NOx Emissions and Nitrogen Fate at High Temperatures in Staged Combustion
Abstract
:1. Introduction
2. Numerical Approach
2.1. Reactors and Models
2.2. Reaction Mechanism
3. Data Analysis and Simulation Conditions
4. Results and Discussion
4.1. Model Validation
4.2. Characteristics of NOx Emissions in Staged Air Combustion
4.3. Characteristics of NOx Emissions in Staged O2/CO2 Combustion
4.4. Mechanism Analysis
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Nomenclature
pre-exponential factor (L/(mol·s)) | |
activation energy (kJ/mol) | |
reaction rate constant (L/(mol·s)) | |
conversion ratio of fuel-N to NOx (%) | |
molar gas constant (kJ/(mol·K)) | |
stoichiometric ratio (-) | |
reaction temperature (K) | |
volume flow rate (Ncm3/min) | |
mole fraction (-) | |
correction factor (-) | |
first-order sensitivity coefficient (-) | |
i | index for reaction |
j | index for species |
st | stoichiometric condition |
References
- Taniguchi, M.; Kamikawa, Y.; Tatsumi, T.; Yamamoto, K. Staged combustion properties for pulverized coals at high temperature. Combust. Flame 2011, 158, 2261–2271. [Google Scholar] [CrossRef]
- Fan, W.; Li, Y.; Lin, Z.; Zhang, M. PDA research on a novel pulverized coal combustion technology for a large utility boiler. Energy 2010, 35, 2141–2148. [Google Scholar] [CrossRef]
- Fan, W.; Lin, Z.; Li, Y.; Kuang, J.; Zhang, M. Effect of Air-Staging on Anthracite Combustion and NOxFormation. Energy Fuels 2009, 23, 111–120. [Google Scholar] [CrossRef]
- Pisupati, S.V.; Bhalla, S. Numerical modeling of NOx reduction using pyrolysis products from biomass-based materials. Biomass Bioenergy 2008, 32, 146–154. [Google Scholar] [CrossRef]
- Liu, H.; Liu, Y.; Yi, G.; Nie, L.; Che, D. Effects of Air Staging Conditions on the Combustion and NOx Emission Characteristics in a 600 MW Wall Fired Utility Boiler Using Lean Coal. Energy Fuels 2013, 27, 5831–5840. [Google Scholar] [CrossRef]
- Molina, A.; Murphy, J.; Winter, F.; Haynes, B.; Blevins, L.; Shaddix, C. Pathways for conversion of char nitrogen to nitric oxide during pulverized coal combustion. Combust. Flame 2009, 156, 574–587. [Google Scholar] [CrossRef]
- Zhang, Y.; Luo, R.; Dou, Y.; Zhou, Q. Combustion Characteristics and NOx Emission through a Swirling Burner with Adjustable Flaring Angle. Energies 2018, 11, 2173. [Google Scholar] [CrossRef] [Green Version]
- Zhu, L.; Zhong, Z.; Yang, H.; Wang, C. Effect of MoO3 on vanadium based catalysts for the selective catalytic reduction of NOx with NH3 at low temperature. J. Environ. Sci. 2017, 56, 169–179. [Google Scholar] [CrossRef]
- Yu, Y.; He, C.; Chen, J.; Yin, L.; Qiu, T.; Meng, X. Regeneration of deactivated commercial SCR catalyst by alkali washing. Catal. Commun. 2013, 39, 78–81. [Google Scholar] [CrossRef]
- Kang, M.; Park, E.D.; Kim, J.M.; Yie, J.E. Manganese oxide catalysts for NOx reduction with NH3 at low temperatures. Appl. Catal. A Gen. 2007, 327, 261–269. [Google Scholar] [CrossRef]
