Mitigation Method of Slot Harmonic Cogging Torque Considering Unevenly Magnetized Permanent Magnets in PMSM
Abstract
:1. Introduction
2. Analysis of Cogging Torque in PMSM from a Macroscopic Perspective
2.1. The Relation between the Electromagnetic Force and the Remanence of Magnet
2.2. The Cogging Torque Caused by Single Pole
2.3. The Cogging Torque Caused by Multi Poles
3. Mitigation Method of Slot Harmonic Cogging Torque Component
4. Verification of the Proposed Method
4.1. Verification Using the Finite Element Analysis (FEA)
4.2. Verification with Experimentation
- The surface Gauss value of each magnet was measured (with ATM 1000, SCMI) in the space, excluding the magnetic substance. Figure 11 shows a picture of the measurement, and the results are written in Table 5 and Table 6. The Gauss average value was calculated from the seven measurement points per each magnet, and the measurement uncertainty was calculated by repeating the measurement five times.
5. Discussion
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Li, G.J.; Ren, B.; Zhu, Z.Q.; Li, Y.X.; Ma, J. Cogging torque mitigation of modular permanent magnet machines. IEEE Trans. Magn. 2016, 52, 1–10. [Google Scholar] [CrossRef]
- Park, Y.U.; Cho, J.H.; Kim, D.K. Cogging torque reduction of single-phase brushless DC motor with a tapered air-gap using optimizing notch size and position. IEEE Trans. Ind. Appl. 2015, 51, 4455–4463. [Google Scholar] [CrossRef]
- Xue, Z.; Li, H.; Zhou, Y.; Ren, N.; Wen, W. Analytical prediction and optimization of cogging torque in surface-mounted permanent magnet machines with modified particle swarm optimization. IEEE Trans. Ind. Electron. 2017, 64, 9795–9805. [Google Scholar] [CrossRef]
- Ren, W.; Xu, Q.; Li, Q.; Zhou, L. Reduction of cogging torque and torque ripple in interior PM Machines with asymmetrical V-type rotor design. IEEE Trans. Magn. 2016, 52, 1–5. [Google Scholar] [CrossRef]
- Dosiek, L.; Pillay, P. Cogging torque reduction in permanent magnet machines. IEEE Trans. Ind. Appl. 2007, 43, 1565–1571. [Google Scholar] [CrossRef]
- Kim, K. A novel method for minimization of cogging torque and torque ripple for interior permanent magnet synchronous motor. IEEE Trans. Magn. 2014, 50, 793–796. [Google Scholar] [CrossRef]
- Wang, D.; Wang, X.; Jung, S. Cogging torque minimization and torque ripple suppression in surface-mounted permanent magnet synchronous machines using different magnet widths. IEEE Trans. Magn. 2013, 49, 2295–2298. [Google Scholar] [CrossRef]
- Wanjiku, J.; Khan, M.A.; Barendse, P.S.; Pilay, P. Influence of slot openings and tooth profile on cogging torque in axial-flux pm machines. IEEE Trans. Ind. Electron. 2015, 62, 7578–7589. [Google Scholar] [CrossRef]
- Kwon, J.; Lee, J.; Zhao, W.; Kwon, B. Flux-switching permanent magnet machine with phase-group concentrated-coil windings and cogging torque reduction technique. Energies 2018, 11, 2758. [Google Scholar] [CrossRef]
- Hwang, M.; Lee, H.; Cha, H. Analysis of torque ripple and cogging torque reduction in electric vehicle traction platform applying rotor notched design. Energies 2018, 11, 3053. [Google Scholar] [CrossRef]
- Dini, P.; Saponara, S. Cogging torque reduction in brushless motors by a nonlinear control technique. Energies 2019, 12, 2224. [Google Scholar] [CrossRef]
- Kim, J.M.; Yoon, M.H.; Hong, J.P.; Kim, S.I. Analysis of cogging torque caused by manufacturing tolerances of surface-mounted permanent magnet synchronous motor for electric power steering. IEEE Trans. Electr. Power Appl. 2016, 10, 691–696. [Google Scholar] [CrossRef]
