Review of Online and Soft Computing Maximum Power Point Tracking Techniques under Non-Uniform Solar Irradiation Conditions
Abstract
:1. Introduction
2. MPP under Shading (Partial) and Non-Uniform Solar Irradiance Conditions
2.1. Modified Perturb and Observe (MP&O) Method
2.2. Modified Incremental Conductance (MINC) Method
2.3. Modified Hill Climbing (MHC) Method
2.4. Instantaneous Operating Power Optimization (IOPO) Method
2.5. Output Power Increment (OPI) Method
2.6. Two-Stage Load Line (2SLL) Method
2.7. Power-Load Characteristic with Variable Step-Size Method
2.8. Adaptive Maximum Power Point Tracking (AMPPT) Method
2.9. Direct Search (DS) Method
2.10. Segment Search (SS) Method
2.11. Restricted Voltage Window Search (RVWS) Method
3. Overview of Soft Computing-Based MPPT
3.1. Soft Computing MPPT Generalized Processes
3.1.1. Initialization
3.1.2. Reproduction
3.1.3. Selection
3.1.4. Stopping Criterion
- (a)
- Generation numbers—An onset value of is set. The process stops the iteration after fulfilling the defined number of iterations.
- (b)
- Finest fitness threshold—This condition terminates the iteration when the determined value of the objective function is smaller than the set value of Population convergence—In this condition iteration stops when the difference between the minimum and maximum values of all characters in the population is smaller than the defined acceptance value.
- (c)
- Fitness convergence—This condition stops the iteration when the difference between the minimum and maximum values of the objective function for all individuals in the population is smaller than the recommended tolerance values.
3.2. Bayesian Network (BN) Method
3.3. Non-Linear Predictor (NLP) Method
3.4. Ant Colony Optimization (ACO) Method
3.5. Cuckoo Search (CS) Method
3.6. Fibonacci Search (FS) Method
3.7. Particle Swarm Optimization (PSO) Method
3.8. Fuzzy Logic Control (FLC) Method
3.9. Artificial Neural Network (ANN) Method
3.10. Extremum Seeking (ES) Method
3.11. Chaotic Search (CS) Method
3.12. Differential Evolution (DE) Method
3.13. Genetic Algorithm (GA) Method
3.14. Simple Moving Voltage Average (SMVA) Method
3.15. Gauss–Newton (GN) Method
3.16. Grasshopper-Optimized Fuzzy Logic (GOFL)
4. Discussion and Comparative Analysis
4.1. Capability to Track the GMPP
4.2. Convergence Speed
4.3. Design Complexity
4.4. Sensitivity
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Marañón-Ledesma, H.; Tomasgard, A. Analyzing Demand Response in a Dynamic Capacity Expansion Model for the European Power Market. Energies 2019, 12, 2976. [Google Scholar] [CrossRef] [Green Version]
- Verma, D.; Nema, S.; Shandilya, A.; Dash, S.K. Maximum power point tracking (MPPT) techniques: Recapitulation in solar photovoltaic systems. Renew. Sustain. Energy Rev. 2016, 54, 1018–1034. [Google Scholar] [CrossRef]
- Tantiwechwuttikul, R.; Yarime, M.; Ito, K. Solar Photovoltaic Market Adoption: Dilemma of Technological Exploitation vs. Technological Exploration; Springer Science and Business Media LLC: Berlin/Heidelberg, Germany, 2019; pp. 215–227. [Google Scholar]
- Ustun, T.S.; Ozansoy, C.; Zayegh, A. Recent developments in microgrids and example cases around the world—A review. Renew. Sustain. Energy Rev. 2011, 15, 4030–4041. [Google Scholar] [CrossRef]
- Romankiewicz, J.; Marnay, C.; Zhou, N.; Qu, M. Lessons from international experience for China’s microgrid demonstration program. Energy Policy 2014, 67, 198–208. [Google Scholar] [CrossRef]
- Bódis, K.; Kougias, I.; Taylor, N.; Jäger-Waldau, A. Solar Photovoltaic Electricity Generation: A Lifeline for the European Coal Regions in Transition. Sustainability 2019, 11, 3703. [Google Scholar] [CrossRef] [Green Version]
- Ali, A.; Li, W.; He, X. Simple Moving Voltage Average Incremental Conductance MPPT Technique with Direct Control Method under Nonuniform Solar Irradiance Conditions. Int. J. Photoenergy 2015, 2015, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Bhatnagar, P.; Nema, R. Maximum power point tracking control techniques: State-of-the-art in photovoltaic applications. Renew. Sustain. Energy Rev. 2013, 23, 224–241. [Google Scholar] [CrossRef]
- Reisi, A.R.; Moradi, M.H.; Jamasb, S. Classification and comparison of maximum power point tracking techniques for photovoltaic system: A review. Renew. Sustain. Energy Rev. 2013, 19, 433–443. [Google Scholar] [CrossRef]
- Subudhi, B.; Pradhan, R. A Comparative Study on Maximum Power Point Tracking Techniques for Photovoltaic Power Systems. IEEE Trans. Sustain. Energy 2012, 4, 89–98. [Google Scholar] [CrossRef]