- Javed, M.T.; Irfan, N.; Gibbs, B. Control of combustion-generated nitrogen oxides by selective non-catalytic reduction. J. Environ. Manag. 2007, 83, 251–289. [Google Scholar] [CrossRef] [PubMed]
- Bae, S.W.; Roh, S.; Kim, S.D. NO removal by reducing agents and additives in the selective non-catalytic reduction (SNCR) process. Chemosphere 2006, 65, 170–175. [Google Scholar] [CrossRef] [PubMed]
- Forzatti, P. Present status and perspectives in de-NOx SCR catalysis. Appl. Catal. A Gen. 2001, 222, 221–236. [Google Scholar] [CrossRef]
- Choi, C.R.; Kim, C.N. Numerical investigation on the flow, combustion and NOx emission characteristics in a 500MWe tangentially fired pulverized-coal boiler. Fuel 2009, 88, 1720–1731. [Google Scholar] [CrossRef]
- Costa, M.; Azevedo, J. Experimental characterization of an industrial pulverized coal-fired furnace under deep staging conditions. Combust. Sci. Technol. 2007, 179, 1923–1935. [Google Scholar] [CrossRef]
- Bai, W.; Li, H.; Deng, L.; Liu, H.; Che, D. Air-Staged Combustion Characteristics of Pulverized Coal under High Temperature and Strong Reducing Atmosphere Conditions. Energy Fuels 2014, 28, 1820–1828. [Google Scholar] [CrossRef]
- Song, M.; Zeng, L.; Li, X.; Chen, Z.; Li, Z. Effect of Stoichiometric Ratio of Fuel-Rich Flow on Combustion Characteristics in a Down-Fired Boiler. J. Energy Eng. 2017, 143, 04016058. [Google Scholar] [CrossRef]
- Yang, J.; Sun, R.; Sun, S.; Zhao, N.; Hao, N.; Chen, H.; Wang, Y.; Guo, H.; Meng, J. Experimental study on NOx reduction from staging combustion of high volatile pulverized coals. Part 1. Air staging. Fuel Process. Technol. 2014, 126, 266–275. [Google Scholar] [CrossRef]
- Taniguchi, M.; Kamikawa, Y.; Tatsumi, T.; Yamamoto, K.; Kondo, Y. Relationships between Gas-Phase Stoichiometric Ratios and Intermediate Species in High-Temperature Pulverized Coal Flames for Air and Oxy-Fuel Combustions. Energy Fuels 2012, 26, 4712–4720. [Google Scholar] [CrossRef]
- Taniguchi, M.; Kamikawa, Y.; Okazaki, T.; Yamamoto, K.; Orita, H. A role of hydrocarbon reaction for NOx formation and reduction in fuel-rich pulverized coal combustion. Combust. Flame 2010, 157, 1456–1466. [Google Scholar] [CrossRef]
- Fan, W.; Lin, Z.; Li, Y.; Li, Y. Effect of Temperature on NO Release during the Combustion of Coals with Different Ranks. Energy Fuels 2010, 24, 1573–1583. [Google Scholar] [CrossRef]
- Pohl, J.H.; Sarofim, A.F. Devolatilization and oxidation of coal nitrogen. Symp. (Int.) Combust. 1977, 16, 491–501. [Google Scholar] [CrossRef]
- Kitto, J.B.; Stultz, S.C. Steam—Its Generation and Use, 41th ed.; Babcock & Wilcox Company: Charlotte, NC, USA, 2005. [Google Scholar]
- Li, H.; Yoshihiko, N.; Dong, Z.; Zhang, M. Application of the FactSage to Predict the Ash Melting Behavior in Reducing Conditions. Chin. J. Chem. Eng. 2006, 14, 784–789. [Google Scholar] [CrossRef]
- Wang, F.; Shen, B.; Yang, J.; Singh, S. Review of Mercury Formation and Capture from CO2-Enriched Oxy-Fuel Combustion Flue Gas. Energy Fuels 2017, 31, 1053–1064. [Google Scholar] [CrossRef]
