Short-Term Scheduling of Expected Output-Sensitive Cascaded Hydro Systems Considering the Provision of Reserve Services
Abstract
:1. Introduction
2. Problem Formulation
2.1. Objective Function
2.2. Constraints
- (1)
- Initial and terminal forebay levels: The terminal forebay level is obtained from the long-term hydro scheduling:
- (2)
- Continuity equation:
- (3)
- Water discharge equation:
- (4)
- Net head equation:
- (5)
- Power ramping constraint:
- (6)
- Hydroelectric power generation characteristics function:
- (7)
- Expected output function:
- (8)
- Up reserve constraints:
- (9)
- Down reserve constraints:
- (10)
- Forebay level, output, turbine flow and water discharge limits:
3. Model Solution
3.1. Determination of the Required Up Reserve
3.2. Overview of the MSPOA
3.3. Determining the Forebay Level and Output Under the Condition of Sensitive Expected Output
3.4. Penalty Function
3.5. Whole Solution Framework
4. Case Study
4.1. Introduction of the Engineering Background
4.2. Results Analysis
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A
References
- 2019 Hydropower Status Report. Available online: https://www.hydropower.org/statusreport (accessed on 9 March 2020).
- Feng, Z.-K.; Niu, W.-J.; Cheng, C. A Quadratic Programming Approach for Fixed Head Hydropower System Operation Optimization Considering Power Shortage Aspect. J. Water Resour. Plan. Manag. 2017, 143, 06017005. [Google Scholar] [CrossRef]
- Xie, M.; Zhou, J.; Li, C.; Lu, P. Daily Generation Scheduling of Cascade Hydro Plants Considering Peak Shaving Constraints. J. Water Resour. Plan. Manag. 2016, 142, 04015072. [Google Scholar] [CrossRef]
- Borghetti, A.; D’Ambrosio, C.; Lodi, A.; Martello, S. An MILP Approach for Short-Term Hydro Scheduling and Unit Commitment with Head-Dependent Reservoir. IEEE Trans. Power Syst. 2008, 23, 1115–1124. [Google Scholar] [CrossRef] [Green Version]
- Xi, E.; Guan, X.; Li, R. Scheduling hydrothermal power systems with cascaded and head-dependent reservoirs. IEEE Trans. Power Syst. 1999, 14, 1127–1132. [Google Scholar] [CrossRef]
- Catalão, J.P.; Pousinho, H.; Mendes, V. Scheduling of head-dependent cascaded reservoirs considering discharge ramping constraints and start/stop of units. Int. J. Electr. Power Energy Syst. 2010, 32, 904–910. [Google Scholar] [CrossRef]
- Masouleh, M.S.; Salehi, F.; Raeisi, F.; Saleh, M.; Brahman, A.; Ahmadi, A. Mixed-integer Programming of Stochastic Hydro Self-scheduling Problem in Joint Energy and Reserves Markets. Electr. Power Compon. Syst. 2016, 44, 752–762. [Google Scholar] [CrossRef]
- Catalão, J.P.; Mariano, S.; Mendes, V.; Ferreira, L. Scheduling of head-sensitive cascaded hydro systems: A nonlinear approach. IEEE Trans. Power Syst. 2009, 24, 337–346. [Google Scholar] [CrossRef]
- Shen, J.; Cheng, C.; Cao, R.; Shen, Q.; Li, X.; Wu, Y.; Zhou, B. Generation Scheduling of a Hydrodominated Provincial System Considering Forecast Errors of Wind and Solar Power. J. Water Resour. Plan. Manag. 2019, 145, 04019043. [Google Scholar] [CrossRef]
- Wang, X.; Mei, Y.; Kong, Y.; Lin, Y.; Wang, H. Improved multi-objective model and analysis of the coordinated operation of a hydro-wind-photovoltaic system. Energy 2017, 134, 813–839. [Google Scholar] [CrossRef]
- Park, Y.-G.; Park, J.-B.; Kim, N.; Lee, K. Linear Formulation for Short-Term Operational Scheduling of Energy Storage Systems in Power Grids. Energies 2017, 10, 207. [Google Scholar] [CrossRef] [Green Version]
- Guedes, L.; Maia, P.D.M.; Lisboa, A.; Vieira, D.; Saldanha, R.R. A Unit Commitment Algorithm and a Compact MILP Model for Short-Term Hydro-Power Generation Scheduling. IEEE Trans. Power Syst. 2017, 32, 3381–3390. [Google Scholar] [CrossRef]
- Rodriguez, J.A.; Anjos, M.F.; Côté, P.; Desaulniers, G.; Sarasty, J.A.R. MILP Formulations for Generator Maintenance Scheduling in Hydropower Systems. IEEE Trans. Power Syst. 2018, 33, 6171–6180. [Google Scholar] [CrossRef]
