Balancing Generation from Renewable Energy Sources: Profitability of an Energy Trader
Abstract
:1. Introduction
2. Datasets
- —day-ahead electricity system prices in PLN/MWh (source: TGE S.A., https://tge.pl/statistic-data),
- —balancing market settlement prices in PLN/MWh, i.e., the so-called Imbalance Settlement Prices (in Polish: Cena Rozliczeniowa Odchylenia, CRO; source: PSE S.A., https://www.pse.pl/web/pse-eng/data/balancing-market-operation/settlement-prices),
- —two-days-ahead country-wide wind generation forecasts in MWh, extracted from the Initial Daily Coordination Plan (also called the Two Days Ahead Coordinated Plan; in Polish: Wstȩpny Plan Koordynacyjny Dobowy, WPKD; source: PSE S.A., https://www.pse.pl/web/pse-eng/data/polish-power-system-operation/two-days-ahead-basic-data),
- —actual country-wide wind generation in MWh (source: PSE S.A., https://www.pse.pl/web/pse-eng/data/polish-power-system-operation/generation-in-wind-farms),
3. Trading Strategies
3.1. Assumptions
3.2. The Benchmark Strategy
- Before 10:30 on day , the trader bids a volume of in the day-ahead market, at the minimum price. Note, that there is no risk of not accepting such bids. Hence, we can interpret that de facto the company sells this volume at the day-ahead price PLN/MWh.
- On day d, the company sells (if positive) or buys (if negative) the residual volume:
3.3. Trading on Improved Wind Generation Forecasts
4. Contract Design
4.1. The Importance of Contract Design for Financial Performance and Risk Mitigation
4.2. Unrestricted Contracts
4.3. Tolerance Range Contracts
5. Results
5.1. Evaluation Metrics
5.2. Total and Cumulative Profits
- the benchmark strategy—denoted by —based on unrestricted contracts (see Section 4.2) and WPKD forecasts (see Section 3.2),
- the crystal ball strategy—denoted by —based on perfect wind generation forecasts (see Equation (3) in Section 3.3) instead of WPKD predictions,
- a strategy—denoted by —utilizing improved wind generation forecasts (see Section 3.3) instead of WPKD predictions,
- strategies—denoted by or —based on tolerance range contracts for a range of tolerance thresholds (see Section 4.3), respectively utilizing the WPKD or improved wind generation forecasts.
5.3. Value-at-Risk
5.4. Sharpe Ratios
6. Summary and Outlook
6.1. Conclusions
6.2. Future Directions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Weron, R. Electricity price forecasting: A review of the state-of-the-art with a look into the future. Int. J. Forecast. 2014, 30, 1030–1081. [Google Scholar] [CrossRef] [Green Version]
- Viehmann, J. State of the German short-term power market. Zeitschrift für Energiewirtschaft 2017, 41, 87–103. [Google Scholar] [CrossRef]
- Mayer, K.; Trück, S. Electricity markets around the world. J. Commod. Mark. 2018, 9, 77–100. [Google Scholar] [CrossRef]
- Gianfreda, A.; Parisio, L.; Pelagatti, M. The impact of RES in the Italian day-ahead and balancing markets. Energy J. 2016, 37, 161–184. [Google Scholar]
- Cole, W.; Frazier, A. Impacts of increasing penetration of renewable energy on the operation of the power sector. Electr. J. 2018, 31, 24–31. [Google Scholar] [CrossRef]
- Maciejowska, K. Assessing the impact of renewable energy sources on the electricity price level and variability—A Quantile Regression approach. Energy Econ. 2020, 85, 104532. [Google Scholar] [CrossRef]
- Kiesel, R.; Paraschiv, F. Econometric analysis of 15-minute intraday electricity prices. Energy Econ. 2017, 64, 77–90. [Google Scholar] [CrossRef] [Green Version]
- Kath, C.; Ziel, F. The value of forecasts: Quantifying the economic gains of accurate quarter-hourly electricity price forecasts. Energy Econ. 2018, 76, 411–423. [Google Scholar] [CrossRef] [Green Version]
- Uniejewski, B.; Marcjasz, G.; Weron, R. Understanding intraday electricity markets: Variable selection and very short-term price forecasting using LASSO. Int. J. Forecast. 2019, 35, 1533–1547. [Google Scholar] [CrossRef] [Green Version]
- Renewable Energy Sources Act of 20 February 2015. Republic of Poland, Dz.U. 2015 poz. 478 and Later Amendments. 2015. Available online: http://prawo.sejm.gov.pl/isap.nsf/DocDetails.xsp?id=WDU20150000478 (accessed on 20 February 2015).
