, 34, 7547–7554. [Google Scholar] [CrossRef]
- Rajesh, P.P.; Jadhav, D.A.; Ghangrekar, M.M. Improving performance of microbial fuel cell while controlling methanogenesis by Chaetoceros pretreatment of anodic inoculum. Bioresour. Technol. 2015, 180, 66–71. [Google Scholar] [CrossRef] [PubMed]
- Mohanakrishna, G.; Mohan, S.V.; Sarma, P.N. Utilizing acid-rich effluents of fermentative hydrogen production process as substrate for harnessing bioelectricity: An integrative approach. Int. J. Hydrog. Energy 2010, 35, 3440–3449. [Google Scholar] [CrossRef]
Chamber | Constituent | Unit | MFC 1 | MFC 2 | |
---|---|---|---|---|---|
Anode | Inoculum (MLVSS) | Vol. | mL | 33.0 | 33.0 |
Mass | mg | 112.4 | |||
Wastewater/distilled water | Vol. | mL | 250.0 | 250.0 | |
Total COD | mg L−1 | 906.7 | |||
Cathode | Electrolyte | Vol. | mL | 283.0 | 283.0 |
Scenario | Potentiostat Settings | Experimental Conditions | Sweep Potential, Cathode Direction (mV/s) |
---|---|---|---|
A: Without a Reference; | Electrochemical behavior of the MFC under vacuum and non-pressurized conditions. Distilled water was used in the anode chamber | 25 & 50 | |
S 1 | B: CE in Anode Chamber; WE & RE in Cathode Chamber | ||
C: CE in Cathode Camber; WE & RE in Anode Chamber | |||
A: Without a Reference | Electrochemical behavior of MFC under vacuum condition with two different anodic solutions, domestic wastewater and distilled water | 50 | |
S 2 | B: CE in Anode Chamber; WE & RE in Cathode Chamber | ||
C: CE in Cathode Camber; WE & RE in Anode Chamber | |||
A: Without a Reference | Electrochemical behavior of the MFC at different reaction times and under vacuum conditions. Anode chamber filled up with distilled water | 25 & 50 | |
S 3 | B: CE in Anode Chamber; WE & RE in Cathode Chamber | ||
C: CE in Cathode Camber; WE & RE in Anode Chamber | |||
A: Without a Reference | Electrochemical behavior of the MFC at different reaction times and under non-pressurized conditions. Distilled water was used in the anode chamber | 25 & 50 | |
S 4 | B: CE in Anode Chamber; WE & RE in Cathode Chamber | ||
C: CE in Cathode Camber; WE & RE in Anode Chamber | |||
S 5 | A: Without a Reference | Electrochemical behavior of the MFC during degradation of domestic wastewater at different reaction times and under vacuum conditions | 50 |
C: CE in Cathode Camber; WE & RE in Anode Chamber |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
López Zavala, M.Á.; González Peña, O.I.; Cabral Ruelas, H.; Delgado Mena, C.; Guizani, M. Use of Cyclic Voltammetry to Describe the Electrochemical Behavior of a Dual-Chamber Microbial Fuel Cell. Energies 2019, 12, 3532. https://doi.org/10.3390/en12183532
López Zavala MÁ, González Peña OI, Cabral Ruelas H, Delgado Mena C, Guizani M. Use of Cyclic Voltammetry to Describe the Electrochemical Behavior of a Dual-Chamber Microbial Fuel Cell. Energies. 2019; 12(18):3532. https://doi.org/10.3390/en12183532
Chicago/Turabian StyleLópez Zavala, Miguel Ángel, Omar Israel González Peña, Héctor Cabral Ruelas, Cristina Delgado Mena, and Mokhtar Guizani. 2019. "Use of Cyclic Voltammetry to Describe the Electrochemical Behavior of a Dual-Chamber Microbial Fuel Cell" Energies 12, no. 18: 3532. https://doi.org/10.3390/en12183532
APA StyleLópez Zavala, M. Á., González Peña, O. I., Cabral Ruelas, H., Delgado Mena, C., & Guizani, M. (2019). Use of Cyclic Voltammetry to Describe the Electrochemical Behavior of a Dual-Chamber Microbial Fuel Cell. Energies, 12(18), 3532. https://doi.org/10.3390/en12183532