Comparison Study on Photo-Thermal Energy Conversion Performance of Functionalized and Non-Functionalized MWCNT Nanofluid
Abstract
:1. Introduction
2. Experimental Setup and Methods
2.1. MWCNT Nanofluid
2.2. Thermal Conductivity of MWCNT Nanofluid
2.3. Optical Absorption of MWCNT Nanofluid
2.4. Photo-Thermal Energy Conversion Efficiency of MWCNT Nanofluid
3. Results and Discussion
3.1. Optical Transmittance and Extinction Coefficient of MWCNT Nanofluid
3.2. Thermal Conductivity Characteristics of MWCNT Nanofluid
3.3. Photo-Thermal Energy Conversion Characteristics of MWCNT Nanofluid
4. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Global Energy Statistical Yearbook 2019. Available online: www.yearbook.enerdata.net (accessed on 27 August 2019).
- Choi, S.U.S.; Eastman, J.A. Enhancing thermal conductivity of fluids with nanoparticles. In International Mechanical Engineering Congress and Exhibition; Argonne National Lab: San Francisco, CA, USA, 1995; pp. 12–17. [Google Scholar]
- Guo, W.; Li, G.; Zheng, Y.; Dong, C. Measurement of the thermal conductivity of SiO2 nanofluid with an optimized transient hot wire method. Thermochim. Acta 2018, 661, 84–97. [Google Scholar] [CrossRef]
- Kumar, N.; Sonawane, S.S. Experimental study of thermal conductivity and convective heat transfer enhancement using CuO and TiO2 nanoparticles. Int. Commun. Heat Mass Transf. 2016, 76, 98–107. [Google Scholar] [CrossRef]
- Wei, B.; Zou, X.; Li, X. Experimental investigation on stability and thermal conductivity of diathermic oil based TiO2 nanofluid. Int. Heat Mass Transf. 2017, 104, 537–543. [Google Scholar] [CrossRef]
- Vakili, M.; Karami, M.; Delfani, S.; Khosrojerdi, S.; Kalhor, K. Experimental investigation and modeling of thermal conductivity of CuO–water/EG nanofluid by FFBP-ANN and multiple regressions. Therm. Anal. Calorim. 2017, 129, 629–637. [Google Scholar] [CrossRef]
- Ahmadi, M.H.; Mirlohi, A.; Nazari, M.A.; Roghayeh, G. A review of thermal conductivity of various nanofluid. Mol. Liq. 2018, 265, 181–188. [Google Scholar] [CrossRef]
- Pryazhnikov, M.I.; Minakov, A.V.; Rudyak, V.Ya.; Guzei, D.; Guzei, D.V. Thermal conductivity measurements of nanofluid. Heat Mass Transf. 2017, 104, 1275–1282. [Google Scholar] [CrossRef]
- Kim, H.; Kim, J.; Cho, H. Review of Thermal Performance and Efficiency in Evacuated Tube Solar Collector with Various Nanofluid. Int. Air-Cond. Refrig. 2017, 25, 1730001. [Google Scholar] [CrossRef]
- Kang, W.; Shin, Y.; Cho, H. Economic Analysis of Flat-Plate and U-Tube Solar Collectors Using an Al2O3 Nanofluid. Energies 2017, 10, 1911. [Google Scholar] [CrossRef]
- Lee, J.H.; Hwang, S.G.; Lee, G.H. Efficiency Improvement of a Photovoltaic Thermal (PVT) System Using Nanofluids. Energies 2019, 12, 3063. [Google Scholar] [CrossRef]
- Sarafraz, M.M.; Safei, M.R.; Leon, A.S.; Tlili, I.; Alkanhal, A.; Tian, Z.; Goodarzi, M.; Arjomandi, M. Experimental Investigation on Thermal Performance of PV/T-PCM (Photovoltaic/Thermal) System Cooling with a PCM and Nanofluid. Energies 2019, 13, 2572. [Google Scholar] [CrossRef]
- Bergman, T.L.; Lavine, A.S. Appendix. In Incropera’s Principle of Heat and Mass Transfer; John Wiley & Sons Inc.: New York, NY, USA, 1981; pp. 914–916. [Google Scholar]
- Gan, Y.; Qiao, L. Optical Properties and Radiation-Enhanced Evaporation of Nanofluid Fuels Containing Carbon-Based Nanostructures. Energy Fuels 2012, 26, 4224–4230. [Google Scholar] [CrossRef]
- Meng, Z.; Wu, D.; Wang, L.; Zhu, H.; Li, Q. Carbon nanotube glycol nanofluid: Photo-thermal properties, thermal conductivities and rheological behavior. Particuology 2012, 10, 614–618. [Google Scholar] [CrossRef]
- Zeiny, A.; Jin, H.; Bai, L.; Lin, G.; Wen, D. A comparative study of direct absorption nanofluid for solar thermal application. Sol. Energy 2018, 161, 74–82. [Google Scholar] [CrossRef]