- Ortega, A.J.P.; Paul, S.; Islam, R.; Xu, L. Analytical model for predicting effects of manufacturing variations on cogging torque in surface-mounted permanent magnet motors. IEEE Trans. Magn. 2016, 52, 3050–3061. [Google Scholar] [CrossRef]
- Qian, H.; Guo, H.; Wu, Z.; Ding, X. Analytical solution for cogging torque in surface-mounted permanent-magnet motors with magnet imperfections and rotor eccentricity. IEEE Trans. Magn. 2014, 50, 1–15. [Google Scholar] [CrossRef]
- Zhou, Y.; Li, H.; Meng, G.; Zhou, S.; Cao, Q. Analytical calculation of magnetic field and cogging torque in surface-mounted permanent-magnet machines accounting for any eccentric rotor shape. IEEE Trans. Ind. Electron. 2015, 62, 3438–3447. [Google Scholar] [CrossRef]
- Lee, C.J.; Jang, G.H. Development of a new magnetizing fixture for the permanent magnet brushless dc motors to reduce the cogging torque. IEEE Trans. Magn. 2011, 47, 2410–2413. [Google Scholar] [CrossRef]
- Song, J.Y.; Kang, K.J.; Kang, C.H.; Jang, G.H. Cogging torque and unbalanced magnetic pull due to simultaneous existence of dynamic and static eccentricities and uneven magnetization in permanent magnet motors. IEEE Trans. Magn. 2014, 50, 1–9. [Google Scholar] [CrossRef]
- Sung, S.J.; Park, S.J.; Jang, G.H. Cogging torque of brushless DC motors due to the interaction between the uneven magnetization of a permanent magnet and teeth curvature. IEEE Trans. Magn. 2011, 47, 1923–1928. [Google Scholar] [CrossRef]
- Ou, J.; Liu, Y.; Qu, R.; Doppelbauer, M. Experimental and theoretical research on cogging torque of PM synchronous motors considering manufacturing tolerances. IEEE Trans. Ind. Electron. 2018, 65, 3772–3783. [Google Scholar] [CrossRef]
- Ionel, D.M.; Popescu, M.; McGilp, M.I.; Miller, T.J.E.; Dellinger, S.J. Assessment of torque components in brushless permanent-magnet machines through numerical analysis of the electromagnetic field. IEEE Trans. Electr. Power Appl. 2005, 41, 1149–1158. [Google Scholar] [CrossRef]
- Zhu, W.; Pekarek, S.; Fahimi, B.; Deken, B.J. Investigation of force generation in a permanent magnet synchronous machine. IEEE Trans. Energy Convers. 2007, 22, 557–565. [Google Scholar] [CrossRef]
- Meessen, K.J.; Paulides, J.J.H.; Lomonova, E.A. Force calculations in 3-D cylindrical structures using fourier analysis and the Maxwell stress tensor. IEEE Trans. Magn. 2013, 49, 536–545. [Google Scholar] [CrossRef]
- Gao, J.; Wang, G.; Liu, X.; Zhang, W.; Huang, S.; Li, H. Cogging torque reduction by elementary-cogging-unit shift for permanent magnet machines. IEEE Trans. Magn. 2017, 53, 1–5. [Google Scholar] [CrossRef]
- Zhu, Z.Q.; Ruangsinchaiwanich, S.; Howe, D. Synthesis of cogging-torque waveform from analysis of a single stator slot. IEEE Trans. Ind. Appl. 2006, 42, 650–657. [Google Scholar] [CrossRef]
- Zhu, Z.Q.; Ruangsinchaiwanich, S.; Chen, Y.; Howe, D. Evaluation of superposition technique for calculating cogging torque in permanent-magnet brushless machines. IEEE Trans. Magn. 2006, 42, 1597–1603. [Google Scholar] [CrossRef]
- Gieras, J.F. Electrical Machines: Fundamentals of Electromechanical Energy Conversion; CRC Press: Boca Raton, FL, USA, 2016. [Google Scholar]
Item | 6p/9s IPM | 8p/12s IPM |
---|---|---|
Stator outer diameter | 100.0 mm | 150.0 mm |
Rotor outer diameter | 54.0 mm | 82.0 mm |
Stack length | 40.0 mm | 72 mm |
Air gap length | 1.0 mm | 0.6 mm |
Rated power | 400 W | 5000 W |
Rated speed | 3500 rpm | 2000 rpm |
Rated torque | 1.1 Nm | 23.8 Nm |
Rated ph. current | 10.3 Arms | 120 Arms |
Series turn per phase | 72 | 20 |
Core material | 50PN470 (FEM: [email protected]) | 50PN470 (FEM: [email protected]) |
Magnet material | NMX-36EH | NEOREC 40UH |
Company | 6p/9s IPM | 8p/12s IPM |
---|---|---|
