Performance Degradation of Surface PMSMs with Demagnetization Defect under Predictive Current Control
Abstract
:1. Introduction
2. Machine Model Description
3. Predictive Control Schemes
3.1. Finite-Set Model Based Predictive Control
3.2. Deadbeat Control
3.3. MBPC with Duty Cycle Calculation
4. Simulation and Experimental Results
4.1. Healthy Rotor
4.1.1. Control Quality
4.1.2. Switching Frequency and Pulse Polarity Consistency Rule
4.1.3. Dynamic Behavior
4.1.4. Influence of the Working Conditions
4.2. Faulty Rotor
4.2.1. Control Quality
4.2.2. Switching Frequency and Pulse Polarity Consistency Rule
4.2.3. Dynamic Behavior
4.2.4. Influence of the Working Conditions
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
2L-VSI | two-level voltage source inverter |
AFPMSM | axial flux permanent magnet synchronous machine |
DB | deadbeat |
FS-MBPC | finite-set model based predictive control |
IM | induction motor |
KPI | key performance indicator |
MBPC | model based predictive control |
PM | permanent magnet |
PMSM | permanent magnet synchronous machine |
PWM | pulse width modulation |
YASA | yokeless and segmented armature |
References
- Vansompel, H.; Sergeant, P.; Dupre, L.; Van den Bossche, A. Axial-Flux PM Machines With Variable Air Gap. IEEE Trans. Ind. Electron. 2014, 61, 730–737. [Google Scholar] [CrossRef]
- Park, Y.; Koo, M.; Jang, S.; Choi, J.; You, D. Performance Evaluation of Radial- and Axial-Flux PM Wind Power Generators With Mechanical Energy Storage System. IEEE Trans. Energy Convers. 2015, 30, 237–245. [Google Scholar] [CrossRef]
- Morel, F.; Lin-Shi, X.; Retif, J.M.; Allard, B.; Buttay, C. A Comparative Study of Predictive Current Control Schemes for a Permanent-Magnet Synchronous Machine Drive. IEEE Trans. Ind. Electron. 2009, 56, 2715–2728. [Google Scholar] [CrossRef]
- Verkroost, L.; Druant, J.; Vansompel, H.; De Belie, F.; Sergeant, P. Predictive Current Control vs. PI Control for Surface Mounted Permanent Magnet Machines. In Proceedings of the 2018 XXIII International Conference on Electrical Machines (ICEM), Alexandroupoli, Greece, 3–6 September 2018; p. 7. [Google Scholar]
- Vyncke, T.J.; Thielemans, S.; Melkebeek, J.A. Finite-Set Model-Based Predictive Control for Flying-Capacitor Converters: Cost Function Design and Efficient FPGA Implementation. IEEE Trans. Ind. Inform. 2013, 9, 1113–1121. [Google Scholar] [CrossRef]
- Kouro, S.; Cortes, P.; Vargas, R.; Ammann, U.; Rodriguez, J. Model Predictive Control-A Simple and Powerful Method to Control Power Converters. IEEE Trans. Ind. Electron. 2009, 56, 1826–1838. [Google Scholar] [CrossRef]
- Li, P.; Li, R.; Feng, H. Total Harmonic Distortion Oriented Finite Control Set Model Predictive Control for Single-Phase Inverters. Energies 2018, 11, 3467. [Google Scholar] [CrossRef]
- Chan, R.; Kwak, S. Model-Based Predictive Current Control Method with Constant Switching Frequency for Single-Phase Voltage Source Inverters. Energies 2017, 10, 1927. [Google Scholar] [CrossRef]
- Xie, W.; Wang, X.; Wang, F.; Xu, W.; Kennel, R.M.; Gerling, D.; Lorenz, R.D. Finite-Control-Set Model Predictive Torque Control With a Deadbeat Solution for PMSM Drives. IEEE Trans. Ind. Electron. 2015, 62, 5402–5410. [Google Scholar] [CrossRef]
- Zhu, H.; Xiao, X.; Li, Y. Torque Ripple Reduction of the Torque Predictive Control Scheme for Permanent-Magnet Synchronous Motors. IEEE Trans. Ind. Electron. 2012, 59, 871–877. [Google Scholar] [CrossRef]
- Kenny, B.; Lorenz, R. Stator- and rotor-flux-based deadbeat direct torque control of induction machines. IEEE Trans. Ind. Appl. 2003, 39, 1093–1101. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Yang, H. Model Predictive Torque Control of Induction Motor Drives With Optimal Duty Cycle Control. IEEE Trans. Power Electron. 2014, 29, 6593–6603. [Google Scholar] [CrossRef]
- Abdelrahem, M.; Hackl, C.M.; Zhang, Z.; Kennel, R. Robust Predictive Control for Direct-Driven Surface-Mounted Permanent-Magnet Synchronous Generators Without Mechanical Sensors. IEEE Trans. Energy Convers. 2018, 33, 179–189. [Google Scholar] [CrossRef]
- Ibrahim Mohamed, Y.A.R. Direct instantaneous torque control in direct drive permanent magnet synchronous motors—A new approach. IEEE Trans. Energy Convers. 2007, 22, 829–838. [Google Scholar] [CrossRef]
- Li, J.; Huang, X.; Niu, F.; You, C.; Wu, L.; Fang, Y. Prediction Error Analysis of Finite-Control-Set Model Predictive Current Control for IPMSMs. Energies 2018, 11, 2051. [Google Scholar] [CrossRef]
- Kim, J.; Hong, J.; Kim, H. Improved direct deadbeat voltage control with an actively damped inductor-capacitor plant model in an islanded AC microgrid. Energies 2016, 9, 978. [Google Scholar] [CrossRef]