- Kumar, D.D.; Arasu, A.V. A comprehensive review of preparation, characterization, properties and stability of hybrid nanofluid. Renew. Sustain. Energy Rev. 2018, 81, 1669–1689. [Google Scholar] [CrossRef]
- Sidik, N.A.C.; Jamil, M.M.; Japar, W.M.A.; Adamu, I.M. A review on preparation methods, stability and applications of hybrid nanofluid. Renew. Sustain. Energy Rev. 2017, 80, 1112–1122. [Google Scholar] [CrossRef]
- Barnali, M.; Nareshbabu, K.; Shampa, R.S.; Pradeepkumar, J.; Jibao, H.; Ramamurthy, V. Synthesis, Characterization, Guest Inclusion, and Photophysical Studies of Gold Nanoparticles Stabilized with Carboxylic Acid Groups of Organic Cavitands. Langmuir 2013, 29, 12703–12709. [Google Scholar]
- Yazid, M.; Nor, A.C.S.; Mamat, R.; Najafi, G. A review of the impact of preparation on stability of carbon nanotube nanofluid. Int. Commun. Heat Mass 2019, 78, 253–263. [Google Scholar] [CrossRef]
- Farbod, M.; Ahangarpour, S.; Etemad, G. Stability and thermal conductivity of water-based carbon nanotube nanofluid. Particuology 2015, 22, 59–65. [Google Scholar] [CrossRef]
- Karami, M.; Akhavan, B.M.A.; Delfani, S.; Ghozatloo, A. A new application of carbon nanotubes nanofluid as working fluid of low-temperature direct absorption solar collector. Sol. Energy Mater. Sol. Cells 2014, 121, 114–118. [Google Scholar] [CrossRef]
- Mesgari, S.; Taylor, R.A.; Hjerrild, N.E.; Felipre, C.; Li, Q.; Jason, S. An investigation of thermal stability of carbon nanofluid for solar thermal applications. Sol. Energy Mater. Sol. Cells 2016, 157, 652–659. [Google Scholar] [CrossRef]
- Hewakuruppu, Y.L.; Taylor, R.A.; Tyagi, H.; Khullar, V.; Otanicar, T.; Sylvain, C.; Nathan, H. Limits of selectivity of direct volumetric solar absorption. Sol. Energy 2015, 114, 206–216. [Google Scholar] [CrossRef]
- Shende, R.C.; Ramaprabhu, S. Thermo-optical properties of partially unzipped multiwalled carbon nanotubes dispersed nanofluid for direct absorption solar thermal energy systems. Sol. Energy Mater. Sol. Cells 2016, 157, 117–125. [Google Scholar] [CrossRef]
- Soltanimehr, M.; Afrand, M. Thermal conductivity enhancement of COOH-functionalized MWCNT/ethylene glycol-water nanofluid for application in heating and cooling application. Appl. Therm. Eng. 2016, 105, 716–726. [Google Scholar] [CrossRef]
- Jian, Q.; Tian, M.; Han, X.; Zhang, R.; Wang, Q. Photo-thermal conversion characteristics of MWCNT-H2O nanofluid for direct solar thermal energy absorption application. Appl. Therm. Eng. 2017, 124, 486–493. [Google Scholar]
- Zeng, J.; Xuan, Y. Enhanced solar thermal conversion and thermal conduction of MWCNT-SiO2/Ag binary nanofluid. Appl. Energy 2018, 212, 809–819. [Google Scholar] [CrossRef]
- Nadooshan, A.A.; Eshgari, H.; Afrand, M. Measuring viscosity of Fe3O4-MWCNT/EG hybrid nanofluid for evaluation of thermal efficiency: Newtonian and non-Newtonian behavior. Mol. Liq. 2018, 253, 169–177. [Google Scholar] [CrossRef]
- Ham, J.; Shin, Y.; Cho, H. Optical-thermal properties of an MWCNT/EG nanofluid intended as the working fluid in a direct absorption solar collector. High Temp-High Press 2019, 48, 121–139. [Google Scholar] [CrossRef]
- Sundar, L.S.; Singh, M.K.; Antonio, C.M.S. Enhanced heat transfer and friction factor of MWCNT–Fe3O4/water hybrid nanofluid. Int. Commun. Heat Mass 2014, 52, 73–83. [Google Scholar] [CrossRef]
- Claridge, D.E.; Frederick, H.K.; Brian, A.R.; Underwood, T.D.; Micheal, W.W. American Society of Heating, Refrigerating and Air-Conditioning Engineers; ASHRAE: Atlanta, GA, USA, 2001; pp. 427–428. [Google Scholar]
- Howell, J.R.; Siegel, R.; Menguc, M.P. Thermal Radiation Heat Transfer. In National Aeronautics and Space Administration, 5th ed.; CRC Press: Boca Raton, FL, USA, 2011. [Google Scholar]
- Carolina, L.L.B.; Amjad, M.; Filho, P.E.B.; Wen, D. Experimental study of photothermal conversion using gold/water and MWCNT/water nanofluid. Sol. Energy Mater. Sol. Cells 2018, 188, 51–65. [Google Scholar]