- Arce, A.; Ohishi, T.; Soares, S. Optimal dispatch of generating units of the Itaipu hydroelectric plant. IEEE Trans. Power Syst. 2002, 17, 154–158. [Google Scholar] [CrossRef]
- Amado, S.M.; Ribeiro, C.C. Short-Term Generation Scheduling of Hydraulic Multi-Reservoir Multi-Area Interconnected Systems. IEEE Trans. Power Syst. 1987, 2, 758–763. [Google Scholar] [CrossRef]
- Kiran, B.D.H.; Kumari, M.S. Demand response and pumped hydro storage scheduling for balancing wind power uncertainties: A probabilistic unit commitment approach. Int. J. Electr. Power Energy Syst. 2016, 81, 114–122. [Google Scholar] [CrossRef]
- Salam, M.; Nor, K.; Hamdam, A. Hydrothermal scheduling based Lagrangian relaxation approach to hydrothermal coordination. IEEE Trans. Power Syst. 1998, 13, 226–235. [Google Scholar] [CrossRef]
- Dos Santos, T.N.; Diniz, A. A New Multiperiod Stage Definition for the Multistage Benders Decomposition Approach Applied to Hydrothermal Scheduling. IEEE Trans. Power Syst. 2009, 24, 1383–1392. [Google Scholar] [CrossRef]
- Dos Santos, T.N.; Diniz, A.; Borges, C.T. A new nested benders decomposition strategy for parallel processing applied to the hydrothermal scheduling problem. IEEE Trans. Smart Grid 2017, 8, 1504–15121. [Google Scholar] [CrossRef]
- Nazari-Heris, M.; Mohammadi-Ivatloo, B.; Haghrah, A. Optimal short-term generation scheduling of hydrothermal systems by implementation of real-coded genetic algorithm based on improved Mühlenbein mutation. Energy 2017, 128, 77–85. [Google Scholar] [CrossRef]
- Banerjee, S.; Dasgupta, K.; Chanda, C.K. Short term hydro–wind–thermal scheduling based on particle swarm optimization technique. Int. J. Electr. Power Energy Syst. 2016, 81, 275–288. [Google Scholar] [CrossRef]
- Naresh, R.; Sharma, J. Hydro system scheduling using ANN approach. IEEE Trans. Power Syst. 2000, 15, 388–395. [Google Scholar] [CrossRef]
- Rajan, C.C.A. Hydro-thermal unit commitment problem using simulated annealing embedded evolutionary programming approach. Int. J. Electr. Power Energy Syst. 2011, 33, 939–946. [Google Scholar] [CrossRef]
- Shi, L.; Hao, J.; Zhou, J.; Xu, G. Ant colony optimization algorithm with random perturbation behavior to the problem of optimal unit commitment with probabilistic spinning reserve determination. Electr. Power Syst. Res. 2004, 69, 295–303. [Google Scholar] [CrossRef]
- Bashiri-Atrabi, H.; Qaderi, K.; Rheinheimer, D.; Sharifi, E. Application of Harmony Search Algorithm to Reservoir Operation Optimization. Water Resour. Manag. 2015, 29, 5729–5748. [Google Scholar] [CrossRef]
- Parvez, I.; Shen, J.; Khan, M.; Cheng, C. Modeling and Solution Techniques Used for Hydro Generation Scheduling. Water 2019, 11, 1392. [Google Scholar] [CrossRef] [Green Version]
- Twaha, S.; Ramli, M. A review of optimization approaches for hybrid distributed energy generation systems: Off-grid and grid-connected systems. Sustain. Cities Soc. 2018, 41, 320–331. [Google Scholar] [CrossRef]
- Sedghi, M.; Ahmadian, A.; Aliakbar-Golkar, M. Assessment of optimization algorithms capability in distribution network planning: Review, comparison and modification techniques. Renew. Sustain. Energy Rev. 2016, 66, 415–434. [Google Scholar] [CrossRef]
- Cheng, C.; Shen, J.; Wu, X.; Chau, K.-W. Short-Term Hydroscheduling with Discrepant Objectives Using Multi-Step Progressive Optimality Algorithm. JAWRA J. Am. Water Resour. Assoc. 2012, 48, 464–479. [Google Scholar] [CrossRef]
- Ge, X.; Xia, S.; Lee, W.-J.; Chung, C. A successive approximation approach for short-term cascaded hydro scheduling with variable water flow delay. Electr. Power Syst. Res. 2018, 154, 213–222. [Google Scholar] [CrossRef]