- Kamarzaman, N.A.; Tan, C.W. A comprehensive review of maximum power point tracking algorithms for photovoltaic systems. Renew. Sustain. Energy Rev. 2014, 37, 585–598. [Google Scholar] [CrossRef]
- Koutroulis, E.; Blaabjerg, F. Overview of Maximum Power Point Tracking Techniques for Photovoltaic Energy Production Systems. Electr. Power Components Syst. 2015, 43, 1329–1351. [Google Scholar] [CrossRef]
- Ahmad, R.; Murtaza, A.F.; Sher, H.A. Power tracking techniques for efficient operation of photovoltaic array in solar applications—A review. Renew. Sustain. Energy Rev. 2019, 101, 82–102. [Google Scholar] [CrossRef]
- Belhachat, F.; Larbes, C. Comprehensive review on global maximum power point tracking techniques for PV systems subjected to partial shading conditions. Sol. Energy 2019, 183, 476–500. [Google Scholar] [CrossRef]
- Ishaque, K.; Chin, V.J. A review of maximum power point tracking techniques of PV system for uniform insolation and partial shading condition. Renew. Sustain. Energy Rev. 2013, 19, 475–488. [Google Scholar] [CrossRef]
- Bastidas-Rodríguez, J.D.; Spagnuolo, G.; Franco, E.; Ramos-Paja, C.A.; Petrone, G. Maximum power point tracking architectures for photovoltaic systems in mismatching conditions: A review. IET Power Electron. 2014, 7, 1396–1413. [Google Scholar] [CrossRef]
- Liu, Y.-H.; Chen, J.-H.; Huang, J.-W. A review of maximum power point tracking techniques for use in partially shaded conditions. Renew. Sustain. Energy Rev. 2015, 41, 436–453. [Google Scholar] [CrossRef]
- Chin, V.J.; Ahmed, J.; Merugu, B.S. The application of soft computing methods for MPPT of PV system: A technological and status review. Appl. Energy 2013, 107, 135–148. [Google Scholar] [CrossRef]
- Liu, L.; Meng, X.; Liu, C. A review of maximum power point tracking methods of PV power system at uniform and partial shading. Renew. Sustain. Energy Rev. 2016, 53, 1500–1507. [Google Scholar] [CrossRef]
- Dash, S.K.; Nema, S.; Nema, R.K.; Verma, D. A comprehensive assessment of maximum power point tracking techniques under uniform and non-uniform irradiance and its impact on photovoltaic systems: A review. J. Renew. Sustain. Energy 2015, 7, 63113. [Google Scholar] [CrossRef]
- Kumar, B.; Jha, S.; Kumar, T. Review of maximum power point tracking techniques for photovoltaic arrays working under uniform/non-uniform insolation level. Int. J. Renew. Energy Technol. 2018, 9, 439. [Google Scholar] [CrossRef]
- Syafaruddin, S. Review of Maximum Power Point Tracking Control of Photovoltaic Systems in Case of Uniform & Non-uniform Irradiance Conditions. Proc. Int. Conf. Sci. Eng. 2017, 1. [Google Scholar]
- Ramli, M.A.M.; Twaha, S.; Ishaque, K.; Al-Turki, Y.A. A review on maximum power point tracking for photovoltaic systems with and without shading conditions. Renew. Sustain. Energy Rev. 2017, 67, 144–159. [Google Scholar] [CrossRef]
- Li, G.; Jin, Y.; Shittu, S.; Chen, X.; Ji, J. Application of bio-inspired algorithms in maximum power point tracking for PV systems under partial shading conditions—A review. Renew. Sustain. Energy Rev. 2018, 81, 840–873. [Google Scholar] [CrossRef]
- Jiang, L.L.; Srivatsan, R.; Maskell, U.L. Computational intelligence techniques for maximum power point tracking in PV systems: A review. Renew. Sustain. Energy Rev. 2018, 85, 14–45. [Google Scholar] [CrossRef]
- Hussan, R.; Sarwar, A. Maximum Power Point Tracking Techniques under Partial Shading Condition—A Review. In Proceedings of the 2018 2nd IEEE International Conference on Power Electronics, Intelligent Control and Energy Systems (ICPEICES); Institute of Electrical and Electronics Engineers (IEEE): Piscataway, NJ, USA, 2018; pp. 293–298. [Google Scholar]
- Tan, B.; Ke, X.; Tang, D.; Yin, S. Improved Perturb and Observation Method Based on Support Vector Regression. Energies 2019, 12, 1151. [Google Scholar] [CrossRef] [Green Version]
- Elbaset, A.A.; Khaled, M.; Ali, H.; Sattar, M.A.-E.; Elbaset, A.A. Implementation of a modified perturb and observe maximum power point tracking algorithm for photovoltaic system using an embedded microcontroller. IET Renew. Power Gener. 2016, 10, 551–560. [Google Scholar] [CrossRef]
- Javed, K.; Ashfaq, H.; Singh, R. A new simple MPPT algorithm to track MPP under partial shading for solar photovoltaic systems. Int. J. Green Energy 2019, 17, 1–14. [Google Scholar] [CrossRef]
- Patel, H.; Agarwal, V. Maximum Power Point Tracking Scheme for PV Systems Operating Under Partially Shaded Conditions. IEEE Trans. Ind. Electron. 2008, 55, 1689–1698. [Google Scholar] [CrossRef]
- Andrean, V.; Chang, P.C.; Lian, K.L. A Review and New Problems Discovery of Four Simple Decentralized Maximum Power Point Tracking Algorithms—Perturb and Observe, Incremental Conductance, Golden Section Search, and Newton’s Quadratic Interpolation. Energies 2018, 11, 2966. [Google Scholar] [CrossRef] [Green Version]