- Adam, H.; Sidding, M.A.; Sidding, A.A.; Eltahir, N.A. Electrical and optical properties of two types of Gum Arabic. Sudan Med. Monital. 2013, 8, 174–178. [Google Scholar]
- Harkireat, S.; Gangacharyulu, D. An experimental study on stability and some thermophysical properties of multiwalled carbon nanotubes with water–ethylene glycol mixtures. Particul. Sci. Technol. 2017, 35, 547–554. [Google Scholar]
- Esfahani, M.R.; Languri, E.M.; Nunna, M.R. Effect of particle size and viscosity on thermal conductivity enhancement of graphene oxide nanofluid. Int. Commun. Heat Mass 2016, 76, 308–315. [Google Scholar] [CrossRef]
- Chai, Y.H.; Yusup, S.; Chok, V.S.; Arpin, M.T.; Irawan, S. Investigation of thermal conductivity of multi walled carbon nanotube dispersed in hydrogenated oil based drilling fluids. Appl. Therm. Eng. 2016, 107, 1019–1025. [Google Scholar] [CrossRef]
- Shamaeil, M.; Firouzi, M.; Fakhar, A. The effects of temperature and volume fraction on the thermal conductivity of functionalized DWCNTs/ethylene glycol nanofluid. Therm. Anal. Calorim. 2016, 126, 1455–1462. [Google Scholar] [CrossRef]
- Xing, M.; Yu, J.; Wang, R. Experimental investigation and modelling on the thermal conductivity of CNTs based nanofluid. Int. Therm. Sci. 2016, 104, 404–411. [Google Scholar] [CrossRef]
- Esfea, M.H.; Esfandeh, S.; Saedodinn, S.; Rostamian, H. Experimental evaluation, sensitivity analyzation and ANN modeling of thermal conductivity of ZnO-MWCNT/EG-water hybrid nanofluid for engineering applications. Appl. Therm. Eng. 2017, 125, 673–685. [Google Scholar] [CrossRef]
- Harandi, S.S.; Karimipour, A.; Afrand, M.; Akbari, M.; D’Orazio, A. An experimental study on thermal conductivity of F-MWCNTs–Fe3O4/EG hybrid nanofluid: Effects of temperature and concentration. Int. Commun. 2016, 76, 171–177. [Google Scholar]
- Bhattad, A.; Sarkar, J.; Ghosh, P. Energy-Economic Analysis of Plate Evaporator using Brine-based Hybrid Nanofluid as Secondary Refrigerant. Int. I. Air-Cond. Refrig. 2018, 26, 1850003. [Google Scholar] [CrossRef]
- Kim, M.B.; Park, H.G.; Park, C.Y. Change of Thermal Conductivity and Cooling Performance for Water Based Al2O3-Surfactant Nanofluid with Time Lapse. Int. I. Air-Cond. Refrig. 2018, 26, 1850009. [Google Scholar] [CrossRef]
Properties | MWCNT | Ag | Al | Au | Cu | Fe |
---|---|---|---|---|---|---|
Thermal conductivity (W/m°C) | 3000 | 406 | 205 | 314 | 385 | 79.5 |
Density (kg/m3) | 2100 | 10510 | 2707 | 19300 | 8954 | 7897 |
°C) | 0.72 | 0.23 | 0.896 | 0.13 | 0.38 | 0.452 |
Item | Specification |
---|---|
Purity | >95% |
Color | Black |
Outer diameter | 10–20 nm |
Inner diameter | 5–10 nm |
Length | 10–30 µm |
Thermal conductivity | 1500–3000 W/m°C |
True density | 2100 kg/m3 |
Manufacturing method | CVD |
Content of -COOH | 2.00 wt% |
Temperature (°C) | Density (kg/m3) | Viscosity (m2/s) | Thermal Conductivity (W/m°C) |
---|---|---|---|
20 | 1029.72 | 1.65 | 0.497 |
30 | 1026.02 | 1.3 | 0.509 |
40 | 1021.83 | 1.06 | 0.52 |
50 | 1017.16 | 0.88 | 0.529 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Boldoo, T.; Ham, J.; Cho, H. Comparison Study on Photo-Thermal Energy Conversion Performance of Functionalized and Non-Functionalized MWCNT Nanofluid. Energies 2019, 12, 3763. https://doi.org/10.3390/en12193763
Boldoo T, Ham J, Cho H. Comparison Study on Photo-Thermal Energy Conversion Performance of Functionalized and Non-Functionalized MWCNT Nanofluid. Energies. 2019; 12(19):3763. https://doi.org/10.3390/en12193763
Chicago/Turabian StyleBoldoo, Tsogtbilegt, Jeonggyun Ham, and Honghyun Cho. 2019. "Comparison Study on Photo-Thermal Energy Conversion Performance of Functionalized and Non-Functionalized MWCNT Nanofluid" Energies 12, no. 19: 3763. https://doi.org/10.3390/en12193763
APA StyleBoldoo, T., Ham, J., & Cho, H. (2019). Comparison Study on Photo-Thermal Energy Conversion Performance of Functionalized and Non-Functionalized MWCNT Nanofluid. Energies, 12(19), 3763. https://doi.org/10.3390/en12193763