Performance Evaluation of a Gravity-Assisted Heat Pipe-Based Indirect Evaporative Cooler
Abstract
:1. Introduction
2. Methods
2.1. Mathematical Modeling
2.2. Calculation of Heat Transfer Parameters of the GAHP-Based IEC
2.3. Performance Evaluation of GAHP-Based IEC
3. Validation of the Model Accuracy
4. Results and Discussion
4.1. Impact of Inlet Air Temperature and Inlet Air Relative Humidity
4.2. Impact of Inlet Air Velocity
4.3. Impact of Number of GAHP Rows
4.4. Impact of Spacing between Adjacent Fins in Dry Channel
4.5. Impact of Working-to-Product Airflow Ratio
5. Conclusions
- The cooling effectiveness is strongly dependent on the inlet air conditions.
- The inlet air velocity should be 1.5 m/s or less due to increasing pressure loss.
- The number of rows should be at least 15. However, considering the associated investment costs, it should be less than 20.
- A compromise among the COP coefficient and wet bulb effectiveness suggests that the spacing between adjacent plain fins should range from 1.5 mm to 3 mm.
- The working-to-product airflow ratio should range from 0.3 to 0.5 in order to obtain a supply air temperature around the wet bulb temperature.
Author Contributions
Funding
Conflicts of Interest
Nomenclature
A | surface area, m2 |
Af | surface area of fins, m2 |
Amin | flow cross-sectional area in minimum flow area, m2 |
Ap.tot | total heat transfer area on the product air side, m2 |
Aw | total heat transfer area on the working air side, m2 |
COP | coefficient of performance |
cp | specific heat capacity, J/kgK |
do | GAHP outer diameter, m |
f | fanning friction factor |
ff | friction factor associated with fin area |
ft | friction factor associated with tube area |
g | gravitational acceleration, m/s2 |
GAHP | gravity-assisted heat pipe |
convective heat transfer coefficient, W/m2K | |
heat transfer coefficient in the Nusselt’s theory for film-wise condensation, W/m2K | |
evaporation heat of water at reference temperature (0 °C), kJ/kg | |
convective mass transfer coefficient, kg/m2s | |
HP | heat pipe |
IEC | indirect evaporative cooling, indirect evaporative cooler |
j | Colburn factor |
k | thermal conductivity, W/mK |
Le | Lewis factor, defined as |
mass flow rate, kg/s | |
NL | number of tube rows |
NTU | number of heat transfer units |
Nu | Nusselt number |
P | pressure, Pa |
∆P | pressure drop, Pa |
Pr | Prandtl number |
Q | cooling capacity, W |
q | heat flux, W/m2 |
R | thermal resistance, K/W |
Redo | Reynolds number based on do |
Ref | refers to the Re number of condensed film in GAHP |
RH | relative humidity, % |
s | spacing between adjacent fins, m |
SL | tube spacing in air flow direction, m |
ST | tube spacing normal to flow, m |
T | temperature, °C |
t | thickness, m |
umax | maximum velocity based on Amin, m/s |
W | required fan power, W |
non-dimensional x coordinate, defined as | |
Greek Letters | |
ε | effectiveness |
η | efficiency |
μ | dynamic viscosity, kg/ms |
ρ | density, kg/m3 |
χ | correction factor in Equation (22) |
ω | humidity ratio, kg/kg |
Subscripts | |
atm | atmospheric |
c | condenser section |
e | evaporator section |
Exp | experimental |
f | fin |
inl | inlet |
int | internal |
l | liquid |
ln | associated with logarithmic mean tube diameter |
out | outlet |
p | product air |
Sim | numerically simulated |
sup | supply |
v | vapor |
w | working air |
WB | wet bulb |
wf | water film and working air interface |
wpl | wet porous layer |
References
- Conti, J.; Holtberg, P.; Diefenderfer, J.; LaRose, A.; Turnure, J.T.; Westfall, L. International Energy Outlook 2016 with Projections to 2040; Energy Information Administration: Washington DC, USA, 2016.