- Tey, K.S.; Mekhilef, S. Modified Incremental Conductance Algorithm for Photovoltaic System Under Partial Shading Conditions and Load Variation. IEEE Trans. Ind. Electron. 2014, 61, 5384–5392. [Google Scholar] [CrossRef]
- Tey, K.S.; Mekhilef, S. Modified incremental conductance MPPT algorithm to mitigate inaccurate responses under fast-changing solar irradiation level. Sol. Energy 2014, 101, 333–342. [Google Scholar] [CrossRef]
- Zakzouk, N.; Abdelsalam, A.K.; Helal, A.; Williams, B.W. Modified variable-step incremental conductance maximum power point tracking technique for photovoltaic systems. In Proceedings of the IECON 2013—39th Annual Conference of the IEEE Industrial Electronics Society; Institute of Electrical and Electronics Engineers (IEEE): Piscataway, NJ, USA, 2013; pp. 1741–1748. [Google Scholar]
- Chauhan, U.; Rani, A.; Singh, V.; Kumar, B. A Modified Incremental Conductance Maximum Power Point Technique for Standalone PV System. In Proceedings of the 2020 7th International Conference on Signal Processing and Integrated Networks (SPIN); Institute of Electrical and Electronics Engineers (IEEE): Piscataway, NJ, USA, 2020; pp. 61–64. [Google Scholar]
- Senjyu, T.; Uezato, K. Maximum power point tracker using fuzzy control for photovoltaic arrays. In Proceedings of the 1994 IEEE International Conference on Industrial Technology—ICIT ’94; Institute of Electrical and Electronics Engineers (IEEE): Piscataway, NJ, USA, 2002; pp. 143–147. [Google Scholar]
- Huang, Y.-P.; Hsu, S.-Y. A performance evaluation model of a high concentration photovoltaic module with a fractional open circuit voltage-based maximum power point tracking algorithm. Comput. Electr. Eng. 2016, 51, 331–342. [Google Scholar] [CrossRef]
- Efendi, Z.; Sunarno, E.; Murdianto, F.D.; Eviningsih, R.P.; Raharja, L.P.S.; Wahyudi, D. A maximum power point tracking technique using modified hill climbing (MHC) method in DC microgrid application. AIP Conf. Proc. 2020, 2228, 30007. [Google Scholar] [CrossRef]
- Carannante, G.; Fraddanno, C.; Pagano, M.; Piegari, L. Experimental Performance of MPPT Algorithm for Photovoltaic Sources Subject to Inhomogeneous Insolation. IEEE Trans. Ind. Electron. 2009, 56, 4374–4380. [Google Scholar] [CrossRef]
- Mutoh, N.; Ohno, M.; Inoue, T. A Method for MPPT Control While Searching for Parameters Corresponding to Weather Conditions for PV Generation Systems. IEEE Trans. Ind. Electron. 2006, 53, 1055–1065. [Google Scholar] [CrossRef]
- Silvestre, S.; Chouder, A. Shading effects in characteristic parameters of PV modules. In Proceedings of the 2007 Spanish Conference on Electron Devices; Institute of Electrical and Electronics Engineers (IEEE): Piscataway, NJ, USA, 2007; pp. 116–118. [Google Scholar]
- Sahoo, B.; Routray, S.K.; Rout, P.K. A novel control strategy based on hybrid instantaneous theory decoupled approach for PQ improvement in PV systems with energy storage devices and cascaded multi-level inverter. Sadhana 2020, 45, 13. [Google Scholar] [CrossRef]
- Koutroulis, E.; Blaabjerg, F. A New Technique for Tracking the Global Maximum Power Point of PV Arrays Operating Under Partial-Shading Conditions. IEEE J. Photovolt. 2012, 2, 184–190. [Google Scholar] [CrossRef] [Green Version]
- Kobayashi, K.; Takano, I.; Sawada, Y. A study of a two-stage maximum power point tracking control of a photovoltaic system under partially shaded insolation conditions. Electr. Eng. Jpn. 2005, 153, 39–49. [Google Scholar] [CrossRef]
- Ma, M.; Liu, X.; Lee, K.Y. Maximum Power Point Tracking and Voltage Regulation of Two-Stage Grid-Tied PV System Based on Model Predictive Control. Energies 2020, 13, 1304. [Google Scholar] [CrossRef] [Green Version]
- Ji, Y.-H.; Jung, D.-Y.; Kim, J.-G.; Lee, T.-W.; Kim, J.-H.; Won, C.-Y. A Real Maximum Power Point Tracking Method for Mismatching Compensation in PV Array Under Partially Shaded Conditions. IEEE Trans. Power Electron. 2010, 26, 1001–1009. [Google Scholar] [CrossRef]
- Renaudineau, H.; Houari, A.; Martin, J.; Pierfederici, S.; Meibody-Tabar, F.; Gérardin, B. A new approach in tracking maximum power under partially shaded conditions with consideration of converter losses. Sol. Energy 2011, 85, 2580–2588. [Google Scholar] [CrossRef]
- Ahmed, N.A.; Miyatake, M. A novel maximum power point tracking for photovoltaic applications under partially shaded insolation conditions. Electr. Power Syst. Res. 2008, 78, 777–784. [Google Scholar] [CrossRef]