- Morales, J.M.; Conejo, A.J.; Madsen, H.; Pinson, P.; Zugno, M. Integrating Renewables in Electricity Markets: Operational Problems; Springer: New York, NY, USA, 2014. [Google Scholar]
- Sikorski, T.; Jasiński, M.; Ropuszyńska-Surma, E.; Wȩglarz, M.; Kaczorowska, D.; Kostyła, P.; Leonowicz, Z.; Lis, R.; Rezmer, J.; Rojewski, W.; et al. A case study on distributed energy resources and energy-storage systems in a Virtual Power Plant concept: Economic aspects. Energies 2019, 12, 4447. [Google Scholar] [CrossRef] [Green Version]
- Maciejowska, K.; Nitka, W.; Weron, T. Day-ahead vs. Intraday—Forecasting the price spread to maximize economic benefits. Energies 2019, 12, 631. [Google Scholar] [CrossRef] [Green Version]
- Kath, C. Modeling intraday markets under the new advances of the cross-border intraday project (XBID): Evidence from the German intraday market. Energies 2019, 12, 4339. [Google Scholar] [CrossRef] [Green Version]
- Maciejowska, K.; Nitka, W.; Weron, T. Enhancing load, wind and solar generation forecasts in day-ahead forecasting of spot and intraday electricity prices. Energy Econ. 2019. submitted. [Google Scholar]
- Hubicka, K.; Marcjasz, G.; Weron, R. A note on averaging day-ahead electricity price forecasts across calibration windows. IEEE Trans. Sustain. Energy 2019, 10, 321–323. [Google Scholar] [CrossRef]
- Marcjasz, G.; Serafin, T.; Weron, R. Selection of calibration windows for day-ahead electricity price forecasting. Energies 2018, 11, 2364. [Google Scholar] [CrossRef] [Green Version]
- Serafin, T.; Uniejewski, B.; Weron, R. Averaging predictive distributions across calibration windows for day-ahead electricity price forecasting. Energies 2019, 12, 2561. [Google Scholar] [CrossRef] [Green Version]
- Taleb, N. Fooled by Randomness: The Hidden Role of Chance in Life and in the Markets; Random House: New York, NY, USA, 2005. [Google Scholar]
- Zaleski, P.; Klimczak, D. Prospects for the rise of renewable sources of energy in Poland. Balancing renewables on the intra-day market. In Capacity Market in Contemporary Economic Policy; Zamasz, K., Ed.; Difin: Warszawa, Poland, 2015; pp. 124–138. [Google Scholar]
- Koch, C.; Hirth, L. Short-term electricity trading for system balancing: An empirical analysis of the role of intraday trading in balancing Germany’s electricity system. Renew. Sustain. Energy Rev. 2019, 113, 109275. [Google Scholar] [CrossRef] [Green Version]
- Blanco, M.I. The economics of wind energy. Renew. Sustain. Energy Rev. 2009, 13, 1372–1382. [Google Scholar] [CrossRef]
- Dicorato, M.; Forte, G.; Pisani, M.; Trovato, M. Guidelines for assessment of investment cost for offshore wind generation. Renew. Energy 2011, 36, 2043–2051. [Google Scholar] [CrossRef]
- Tavafoghi, H.; Teneketzis, D. Optimal contract design for energy procurement. In Proceedings of the 52nd Annual Allerton Conference on Communication, Control, and Computing, Monticello, IL, USA, 1–3 October 2014. [Google Scholar] [CrossRef]
- Bruck, M.; Sandborn, P.; Goudarzi, N. A Levelized Cost of Energy (LCOE) model for wind farms that include Power Purchase Agreements (PPAs). Renew. Energy 2018, 122, 131–139. [Google Scholar] [CrossRef]
- Alexander, C. Market Risk Analysis; Wiley: Chichester, UK, 2008; Volume I–IV. [Google Scholar]