- Wu, X.; Cheng, C.; Shen, J.-J.; Luo, B.; Liao, S.; Li, G. A multi-objective short term hydropower scheduling model for peak shaving. Int. J. Electr. Power Energy Syst. 2015, 68, 278–293. [Google Scholar] [CrossRef]
- Nilsson, O.; Sjelvgren, D. Hydro unit start-up costs and their impact on the short term scheduling strategies of Swedish power producers. IEEE Trans. Power Syst. 1997, 12, 38–44. [Google Scholar] [CrossRef]
- Cheng, C.; Shen, J.; Wu, X. Short-Term Scheduling for Large-Scale Cascaded Hydropower Systems with Multivibration Zones of High Head. J. Water Resour. Plan. Manag. 2012, 138, 257–267. [Google Scholar] [CrossRef]
- André, T. Optimal Short-Term Hydro Scheduling from the Principle of Progressive. Water Resour. Res. 1981, 17, 481–486. [Google Scholar]
- Nanda, J.; Bijwe, P. Optimal Hydrothermal Scheduling with Cascaded Plants Using Progressive Optimality Algorithm. IEEE Trans. Power Appar. Syst. 1981, 100, 2093–2099. [Google Scholar] [CrossRef]
- Yi, J.; Labadie, J.W.; Stitt, S. Dynamic Optimal Unit Commitment and Loading in Hydropower Systems. J. Water Resour. Plan. Manag. 2003, 129, 388–398. [Google Scholar] [CrossRef]
- Feng, Z.-K.; Niu, W.-J.; Cheng, C.; Lund, J.R. Optimizing Hydropower Reservoirs Operation via an Orthogonal Progressive Optimality Algorithm. J. Water Resour. Plan. Manag. 2018, 144, 04018001. [Google Scholar] [CrossRef]
Energy Resource | 2005 | 2010 | 2015 | 2019 |
---|---|---|---|---|
Wind | 1.26 | 30 | 131 | 210.05 |
Solar | 0.07 | 0.3 | 42 | 204.30 |
Boundary Conditions | HJD | DF | SFY | WJD | GPT | SL | ST |
---|---|---|---|---|---|---|---|
Regulating ability | Multi-yearly | Seasonally | Daily | Seasonally | Yearly | Daily | Daily |
Initial forebay level (m) | 1089.54 | 964.96 | 833.48 | 748.19 | 599.59 | 437.25 | 363.91 |
Terminal forebay level (m) | 1085.50 | 961.95 | 831.54 | 745.49 | 599.95 | 435.92 | 363.81 |
Highest forebay level (m) | 1140.00 | 970.00 | 837.00 | 760.00 | 626.24 | 440.00 | 365.00 |
Lowest forebay level (m) | 1076.00 | 936.00 | 822.00 | 720.00 | 590.00 | 431.00 | 353.50 |
Installed capacity (MW) | 600 | 695 | 600 | 1250 | 3000 | 1050 | 1120 |
Minimum output (MW) | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Maximum water discharge (m3/s) | 3866 | 11,142 | 15,956 | 18,360 | 23,560 | 25,737 | 27,500 |
Minimum water discharge (m3/s) | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Flow-time delay (h) | 2 | 2 | 3 | 6 | 4 | 8 | 0 |
Ramp rate (MW/h) | 150 | 174 | 150 | 312 | 750 | 262 | 280 |
Case | Average Output (MW) | Standard deviation (MW) | Average Up Reserve (MW) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
HJD | DF | SFY | WJD | GPT | SL | ST | Cascade | Load | Residual Load | Reduction Ratio (%) | ||
Introduced | 279 | 446 | 315 | 683 | 1105 | 559 | 604 | 3991 | 2042 | 1339 | 34.4 | 3592 |
Conventional | 279 | 447 | 319 | 727 | 1170 | 590 | 634 | 4166 | 2042 | 1142 | 44.1 | 4149 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhong, R.; Cheng, C.; Liao, S.; Zhao, Z. Short-Term Scheduling of Expected Output-Sensitive Cascaded Hydro Systems Considering the Provision of Reserve Services. Energies 2020, 13, 2477. https://doi.org/10.3390/en13102477
Zhong R, Cheng C, Liao S, Zhao Z. Short-Term Scheduling of Expected Output-Sensitive Cascaded Hydro Systems Considering the Provision of Reserve Services. Energies. 2020; 13(10):2477. https://doi.org/10.3390/en13102477
Chicago/Turabian StyleZhong, Ruhong, Chuntian Cheng, Shengli Liao, and Zhipeng Zhao. 2020. "Short-Term Scheduling of Expected Output-Sensitive Cascaded Hydro Systems Considering the Provision of Reserve Services" Energies 13, no. 10: 2477. https://doi.org/10.3390/en13102477
APA StyleZhong, R., Cheng, C., Liao, S., & Zhao, Z. (2020). Short-Term Scheduling of Expected Output-Sensitive Cascaded Hydro Systems Considering the Provision of Reserve Services. Energies, 13(10), 2477. https://doi.org/10.3390/en13102477