- Ji, Y.; Jung, D.; Won, C.; Lee, B.; Kim, J. Maximum power point tracking method for PV array under partially shaded condition. In Proceedings of the 2009 IEEE Energy Conversion Congress and Exposition; IEEE: San Jose, CA, USA, 2009; pp. 307–312. [Google Scholar]
- Qi, J.; Zhang, Y.; Chen, Y. Modeling and maximum power point tracking (MPPT) method for PV array under partial shade conditions. Renew. Energy 2014, 66, 337–345. [Google Scholar] [CrossRef]
- Abdel-Salam, M.; El-Mohandes, M.T.; El-Ghazaly, M. An Efficient Tracking of MPP in PV Systems Using a Newly-Formulated P&O-MPPT Method Under Varying Irradiation Levels. J. Electr. Eng. Technol. 2019, 15, 501–513. [Google Scholar] [CrossRef]
- Nguyen, T.L.; Low, K.-S. A Global Maximum Power Point Tracking Scheme Employing DIRECT Search Algorithm for Photovoltaic Systems. IEEE Trans. Ind. Electron. 2010, 57, 3456–3467. [Google Scholar] [CrossRef]
- Jones, D.R.; Perttunen, C.D.; Stuckman, B.E. Lipschitzian optimization without the Lipschitz constant. J. Optim. Theory Appl. 1993, 79, 157–181. [Google Scholar] [CrossRef]
- Liu, Y.-H.; Chen, J.-H.; Huang, J.-W. Global maximum power point tracking algorithm for PV systems operating under partially shaded conditions using the segmentation search method. Sol. Energy 2014, 103, 350–363. [Google Scholar] [CrossRef]
- Boztepe, M.; Guinjoan, F.; Velasco-Quesada, G.; Silvestre, S.; Chouder, A.; Karatepe, E. Global MPPT Scheme for Photovoltaic String Inverters Based on Restricted Voltage Window Search Algorithm. IEEE Trans. Ind. Electron. 2013, 61, 3302–3312. [Google Scholar] [CrossRef]
- Keyrouz, F.; Hamad, M.; Georges, S. Bayesian fusion for maximum power output in hybrid wind-solar systems. In Proceedings of the 2012 3rd IEEE International Symposium on Power Electronics for Distributed Generation Systems (PEDG); IEEE: Aalborg, Denmark, 2012; pp. 393–397. [Google Scholar] [CrossRef]
- Priyanka, G.; Dash, S.K. A Detailed Review on Intelligent Maximum Power Point Tracking Algorithms. In Proceedings of the 2020 2nd International Conference on Innovative Mechanisms for Industry Applications (ICIMIA); Institute of Electrical and Electronics Engineers (IEEE): Piscataway, NJ, USA, 2020; pp. 47–53. [Google Scholar]
- Gauvain, J.-L.; Lee, C.-H. Maximum a posteriori estimation for multivariate Gaussian mixture observations of Markov chains. IEEE Trans. Speech Audio Process. 1994, 2, 291–298. [Google Scholar] [CrossRef]
- Specht, D.F. Probabilistic neural networks. Neural Netw. 1990, 3, 109–118. [Google Scholar] [CrossRef]
- Keyrouz, F.; Georges, S. Efficient multidimensional Maximum Power Point Tracking using Bayesian fusion. In Proceedings of the 2011 2nd International Conference on Electric Power and Energy Conversion Systems (EPECS); Institute of Electrical and Electronics Engineers (IEEE): Piscataway, NJ, USA, 2011; pp. 1–5. [Google Scholar]
- Ali, H.G.; Vilanova, R.; Herrera-Cuartas, J.A.; Tobón, A.; Peláez-Restrepo, J. Non-Linear Sliding Mode Controller for Photovoltaic Panels with Maximum Power Point Tracking. Processes 2020, 8, 108. [Google Scholar] [CrossRef] [Green Version]
- Pai, F.-S.; Chao, R.-M.; Ko, S.H.; Lee, T.-S. Performance Evaluation of Parabolic Prediction to Maximum Power Point Tracking for PV Array. IEEE Trans. Sustain. Energy 2010, 2, 60–68. [Google Scholar] [CrossRef]
- Pai, F.-S.; Chao, R.-M. A New Algorithm to Photovoltaic Power Point Tracking Problems With Quadratic Maximization. IEEE Trans. Energy Convers. 2009, 25, 262–264. [Google Scholar] [CrossRef]
- Jiang, L.L.; Maskell, D.L.; Patra, J. A novel ant colony optimization-based maximum power point tracking for photovoltaic systems under partially shaded conditions. Energy Build. 2013, 58, 227–236. [Google Scholar] [CrossRef]
- Sundareswaran, K.; Vigneshkumar, V.; Sankar, P.; Simon, S.P.; Nayak, P.S.R.; Palani, S. Development of an Improved P&O Algorithm Assisted Through a Colony of Foraging Ants for MPPT in PV System. IEEE Trans. Ind. Inform. 2015, 12, 187–200. [Google Scholar] [CrossRef]
- Nivetha, V.; Gowri, G. V Maximum power point tracking of photovoltaic system using ant colony and particle swam optimization algorithms. In Proceedings of the 2015 2nd International Conference on Electronics and Communication Systems (ICECS); IEEE: Coimbatore, India, 2015; pp. 948–952. [Google Scholar]
- Emerson, N.; Srinivasan, S. Integrating hybrid power source into islanded microgrid using ant colony optimization. In Proceedings of the 2015 International Conference on Advanced Computing and Communication Systems; Institute of Electrical and Electronics Engineers (IEEE): Piscataway, NJ, USA, 2015; pp. 1–4. [Google Scholar]