- Chua, K.J.; Chou, S.K.; Yang, W.M.; Yan, J. Achieving better energy-efficient air conditioning—A review of technologies and strategies. Appl. Energy 2013, 104, 87–104. [Google Scholar] [CrossRef]
- Jedlikowski, A.; Anisimov, S. Analysis of the frost formation and freeze protection with bypass for cross-flow recuperators. Appl. Therm. Eng. 2017, 116, 731–765. [Google Scholar] [CrossRef]
- Dudkiewicz, E.; Fidorów, N.; Jezowiecki, J. The influence of infrared heaters efficiency on the energy consumption cost. Rocz. Ochr. Sr. 2013, 15, 1804–1817. [Google Scholar]
- Cepiński, W.; Szałański, P. Increasing the efficiency of split type air conditioners/heat pumps by using ventilating exhaust air. E3S Web Conf. 2019, 100. [Google Scholar] [CrossRef] [Green Version]
- Przydróżny, E.; Przydróżna, A.; Szczęśniak, S. Energy efficient setting of supply air temperature in dual-duct dual-fan ventilation systems with extract air recirculation. Therm. Sci. Eng. Prog. 2018, 5, 69–85. [Google Scholar] [CrossRef]
- International Energy Agency (IEA). The Future of Cooling: Opportunities for Energy-Efficient Air Conditioning; International Energy Agency: Paris, France, 2018. [Google Scholar]
- Kassai, M.; Poleczky, L.; Al-Hyari, L.; Kajtar, L.; Nyers, J. Investigation of the energy recovery potentials in ventilation systems in different climates. Facta Univ. Ser. Mech. Eng. 2018, 16, 203–217. [Google Scholar] [CrossRef] [Green Version]
- Chang, X.; Watanabe, N.; Nagano, H. Visualization study of a loop heat pipe with two evaporators and one condenser under gravity-assisted condition. Int. J. Heat Mass Transf. 2019, 135, 378–391. [Google Scholar] [CrossRef]
- Duan, Z.; Zhan, C.; Zhang, X.; Mustafa, M.; Zhao, X.; Alimohammadisagvand, B.; Hasan, A. Indirect evaporative cooling: Past, present and future potentials. Renew. Sustain. Energy Rev. 2012, 16, 6823–6850. [Google Scholar] [CrossRef]
- Cuce, P.M.; Riffat, S. A state of the art review of evaporative cooling systems for building applications. Renew. Sustain. Energy Rev. 2016, 54, 1240–1249. [Google Scholar] [CrossRef]
- Tariq, R.; Zhan, C.; Zhao, X.; Sheikh, N.A. Numerical study of a regenerative counter flow evaporative cooler using alumina nanoparticles in wet channel. Energy Build. 2018, 169, 430–443. [Google Scholar] [CrossRef]
- Tariq, R.; Zhan, C.; Sheikh, N.A.; Zhao, X. Thermal performance enhancement of a cross-flow-type Maisotsenko heat and mass exchanger using various nanofluids. Energies 2018, 11, 2656. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Akhlaghi, Y.G.; Zhao, X.; Li, J. Experimental and numerical investigation of a high-efficiency dew-point evaporative cooler. Energy Build. 2019, 197, 120–130. [Google Scholar] [CrossRef] [Green Version]
- Al-Abbasi, O.; Al-Alawi, Y. Modeling of indirect evaporative cooling and its performance analysis in harsh environments. Heat Mass Transf. 2019, 55, 3165–3178. [Google Scholar] [CrossRef]
- Wang, Y.; Huang, X.; Li, L. Comparative study of the cross-flow heat and mass exchangers for indirect evaporative cooling using numerical methods. Energies 2018, 11, 3374. [Google Scholar] [CrossRef] [Green Version]
- Kim, M.H.; Jeong, J.W. Cooling performance of a 100% outdoor air system integrated with indirect and direct evaporative coolers. Energy 2013, 52, 245–257. [Google Scholar] [CrossRef]
- Cui, X.; Chua, K.J.; Islam, M.R.; Ng, K.C. Performance evaluation of an indirect pre-cooling evaporative heat exchanger operating in hot and humid climate. Energy Convers. Manag. 2015, 102, 140–150. [Google Scholar] [CrossRef]
- Chauhan, S.S.; Rajput, S.P.S. Parametric analysis of a combined dew point evaporative-vapour compression based air conditioning system. Alex. Eng. J. 2016, 55, 2333–2344. [Google Scholar] [CrossRef] [Green Version]
- Cui, X.; Islam, M.R.; Chua, K.J. An experimental and analytical study of a hybrid air-conditioning system in buildings residing in tropics. Energy Build. 2019, 201, 216–226. [Google Scholar] [CrossRef]