- Baltaoglu, S.; Tong, L.; Zhao, Q. Algorithmic bidding for virtual trading in electricity markets. IEEE Trans. Power Syst. 2019, 34, 535–543. [Google Scholar]
- Narajewski, M.; Ziel, F. Econometric modelling and forecasting of intraday electricity prices. J. Commod. Mark. 2019. [Google Scholar] [CrossRef] [Green Version]
- Lago, J.; De Ridder, F.; De Schutter, B. Forecasting spot electricity prices: Deep learning approaches and empirical comparison of traditional algorithms. Appl. Energy 2018, 221, 386–405. [Google Scholar] [CrossRef]
- Oksuz, I.; Ugurlu, U. Neural network based model comparison for intraday electricity price forecasting. Energies 2019, 12, 4557. [Google Scholar] [CrossRef] [Green Version]
- Nowotarski, J.; Weron, R. Recent advances in electricity price forecasting: A review of probabilistic forecasting. Renew. Sustain. Energy Rev. 2018, 81, 1548–1568. [Google Scholar] [CrossRef]
- Janke, T.; Steinke, F. Forecasting the price distribution of continuous intraday electricity trading. Energies 2019, 12, 4262. [Google Scholar] [CrossRef] [Green Version]
Commission | Strategy | ||||||
---|---|---|---|---|---|---|---|
C [PLN] | |||||||
0.00 | −705,573 | 0 | −678,294 | −485,524 | −641,585 | −641,220 | −661,914 |
1.00 | −435,664 | 269,909 | −408,385 | −225,058 | −371,924 | −371,432 | −392,065 |
2.00 | −165,755 | 539,818 | −138,476 | 35,408 | −102,264 | −101,644 | −122,216 |
2.51 | −27,279 | 678,293 | 0 | 169,038 | 36,084 | 36,769 | 16,228 |
3.00 | 104,154 | 809,727 | 131,433 | 295,874 | 167,397 | 168,144 | 147,633 |
1 EUR ≈ 4.25 | 441,540 | 1,147,113 | 468,819 | 621,456 | 504,473 | 505,379 | 484,944 |
5.00 | 643,972 | 1,349,545 | 671,250 | 816,806 | 706,719 | 707,720 | 687,331 |
Commission | Strategy | ||||||
---|---|---|---|---|---|---|---|
C [PLN] | |||||||
0.00 | −4803 | 0 | −4465 | −3535 | −4424 | −4445 | −4465 |
1.00 | −4305 | 78 | −4046 | −2979 | −3934 | −3930 | −4046 |
2.00 | −3865 | 156 | −3705 | −2408 | −3449 | −3449 | −3705 |
2.51 | −3697 | 196 | −3562 | −2158 | −3379 | −3379 | −3562 |
3.00 | −3515 | 235 | −3406 | −1927 | −3254 | −3254 | −3406 |
1 EUR ≈ 4.25 | −3034 | 333 | −2883 | −1468 | −2514 | −2 725 | −2883 |
5.00 | −2786 | 391 | −2666 | −1179 | −2184 | −2333 | −2666 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kath, C.; Nitka, W.; Serafin, T.; Weron, T.; Zaleski, P.; Weron, R. Balancing Generation from Renewable Energy Sources: Profitability of an Energy Trader. Energies 2020, 13, 205. https://doi.org/10.3390/en13010205
Kath C, Nitka W, Serafin T, Weron T, Zaleski P, Weron R. Balancing Generation from Renewable Energy Sources: Profitability of an Energy Trader. Energies. 2020; 13(1):205. https://doi.org/10.3390/en13010205
Chicago/Turabian StyleKath, Christopher, Weronika Nitka, Tomasz Serafin, Tomasz Weron, Przemysław Zaleski, and Rafał Weron. 2020. "Balancing Generation from Renewable Energy Sources: Profitability of an Energy Trader" Energies 13, no. 1: 205. https://doi.org/10.3390/en13010205
APA StyleKath, C., Nitka, W., Serafin, T., Weron, T., Zaleski, P., & Weron, R. (2020). Balancing Generation from Renewable Energy Sources: Profitability of an Energy Trader. Energies, 13(1), 205. https://doi.org/10.3390/en13010205