- Jiang, L.L.; Maskell, D.L. A uniform implementation scheme for evolutionary optimization algorithms and the experimental implementation of an ACO based MPPT for PV systems under partial shading. In Proceedings of the 2014 IEEE Symposium on Computational Intelligence Applications in Smart Grid (CIASG); IEEE: Orlando, FL, USA, 2014; pp. 1–8. [Google Scholar]
- Besheer, A.; Adly, M. Ant colony system based PI maximum power point tracking for stand alone photovoltaic system. In Proceedings of the 2012 IEEE International Conference on Industrial Technology; Institute of Electrical and Electronics Engineers (IEEE): Piscataway, NJ, USA, 2012; pp. 693–698. [Google Scholar]
- Adly, M.; Besheer, A. An optimized fuzzy maximum power point tracker for stand alone photovoltaic systems: Ant colony approach. In Proceedings of the 2012 7th IEEE Conference on Industrial Electronics and Applications (ICIEA); Institute of Electrical and Electronics Engineers (IEEE): Piscataway, NJ, USA, 2012; pp. 113–119. [Google Scholar]
- Kinattingal, S.; Simon, S.P.; Nayak, P.S.R.; Sundareswaran, K. MPPT in PV systems using ant colony optimisation with dwindling population. IET Renew. Power Gener. 2020, 14, 1105–1112. [Google Scholar] [CrossRef]
- Rajabioun, R. Cuckoo Optimization Algorithm. Appl. Soft Comput. 2011, 11, 5508–5518. [Google Scholar] [CrossRef]
- Nguyen, T.T.; Vo, D.N.; Truong, A.V.; Dieu, V.N. Cuckoo search algorithm for short-term hydrothermal scheduling. Appl. Energy 2014, 132, 276–287. [Google Scholar] [CrossRef]
- Hussaian-Basha, C.H.; Bansal, V.; Rani, C.; Brisilla, R.M.; Odofin, S. Development of Cuckoo Search MPPT Algorithm for Partially Shaded Solar PV SEPIC Converter BT—Soft Computing for Problem Solving; Das, K.N., Bansal, J.C., Deep, K., Nagar, A.K., Pathipooranam, P., Naidu, R.C., Eds.; Springer Singapore: Gateway East, Singapore, 2020; pp. 727–736. [Google Scholar]
- Yang, X.; Deb, S. Cuckoo Search via Lévy flights. In Proceedings of the 2009 World Congress on Nature & Biologically Inspired Computing (NaBIC); IEEE: Coimbatore, India, 2009; pp. 210–214. [Google Scholar]
- Yang, X.-S.; Deb, S. Multiobjective cuckoo search for design optimization. Comput. Oper. Res. 2013, 40, 1616–1624. [Google Scholar] [CrossRef]
- Ahmed, J.; Chin, V.J. A critical evaluation on maximum power point tracking methods for partial shading in PV systems. Renew. Sustain. Energy Rev. 2015, 47, 933–953. [Google Scholar] [CrossRef]
- Ahmed, J.; Chin, V.J. A Maximum Power Point Tracking (MPPT) for PV system using Cuckoo Search with partial shading capability. Appl. Energy 2014, 119, 118–130. [Google Scholar] [CrossRef]
- Miyatake, M.; Inada, T.; Hiratsuka, I.; Zhao, H.; Otsuka, H.; Nakano, M. Control characteristics of a fibonacci-search-based maximum power point tracker when a photovoltaic array is partially shaded. In Proceedings of the The 4th International Power Electronics and Motion Control Conference, 2004. IPEMC 2004; IEEE: Xi’an, China, 2004; Volume 2, pp. 816–821. [Google Scholar]
- Ramaprabha, R.; Mathur, B.; Ravi, A.; Aventhika, S. Modified Fibonacci Search Based MPPT Scheme for SPVA Under Partial Shaded Conditions. In Proceedings of the 2010 3rd International Conference on Emerging Trends in Engineering and Technology; Institute of Electrical and Electronics Engineers (IEEE): Piscataway, NJ, USA, 2010; pp. 379–384. [Google Scholar]
- Khan, S.U.; Yang, S.; Wang, L.; Liu, L. A Modified Particle Swarm Optimization Algorithm for Global Optimizations of Inverse Problems. IEEE Trans. Magn. 2015, 52, 1–4. [Google Scholar] [CrossRef]
- Liu, Y.-H.; Huang, S.-C.; Liang, W.-C.; Huang, J.-W. A Particle Swarm Optimization-Based Maximum Power Point Tracking Algorithm for PV Systems Operating Under Partially Shaded Conditions. IEEE Trans. Energy Convers. 2012, 27, 1027–1035. [Google Scholar] [CrossRef]
- Takano, H.; Asano, H.; Gupta, N. Application Example of Particle Swarm Optimization on Operation Scheduling of Microgrids BT—Frontier Applications of Nature Inspired Computation; Khosravy, M., Gupta, N., Patel, N., Senjyu, T., Eds.; Springer: Singapore, 2020; pp. 215–239. ISBN 978-981-15-2133-1. [Google Scholar]
- Abdulkadir, M.; Yatim, A.H.; Yusuf, S.T. An Improved PSO-Based MPPT Control Strategy for Photovoltaic Systems. Int. J. Photoenergy 2014, 2014, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Khare, A.; Rangnekar, S. A review of particle swarm optimization and its applications in Solar Photovoltaic system. Appl. Soft Comput. 2013, 13, 2997–3006. [Google Scholar] [CrossRef]
- Alajmi, B.N.; Ahmed, K.H.; Finney, S.J.; Williams, B.W. Fuzzy-Logic-Control Approach of a Modified Hill-Climbing Method for Maximum Power Point in Microgrid Standalone Photovoltaic System. IEEE Trans. Power Electron. 2010, 26, 1022–1030. [Google Scholar] [CrossRef]