- Belusko, M.; Liddle, R.; Alemu, A.; Halawa, E.; Bruno, F. Performance evaluation of a CO2 refrigeration system enhanced with a dew point cooler. Energies 2019, 12, 1079. [Google Scholar] [CrossRef] [Green Version]
- Yu, B.F.; Hu, Z.B.; Liu, M.; Yang, H.L.; Kong, Q.X.; Liu, Y.H. Review of research on air-conditioning systems and indoor air quality control for human health. Int. J. Refrig. 2009, 32, 3–20. [Google Scholar] [CrossRef]
- Bonetta, S.; Bonetta, S.; Mosso, S.; Sampò, S.; Carraro, E. Assessment of microbiological indoor air quality in an Italian office building equipped with an HVAC system. Environ. Monit. Assess. 2010, 161, 473–483. [Google Scholar] [CrossRef] [PubMed]
- Piekarska, K.; Trusz, A.; Szczęśniak, S. Bacteria and fungi in two air handling units with air recirculating module. Energy Build. 2018, 178, 154–164. [Google Scholar] [CrossRef]
- Xu, P.; Ma, X.; Zhao, X.; Fancey, K. Experimental investigation of a super performance dew point air cooler. Appl. Energy 2017, 203, 761–777. [Google Scholar] [CrossRef]
- Woods, J. Membrane processes for heating, ventilation, and air conditioning. Renew. Sustain. Energy Rev. 2014, 33, 290–304. [Google Scholar] [CrossRef]
- Englart, S. Use of a membrane module for semi-direct air evaporative cooling. Indoor Built Environ. 2019, 13. [Google Scholar] [CrossRef]
- Shabgard, H.; Allen, M.J.; Sharifi, N.; Benn, S.P.; Faghri, A.; Bergman, T.L. Heat pipe heat exchangers and heat sinks: Opportunities, challenges, applications, analysis, and state of the art. Int. J. Heat Mass Transf. 2015, 89, 138–158. [Google Scholar] [CrossRef]
- Wadowski, T.; Akbarzadeh, A.; Johnson, P. Characteristics of a gravity-assisted heat pipe-based heat exchanger. Heat Recover. Syst. CHP 1991, 11, 69–77. [Google Scholar] [CrossRef]
- Kassai, M.; Ge, G.; Simonson, C.J. Dehumidification performance investigation of run-around membrane energy exchanger system. Therm. Sci. 2016, 20, 1927–1938. [Google Scholar] [CrossRef]
- Riffat, S.B.; Zhu, J. Mathematical model of indirect evaporative cooler using porous ceramic and heat pipe. Appl. Therm. Eng. 2004, 24, 457–470. [Google Scholar] [CrossRef]
- Boukhanouf, R.; Amer, O.; Ibrahim, H.; Calautit, J. Design and performance analysis of a regenerative evaporative cooler for cooling of buildings in arid climates. Build. Environ. 2018, 142, 1–10. [Google Scholar] [CrossRef]
- Alharbi, A.; Almaneea, A.; Boukhanouf, R. Integrated hollow porous ceramic cuboids-finned heat pipes evaporative cooling system: Numerical modelling and experimental validation. Energy Build. 2019, 196, 61–70. [Google Scholar] [CrossRef]
- Danielewicz, J.; Sayegh, M.A.; Śniechowska, B.; Szulgowska-Zgrzywa, M.; Jouhara, H. Experimental and analytical performance investigation of air to air two phase closed thermosyphon based heat exchangers. Energy 2014, 77, 82–87. [Google Scholar] [CrossRef] [Green Version]
- Jouhara, H.; Robinson, A.J. Experimental investigation of small diameter two-phase closed thermosyphons charged with water, FC-84, FC-77 and FC-3283. Appl. Therm. Eng. 2010, 30, 201–211. [Google Scholar] [CrossRef] [Green Version]
- Khandekar, S.; Joshi, Y.M.; Mehta, B. Thermal performance of closed two-phase thermosyphon using nanofluids. Int. J. Therm. Sci. 2008, 47, 659–667. [Google Scholar] [CrossRef]
- Zhang, L.; Huang, S. Coupled heat and mass transfer in a counter flow hollow fiber membrane module for air humidification. Int. J. Heat Mass Transf. 2011, 54, 1055–1063. [Google Scholar] [CrossRef]
- Li, G.-P.; Qi, R.; Zhang, L.-Z. Performance study of a solar-assisted hollow-fiber-membrane-based air humidification-dehumidification desalination system: Effects of membrane properties. Chem. Eng. Sci. 2019, 206, 164–179. [Google Scholar] [CrossRef]
- Chen, Y.; Luo, Y.; Yang, H. A simplified analytical model for indirect evaporative cooling considering condensation from fresh air: Development and application. Energy Build. 2015, 108, 387–400. [Google Scholar] [CrossRef]
- Žukauskas, A.; Ulinskas, R. Efficiency parameters for heat transfer in tube banks. Heat Transf. Eng. 1985, 6, 19–25. [Google Scholar] [CrossRef]