TDK | NEOREC 40UH | 1290 ± 30 |
NEOREC 40TH | 1285 ± 30 | |
NEOREC 38UX | 1250 ± 30 | |
NEOREC 35NX | 1200 ± 30 | |
Hitachi | NMX-43SH | 1295 ± 35 |
NMX-41SH | 1275 ± 35 | |
NMX-39EH | 1235 ± 35 | |
NMX-36EH | 1195 ± 35 |
Position & Comparison | Case A | Case B | ||
---|---|---|---|---|
PM No. | Br | PM No. | Br | |
P1 | PM 01 | 1.194 T | PM 05 | 1.226 T |
P2 | PM 02 | 1.195 T | PM 02 | 1.195 T |
P3 | PM 03 | 1.198 T | PM 04 | 1.162 T |
P4 | PM 04 | 1.162 T | PM 03 | 1.198 T |
P5 | PM 05 | 1.226 T | PM 01 | 1.194 T |
P6 | PM 06 | 1.172 T | PM 06 | 1.172 T |
Z1-Z2 | 0.212 (T)2 | 0.042 (T)2 | ||
BN-BS | 0.089 (T) | 0.017 (T) |
Position & Comparison | Case A | Case B | ||
---|---|---|---|---|
PM No. | Br | PM No. | Br | |
P1 | PM 01 | 1.265 T | PM 05 | 1.269 T |
PM 02 | 1.275 T | PM 06 | 1.278 T | |
P2 | PM 03 | 1.290 T | PM 13 | 1.287 T |
PM 04 | 1.291 T | PM 14 | 1.285 T | |
P3 | PM 05 | 1.269 T | PM 11 | 1.309 T |
PM 06 | 1.278 T | PM 12 | 1.309 T | |
P4 | PM 07 | 1.294 T | PM 03 | 1.290 T |
PM 08 | 1.295 T | PM 04 | 1.291 T | |
P5 | PM 09 | 1.278 T | PM 07 | 1.294 T |
PM 10 | 1.290 T | PM 08 | 1.295 T | |
P6 | PM 11 | 1.309 T | PM 15 | 1.310 T |
PM 12 | 1.309 T | PM 16 | 1.315 T | |
P7 | PM 13 | 1.287 T | PM 09 | 1.278 T |
PM 14 | 1.285 T | PM 10 | 1.290 T | |
P8 | PM 15 | 1.310 T | PM 01 | 1.265 T |
PM 16 | 1.315 T | PM 02 | 1.275 T | |
Z1-Z2 | −0.483 (T)2 | 0.009 (T)2 | ||
BN-BS | −0.187 (T) | 0.004 (T) |
Position & Comparison | Case A | Case B | ||
---|---|---|---|---|
PM No. | Gauss Avg. | PM No. | Gauss Avg. | |
P1 | PM 01 | 194.3 mT | PM 04 | 198.4 mT |
P2 | PM 02 | 198.3 mT | PM 02 | 198.3 mT |
P3 | PM 03 | 196.7 mT | PM 05 | 196.9 mT |
P4 | PM 04 | 198.4 mT | PM 06 | 199.1 mT |
P5 | PM 05 | 196.9 mT | PM 03 | 196.7 mT |
P6 | PM 06 | 199.1 mT | PM 01 | 194.3 mT |
Uncertainty | ±0.2% | |||
Z1-Z2 | −3113.3 (mT)2 | 106.9 (mT)2 | ||
BN-BS | −7.9 (mT) | 0.3 (mT) |
Position & Comparison | Case A | Case B | ||
---|---|---|---|---|
PM No. | Gauss Avg. | PM No. | Gauss Avg. | |
P1 | PM 01 | 227.1 mT | PM 09 | 225.5 mT |
PM 02 | 228.7 mT | PM 10 | 226.2 mT | |
P2 | PM 03 | 233.8 mT | PM 07 | 231.1 mT |
PM 04 | 234.0 mT | PM 08 | 231.5 mT | |
P3 | PM 05 | 226.3 mT | PM 11 | 230.6 mT |
PM 06 | 226.8 mT | PM 12 | 230.9 mT | |
P4 | PM 07 | 231.2 mT | PM 05 | 226.3 mT |
PM 08 | 231.5 mT | PM 06 | 226.8 mT | |
P5 | PM 09 | 225.5 mT | PM 03 | 233.9 mT |
PM 10 | 226.2 mT | PM 04 | 234.0 mT | |
P6 | PM 11 | 230.6 mT | PM 01 | 227.1 mT |
PM 12 | 230.9 mT | PM 02 | 228.7 mT | |
P7 | PM 13 | 229.0 mT | PM 13 | 229.0 mT |
PM 14 | 229.9 mT | PM 14 | 229.9 mT | |
P8 | PM 15 | 234.2 mT | PM 15 | 234.2 mT |
PM 16 | 234.3 mT | PM 16 | 234.2 mT | |
Uncertainty | ±0.1% | |||
Z1-Z2 | −10,065.1 (mT)2 | 133.9 (mT)2 | ||
BN-BS | −21.9 (mT) | 0.3 (mT) |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jeong, C.; Lee, D.; Hur, J. Mitigation Method of Slot Harmonic Cogging Torque Considering Unevenly Magnetized Permanent Magnets in PMSM. Energies 2019, 12, 3887. https://doi.org/10.3390/en12203887
Jeong C, Lee D, Hur J. Mitigation Method of Slot Harmonic Cogging Torque Considering Unevenly Magnetized Permanent Magnets in PMSM. Energies. 2019; 12(20):3887. https://doi.org/10.3390/en12203887
Chicago/Turabian StyleJeong, Chaelim, Dongho Lee, and Jin Hur. 2019. "Mitigation Method of Slot Harmonic Cogging Torque Considering Unevenly Magnetized Permanent Magnets in PMSM" Energies 12, no. 20: 3887. https://doi.org/10.3390/en12203887
APA StyleJeong, C., Lee, D., & Hur, J. (2019). Mitigation Method of Slot Harmonic Cogging Torque Considering Unevenly Magnetized Permanent Magnets in PMSM. Energies, 12(20), 3887. https://doi.org/10.3390/en12203887