- Patcharaprakiti, N.; Premrudeepreechacharn, S.; Sriuthaisiriwong, Y. Maximum power point tracking using adaptive fuzzy logic control for grid-connected photovoltaic system. Renew. Energy 2005, 30, 1771–1788. [Google Scholar] [CrossRef]
- Syafaruddin; Karatepe, E.; Hiyama, T. Artificial neural network-polar coordinated fuzzy controller based maximum power point tracking control under partially shaded conditions. IET Renew. Power Gener. 2009, 3, 239. [Google Scholar] [CrossRef]
- Algazar, M.M.; Al-Monier, H.; El-Halim, H.A.; Salem, M.E.E.K. Maximum power point tracking using fuzzy logic control. Int. J. Electr. Power Energy Syst. 2012, 39, 21–28. [Google Scholar] [CrossRef]
- Larbes, C.; Cheikh, S.A.; Obeidi, T.; Zerguerras, A. Genetic algorithms optimized fuzzy logic control for the maximum power point tracking in photovoltaic system. Renew. Energy 2009, 34, 2093–2100. [Google Scholar] [CrossRef]
- Kumar-Khaitan, S.K. Soft Computing in Green and Renewable Energy Systems; Springer: Berlin, Germany, 2011. [Google Scholar]
- Ramaprabha, R.; Gothandaraman, V.; Kanimozhi, K.; Divya, R.; Mathur, B.L. Maximum power point tracking using GA-optimized artificial neural network for Solar PV system. In Proceedings of the 2011 1st International Conference on Electrical Energy Systems; Institute of Electrical and Electronics Engineers (IEEE): Piscataway, NJ, USA, 2011; pp. 264–268. [Google Scholar]
- Mellit, A.; Benghanem, M.; Kalogirou, S. Modeling and simulation of a stand-alone photovoltaic system using an adaptive artificial neural network: Proposition for a new sizing procedure. Renew. Energy 2007, 32, 285–313. [Google Scholar] [CrossRef]
- Punitha, K.; Devaraj, D.; Sakthivel, S. Artificial neural network based modified incremental conductance algorithm for maximum power point tracking in photovoltaic system under partial shading conditions. Energy 2013, 62, 330–340. [Google Scholar] [CrossRef]
- Veerachary, M.; Senjyu, T.; Uezato, K. Neural-network-based maximum-power-point tracking of coupled-inductor interleaved-boost-converter-supplied pv system using fuzzy controller. IEEE Trans. Ind. Electron. 2003, 50, 749–758. [Google Scholar] [CrossRef] [Green Version]
- Leyva, R.; Olalla, C.; Zazo, H.; Cabal, C.; Cid-Pastor, A.; Queinnec, I.; Alonso, C. MPPT Based on Sinusoidal Extremum-Seeking Control in PV Generation. Int. J. Photoenergy 2012, 2012, 1–7. [Google Scholar] [CrossRef]
- Brunton, S.L.; Rowley, C.W.; Kulkarni, S.R.; Clarkson, C. Maximum Power Point Tracking for Photovoltaic Optimization Using Ripple-Based Extremum Seeking Control. IEEE Trans. Power Electron. 2010, 25, 2531–2540. [Google Scholar] [CrossRef]
- Heydari-Doostabad, H.; Keypour, R.; Khalghani, M.R.; Khooban, M.H. A new approach in MPPT for photovoltaic array based on Extremum Seeking Control under uniform and non-uniform irradiances. Sol. Energy 2013, 94, 28–36. [Google Scholar] [CrossRef]
- Zhou, L.; Chen, Y.; Guo, K.; Jia, F. New Approach for MPPT Control of Photovoltaic System With Mutative-Scale Dual-Carrier Chaotic Search. IEEE Trans. Power Electron. 2010, 26, 1038–1048. [Google Scholar] [CrossRef]
- Zhou, L.; Chen, Y.; Liu, Q.; Wu, J. Maximum power point tracking (MPPT) control of a photovoltaic system based on dual carrier chaotic search. J. Control Theory Appl. 2012, 10, 244–250. [Google Scholar] [CrossRef]
- Taheri, H.; Salam, Z.; Ishaque, K. A novel Maximum Power Point tracking control of photovoltaic system under partial and rapidly fluctuating shadow conditions using Differential Evolution. In Proceedings of the 2010 IEEE Symposium on Industrial Electronics and Applications (ISIEA); IEEE: Penang, Malaysia, 2010; pp. 82–87. [Google Scholar]
- da Costa, W.T.; Fardin, J.F.; Simonetti, D.S.L.; Neto, L.D.V.B.M. Identification of photovoltaic model parameters by Differential Evolution. In Proceedings of the 2010 IEEE International Conference on Industrial Technology; Institute of Electrical and Electronics Engineers (IEEE): Poiscataway, NJ, USA, 2010; pp. 931–936. [Google Scholar]
- Kulaksız, A.A.; Akkaya, R. A genetic algorithm optimized ANN-based MPPT algorithm for a stand-alone PV system with induction motor drive. Sol. Energy 2012, 86, 2366–2375. [Google Scholar] [CrossRef]
- Liu, L.; Liu, C. A Novel Combined Particle Swarm Optimization and Genetic Algorithm MPPT Control Method for Multiple Photovoltaic Arrays at Partial Shading. J. Energy Resour. Technol. 2012, 135, 012002. [Google Scholar] [CrossRef]