- Kim, N.H.; Youn, B.; Webb, R.L. Air-side heat transfer and friction correlations for plain fin-and-tube heat exchangers with staggered tube arrangements. J. Heat Transf. 1999, 121, 662–667. [Google Scholar] [CrossRef]
- Tarrad, A.H.; Khudor, D.S. A correlation for the air-side heat transfer coefficient assessment in continuous flat-plate finned heat exchangers. J. Therm. Sci. Eng. Appl. 2015, 7, 1–9. [Google Scholar] [CrossRef]
- Amer, O. A Heat Pipe and Porous Ceramic Based Sub Wet-Bulb Temperature Evaporative Cooler: A Theoretical and Experimental Study. Ph.D. Thesis, University of Nottingham, Nottingham, UK, 2017. [Google Scholar]
- Alharbi, A. Investigation of Sub-Wet Bulb Temperature Evaporative Cooling System for Cooling in Buildings. Ph.D. Thesis, University of Nottingham, Nottingham, UK, 2014. [Google Scholar]
Parameter | Initial and Boundary Condition |
---|---|
Product air inlet temperature | |
Product air inlet humidity ratio | |
Working air inlet temperature | |
Working air inlet humidity ratio |
Parameter | Equation | No. |
---|---|---|
Nusselt number for GAHP bank in wet channel [40] | (9) | |
Colburn j factor for plain-finned GAHP bank in dry channel [41] | (10) | |
Vaporization heat transfer for GAHP evaporator section [35] | (11) | |
Condensation heat transfer for GAHP condenser section [35] | (12) |
Parameter | Equation | No. |
---|---|---|
Overall surface efficiency | (13) | |
Fin efficiency | , where | (14) |
Equivalent radius of a hexagonal tube array | (15) | |
Coefficients ψ and β | and | (16) |
φ factor | (17) |
Parameter | Equation | No. |
---|---|---|
Total pressure drop in the wet channel [40] | (22) | |
Total pressure drop in the dry channel [41] | (23) | |
Overall friction factor in the dry channel [41] | (24) | |
Friction factor associated with fin area in the dry channel [41] | (25) | |
Friction factor associated with GAHP area in the dry channel [41] | (26) |
Parameter | IEC1 [32,43] | IEC2 [33,44] |
---|---|---|
Length × width × height | 700 × 227 × 300 mm | 820 × 52 × 380 mm |
Height of dry channel | 140 mm | 130 mm |
Height of wet channel | 140 mm | 220 mm |
Wet channel material | porous ceramic tubes | porous ceramic cuboids |
Number of heat pipes | 15 | 12 |
HP working fluid | deionized water | deionized water |
Ambient air temperature, °C | 30–40 | 35 |
Ambient air relative humidity, % | 35, 45 | 35–55 |
Working-to-product air flow ratio, − | 0.5 | 0.5 |
Mass flow rate in the dry channel, kg/s | 0.03 | 0.003 |
Parameter | Value/type | Unit |
---|---|---|
Height of dry channel | 250 | mm |
Height of wet channel | 250 | mm |
GAHP outer diameter | 12 | mm |
Number of GAHP rows | 15 | – |
GAHP working fluid | deionized water | – |
GAHP material | copper | – |
GAHP arrangement | staggered | – |
Longitudinal/transverse pitch | 14 | mm |
Working-to-product airflow ratio | 0.5 | – |
Inlet product airflow velocity | 1.5 | m/s |
Fin spacing | 1.6 | mm |
Fin material | aluminum | – |
Parameter | Inlet Air Temperature, °C | Inlet Air Relative Humidity, % |
---|---|---|
Conditions 1 (cond. 1) | 35 | 30 |
Conditions 2 (cond. 2) | 35 | 40 |
Conditions 3 (cond. 3) | 35 | 50 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rajski, K.; Danielewicz, J.; Brychcy, E. Performance Evaluation of a Gravity-Assisted Heat Pipe-Based Indirect Evaporative Cooler. Energies 2020, 13, 200. https://doi.org/10.3390/en13010200
Rajski K, Danielewicz J, Brychcy E. Performance Evaluation of a Gravity-Assisted Heat Pipe-Based Indirect Evaporative Cooler. Energies. 2020; 13(1):200. https://doi.org/10.3390/en13010200
Chicago/Turabian StyleRajski, Krzysztof, Jan Danielewicz, and Ewa Brychcy. 2020. "Performance Evaluation of a Gravity-Assisted Heat Pipe-Based Indirect Evaporative Cooler" Energies 13, no. 1: 200. https://doi.org/10.3390/en13010200
APA StyleRajski, K., Danielewicz, J., & Brychcy, E. (2020). Performance Evaluation of a Gravity-Assisted Heat Pipe-Based Indirect Evaporative Cooler. Energies, 13(1), 200. https://doi.org/10.3390/en13010200