- Yang, M.; Lang, X.; Long, J.; Xu, D. Flux Immunity Robust Predictive Current Control With Incremental Model and Extended State Observer for PMSM Drive. IEEE Trans. Power Electron. 2017, 32, 9267–9279. [Google Scholar] [CrossRef]
- Sjökvist, S.; Eriksson, S. Investigation of Permanent Magnet Demagnetization in Synchronous Machines during Multiple Short-Circuit Fault Conditions. Energies 2017, 10, 1638. [Google Scholar] [CrossRef]
- Goktas, T.; Zafarani, M.; Akin, B. Discernment of Broken Magnet and Static Eccentricity Faults in Permanent Magnet Synchronous Motors. IEEE Trans. Energy Convers. 2016, 31, 585–594. [Google Scholar] [CrossRef]
- Haddad, R.Z.; Strangas, E.G. On the Accuracy of Fault Detection and Separation in Permanent Magnet Synchronous Machines Using MCSA/MVSA and LDA. IEEE Trans. Energy Convers. 2016, 31, 924–934. [Google Scholar] [CrossRef]
- Sarikhani, A.; Mohammed, O.A. Demagnetization Control for Reliable Flux Weakening Control in PM Synchronous Machine. IEEE Trans. Energy Convers. 2012, 27, 1046–1055. [Google Scholar] [CrossRef]
- Alexandrou, A.D.; Adamopoulos, N.K.; Kladas, A.G. Development of a Constant Switching Frequency Deadbeat Predictive Control Technique for Field-Oriented Synchronous Permanent-Magnet Motor Drive. IEEE Trans. Ind. Electron. 2016, 63, 5167–5175. [Google Scholar] [CrossRef]
- Underwood, S.J.; Husain, I. Online Parameter Estimation and Adaptive Control of Permanent-Magnet Synchronous Machines. IEEE Trans. Ind. Electron. 2010, 57, 2435–2443. [Google Scholar] [CrossRef]
- Turker, T.; Buyukkeles, U.; Bakan, A.F. A Robust Predictive Current Controller for PMSM Drives. IEEE Trans. Ind. Electron. 2016, 63, 3906–3914. [Google Scholar] [CrossRef]
- Du, G.; Li, J.; Du, F.; Liu, Z. A Robust Digital Control Strategy Using Error Correction Based on the Discrete Lyapunov Theorem. Energies 2018, 11, 848. [Google Scholar] [Green Version]
- Siami, M.; Khaburi, D.A.; Abbaszadeh, A.; Rodríguez, J. Robustness Improvement of Predictive Current Control Using Prediction Error Correction for Permanent-Magnet Synchronous Machines. IEEE Trans. Ind. Electron. 2016, 63, 3458–3466. [Google Scholar] [CrossRef]
- Zhang, X.; Hou, B.; Mei, Y. Deadbeat Predictive Current Control of Permanent-Magnet Synchronous Motors with Stator Current and Disturbance Observer. IEEE Trans. Power Electron. 2017, 32, 3818–3834. [Google Scholar] [CrossRef]
- Zhang, C.; Wu, G.; Rong, F.; Feng, J.; Jia, L.; He, J.; Huang, S. Robust Fault-Tolerant Predictive Current Control for Permanent Magnet Synchronous Motors Considering Demagnetization Fault. IEEE Trans. Ind. Electron. 2018, 65, 5324–5334. [Google Scholar] [CrossRef]
- Hu, F.; Luo, D.; Luo, C.; Long, Z.; Wu, G. Cascaded Robust Fault-Tolerant Predictive Control for PMSM Drives. Energies 2018, 11, 3087. [Google Scholar] [CrossRef]
- Wu, H.; Su, W.; Liu, Z. PID controllers: Design and tuning methods. In Proceedings of the 2014 9th IEEE Conference on Industrial Electronics and Applications (ICIEA), Hangzhou, China, 9–11 June 2014; pp. 808–813. [Google Scholar]
- Nemec, M.; Nedeljkovic, D.; Ambrozic, V. Predictive torque control of induction machines using immediate flux control. IEEE Trans. Ind. Electron. 2007, 54, 2009–2017. [Google Scholar] [CrossRef]
Parameter | Symbol | Value |
---|---|---|
Number of pole pairs | 8 | |
Rated power (kW) | 4 | |
Rated speed (rpm) | 2500 | |
Rated torque (Nm) | 15 | |
Rated voltage (V) | 152 | |
Stator inductance (mH) | 2.54 | |
Stator resistance (mΩ) | 325 | |
Mechanical inertia (kg) | J | 0.0024 |
Equivalent permanent magnet (PM) current (A) | 41.77 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Verkroost, L.; Druant, J.; Vansompel, H.; De Belie, F.; Sergeant, P. Performance Degradation of Surface PMSMs with Demagnetization Defect under Predictive Current Control. Energies 2019, 12, 782. https://doi.org/10.3390/en12050782
Verkroost L, Druant J, Vansompel H, De Belie F, Sergeant P. Performance Degradation of Surface PMSMs with Demagnetization Defect under Predictive Current Control. Energies. 2019; 12(5):782. https://doi.org/10.3390/en12050782
Chicago/Turabian StyleVerkroost, Lynn, Joachim Druant, Hendrik Vansompel, Frederik De Belie, and Peter Sergeant. 2019. "Performance Degradation of Surface PMSMs with Demagnetization Defect under Predictive Current Control" Energies 12, no. 5: 782. https://doi.org/10.3390/en12050782
APA StyleVerkroost, L., Druant, J., Vansompel, H., De Belie, F., & Sergeant, P. (2019). Performance Degradation of Surface PMSMs with Demagnetization Defect under Predictive Current Control. Energies, 12(5), 782. https://doi.org/10.3390/en12050782