- Ali, A.; Wang, Y.; Li, W.; He, X. Implementation of simple moving voltage average technique with direct control incremental conductance method to optimize the efficiency of DC microgrid. In Proceedings of the 2015 International Conference on Emerging Technologies (ICET); Institute of Electrical and Electronics Engineers (IEEE): Piscataway, NJ, USA, 2015; pp. 1–5. [Google Scholar]
- Ali, A.; Li, W.; He, X. Performance Analysis of Incremental Conductance MPPT with Simple Moving Voltage Average Method for Distributed PV System. Open Electr. Electron. Eng. J. 2016, 10, 118–128. [Google Scholar] [CrossRef] [Green Version]
- Shmilovitz, D. On the control of photovoltaic maximum power point tracker via output parameters. IEEE Proc. Electr. Power Appl. 2005, 152, 239. [Google Scholar] [CrossRef] [Green Version]
- Stanimirović, P.S.; Petković, M.D. Improved GNN Models for Constant Matrix Inversion. Neural Process. Lett. 2019, 50, 321–339. [Google Scholar] [CrossRef]
- Uoya, M.; Koizumi, H. A Calculation Method of Photovoltaic Array’s Operating Point for MPPT Evaluation Based on One-Dimensional Newton–Raphson Method. IEEE Trans. Ind. Appl. 2014, 51, 567–575. [Google Scholar] [CrossRef]
- Yu, M.Q. Parameter Identification of Photovoltaic Cell Model Based on Perturbation and Observation and Modified Gauss-Newton Method. In Proceedings of the 2018 37th Chinese Control Conference (CCC); Institute of Electrical and Electronics Engineers (IEEE): Piscatawy, NJ, USA, 2018; pp. 6127–6131. [Google Scholar]
- Bhukya, L.; Nandiraju, S. A novel photovoltaic maximum power point tracking technique based on grasshopper optimized fuzzy logic approach. Int. J. Hydrogen Energy 2020, 45, 9416–9427. [Google Scholar] [CrossRef]
Maximum Power Point Tracking Review with Non-Uniform Solar Irradiance | Journal | Year Published | |
---|---|---|---|
1 | Review of maximum power point tracking techniques for photovoltaic arrays working under uniform/non-uniform insolation level | International Journal of Renewable Energy Technology | October 2018 |
2 | Review of maximum power point tracking control of photovoltaic systems in case of uniform and non-uniform irradiance conditions | Proceedings of the International Conference on Science and Engineering | October 2017 |
3 | A review of maximum power point tracking methods of PV power system at uniform and partial shading | Renewable and Sustainable Energy Reviews | January 2016 |
4 | A comprehensive assessment of maximum power point tracking techniques under uniform and non-uniform irradiance and its impact on photovoltaic systems: A review | Journal of Renewable and Sustainable Energy | November 2015 |
Maximum Power Point Tracking Review Under Shading Conditions | |||
1 | Comprehensive review on global maximum power point tracking techniques for PV systems subjected to partial shading conditions | Solar Energy | May 2019 |
2 | Maximum power point tracking techniques under partial shading condition: A review | IEEE Conference | October 2018 |
3 | A review of global maximum power point tracking techniques of photovoltaic system under partial shading conditions | Renewable and Sustainable Energy Reviews | September 2018 |
4 | Application of bio-inspired algorithms in maximum power point tracking for PV systems under partial shading conditions–A review | Renewable and Sustainable Energy Reviews | January 2018 |
5 | A review on maximum power point tracking for photovoltaic systems with and without shading conditions | Renewable and Sustainable Energy Reviews | January 2017 |
6 | A review of maximum power-point tracking techniques for photovoltaic systems | International Journal of Sustainable Energy | April 2016 |
7 | A review of maximum power point tracking methods of PV power system at uniform and partial shading | Renewable and Sustainable Energy Reviews | January 2016 |
Online Methods | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Technique | PV Array Dependency | Sensor | Tracking Speed | Tracking Accuracy | Efficiency | Circuitry | Application | ||||
V | I | T | A | D | Stand Alone | Grid Connected | |||||
Modified P&O | No | ✓ | ✓ | Fast | High | High | ✓ | ✓ | ✓ | ✓ | |
Modified INC | No | ✓ | ✓ | Fast | Very High | High | ✓ | ✓ | ✓ | ✓ | |
Modified HC | No | ✓ | ✓ | Slow | Moderate | High | ✓ | ✓ | ✓ | ✓ | |
Instantaneous Operating Power Optimization | No | ✓ | ✓ | Fast | Very High | High | ✓ | ✓ | ✓ | ||
Two-Stage Load Line | No | ✓ | ✓ | Fast | Moderate | High | ✓ | ✓ | ✓ | ||
Power Load with Variable Step | No | ✓ | ✓ | Medium | Very High | High | ✓ | ✓ | ✓ | ✓ | |
Adaptive MPPT | No | ✓ | ✓ | Fast | Moderate | Low | ✓ | ✓ | ✓ | ✓ | |
Direct Search | No | ✓ | ✓ | Fast | Moderate | High | ✓ | ✓ | ✓ | ✓ | |
Segment Search | No | ✓ | ✓ | Fast | Moderate | Good | ✓ | ✓ | |||
Restricted Voltage Window Search | No | ✓ | ✓ | Fast | Moderate | Medium | ✓ | ✓ | ✓ | ||
Output Power Increment | No | ✓ | ✓ | Medium | Very High | High | ✓ | ✓ | ✓ | ✓ |
Soft-Computing Methods | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Technique | PV Array Dependency | Sensor | Tracking Speed | Tracking Accuracy | Efficiency | Circuitry | Application | ||||
V | I | T | A | D | Stand Alone | Grid Connected | |||||
Bayesian Network | No | ✓ | ✓ | Medium | Moderate | High | ✓ | ✓ | ✓ | ✓ | |
Nonlinear Predictor | No | ✓ | ✓ | Fast | High | High | ✓ | ✓ | ✓ | ✓ | |
Ant Colony Optimization | Yes | ✓ | ✓ | Fast | Moderate | High | ✓ | ✓ | |||
Cuckoo Search | No | ✓ | ✓ | Very Fast | High | High | ✓ | ✓ | |||
Fibonacci Search | No | ✓ | ✓ | Fast | Moderate | Medium | ✓ | ✓ | |||
Practical Swarm Optimization | No | ✓ | ✓ | Fast | Moderate | High | ✓ | ✓ | |||
Fuzzy Logic Control | Yes | ✓ | ✓ | Fast | Moderate | High | ✓ | ✓ | |||
Artificial Neural Network | Yes | ✓ | ✓ | Fast | Moderate | High | ✓ | ✓ | |||
Extremum Seeking | No | ✓ | ✓ | Fast | Moderate | Medium | ✓ | ✓ | |||
Chaotic Search | No | ✓ | ✓ | Fast | Moderate | Medium | ✓ | ✓ | |||
Differential Evolution | No | ✓ | ✓ | Fast | Moderate | High | ✓ | ✓ | |||
Genetic Algorithm | No | ✓ | ✓ | Fast | Moderate | High | ✓ | ✓ | |||
Simple Moving Voltage Average | Yes | ✓ | Fast | High | High | ✓ | ✓ | ✓ | |||
Gauss–Newton | No | ✓ | ✓ | Fast | High | High | ✓ | ✓ | |||
Grasshopper | No | ✓ | ✓ | Fast | High | High | ✓ | ✓ |
Online Maximum Power Point Tracking Methods | |||
---|---|---|---|
Section | Technique/Method | Reference No | Features |
2.1 | Modified Perturb and Observe (MP&O) Method | [27,28,29,30] |
|
2.2 | Modified Incremental Conductance (MINC) Method | [31,32,33,34,35] |
|
2.3 | Modified Hill Climbing (MHC) Method | [36,38] |
|
2.4 | Instantaneous Operating Power Optimization (IOPO) Method | [39,40,41,42] |
|
2.5 | Output Power Increment (OPI) Method | [43] |
|
2.6 | Two-Stage Load Line (2SLL) Method | [44,45,46] |
|
2.7 | Power-Load Characteristic with Variable Step-Size Method | [47,48,49] |
|
2.8 | Adaptive Maximum Power Point Tracking (AMPPT) Method | [50] |
|
2.9 | Direct Search (DS) Method | [51,52,53] |
|
2.10 | Segment Search (SS) Method | [54] |
|
2.11 | Restricted Voltage Window Search (RVWS) Method | [55] |
|
Soft Computing Maximum Power Point Tracking Methods | |||
---|---|---|---|
Section | Technique/Method | Reference No | Features |
3.2 | Bayesian Network (BN) Method | [56,57,58,59,60] |
|
3.3 | Non-linear Predictor (NL P) Method | [61,62,63] |
|
3.4 | Ant Colony Optimization (ACO) Method | [64,65,66,67,68,69,70,71] |
|
3.5 | Cuckoo Search (CS) Method | [72,73,74,75,76,77,78] |
|
3.6 | Fibonacci Search (FS) Method | [79,80] |
|
3.7 | Particle Swarm Optimization (PSO) Method | [81,82,83,84,85] |
|
3.8 | Fuzzy Logic Control (FLC) Method | [86,87,88,89,90,91] |
|
3.9 | Artificial Neural Network (ANN) Method | [92,93,94,95] |
|
3.10 | Extremum Seeking (ES) Method | [96,97,98] |
|
3.11 | Chaotic Search (CS) Method | [99,100] |
|
3.12 | Differential Evolution (DE) Method | [101,102] |
|
3.13 | Genetic Algorithm (GA) Method | [103,104] |
|
3.14 | Simple Moving Voltage Average (SMVA) Method | [105,106] |
|
3.15 | Gauss–Newton (GN) Method | [107,108,109,110] |
|
3.16 | Grasshopper-Optimized Fuzzy Logic (GOFL) | [111] |
|
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ali, A.; Almutairi, K.; Malik, M.Z.; Irshad, K.; Tirth, V.; Algarni, S.; Zahir, M.H.; Islam, S.; Shafiullah, M.; Shukla, N.K. Review of Online and Soft Computing Maximum Power Point Tracking Techniques under Non-Uniform Solar Irradiation Conditions. Energies 2020, 13, 3256. https://doi.org/10.3390/en13123256
Ali A, Almutairi K, Malik MZ, Irshad K, Tirth V, Algarni S, Zahir MH, Islam S, Shafiullah M, Shukla NK. Review of Online and Soft Computing Maximum Power Point Tracking Techniques under Non-Uniform Solar Irradiation Conditions. Energies. 2020; 13(12):3256. https://doi.org/10.3390/en13123256
Chicago/Turabian StyleAli, Amjad, K. Almutairi, Muhammad Zeeshan Malik, Kashif Irshad, Vineet Tirth, Salem Algarni, Md. Hasan Zahir, Saiful Islam, Md Shafiullah, and Neeraj Kumar Shukla. 2020. "Review of Online and Soft Computing Maximum Power Point Tracking Techniques under Non-Uniform Solar Irradiation Conditions" Energies 13, no. 12: 3256. https://doi.org/10.3390/en13123256
APA StyleAli, A., Almutairi, K., Malik, M. Z., Irshad, K., Tirth, V., Algarni, S., Zahir, M. H., Islam, S., Shafiullah, M., & Shukla, N. K. (2020). Review of Online and Soft Computing Maximum Power Point Tracking Techniques under Non-Uniform Solar Irradiation Conditions. Energies, 13(12), 3256. https://doi.org/10.3390/en13123256