- Yin, C.; Yan, J. Oxy-fuel combustion of pulverized fuels: Combustion fundamentals and modeling. Appl. Energy 2016, 162, 742–762. [Google Scholar] [CrossRef]
- Xu, M.X.; Li, S.Y.; Li, W.; Lu, Q.G. Effects of gas staging on the NO emission during O2/CO2 combustion with high oxygen concentration in circulating fluidized bed. Energy Fuels 2015, 29, 3302–3311. [Google Scholar]
- Scheffknecht, G.; Al-Makhadmeh, L.; Schnell, U.; Maier, J. Oxy-fuel coal combustion—A review of the current state-of-the-art. Int. J. Greenh. Gas Control. 2011, 5, S16–S35. [Google Scholar] [CrossRef]
- Jankowska, S.; Czakiert, T.; Krawczyk, G.; Borecki, P.; Jesionowski, L.; Nowak, W. The Effect of Oxygen Staging on Nitrogen Conversion in Oxy-Fuel CFB Environment. Chem. Process. Eng. 2014, 35, 489–496. [Google Scholar] [CrossRef]
- Watanabe, H.; Yamamoto, J.I.; Okazaki, K. NOx formation and reduction mechanisms in staged O2/CO2 combustion. Combust. Flame 2011, 158, 1255–1263. [Google Scholar] [CrossRef]
- Gimenez-Lopez, J.; Millera, A.; Bilbao, R.; Alzueta, M.U. HCN oxidation in an O2/CO2 atmosphere: An experimental and kinetic modeling study. Combust. Flame 2010, 157, 267–276. [Google Scholar] [CrossRef]
- Mendiara, T.; Glarborg, P. Ammonia chemistry in oxy-fuel combustion of methane. Combust. Flame 2009, 156, 1937–1949. [Google Scholar] [CrossRef]
- Skjøth-Rasmussen, M.; Glarborg, P.; Østberg, M.; Johannessen, J.; Livbjerg, H.; Jensen, A.D.; Christensen, T. Formation of polycyclic aromatic hydrocarbons and soot in fuel-rich oxidation of methane in a laminar flow reactor. Combust. Flame 2004, 136, 91–128. [Google Scholar] [CrossRef]
- Dagaut, P.; LeComte, F. Experiments and Kinetic Modeling Study of NO-Reburning by Gases from Biomass Pyrolysis in a JSR. Energy Fuels 2003, 17, 608–613. [Google Scholar] [CrossRef]
- Zhang, X.; Sun, S.; Sun, R.; Li, X.; Zeng, G. Effects of bias combustion on volatile nitrogen transformation. Asia-Pac. J. Chem. Eng. 2009, 5, 473–478. [Google Scholar] [CrossRef]
- Mendiara, T.; Glarborg, P. Reburn Chemistry in Oxy-fuel Combustion of Methane. Energy Fuels 2009, 23, 3565–3572. [Google Scholar] [CrossRef]
- Glarborg, P.; Bentzen, L.L. Chemical Effects of a High CO2 Concentration in Oxy-Fuel Combustion of Methane. Energy Fuels 2008, 22, 291–296. [Google Scholar] [CrossRef]
- Wang, X.; Tan, H.; Niu, Y.; Chen, E.; Xu, T. Kinetic investigation of the SO2 influence on NO reduction processes during methane reburning. Asia-Pac. J. Chem. Eng. 2010, 5, 902–908. [Google Scholar] [CrossRef]
- Zajemska, M.; Musiał, D.; Poskart, A. Application of CHEMKIN and COMSOL Programs in the Calculations of Chemical Composition of Natural Gas Combustion Products. Combust. Sci. Technol. 2014, 186, 153–172. [Google Scholar] [CrossRef]
- Lee, D.; Park, J.; Jin, J.; Lee, M. A simulation for prediction of nitrogen oxide emissions in lean premixed combustor. J. Mech. Sci. Technol. 2011, 25, 1871–1878. [Google Scholar] [CrossRef]
- Hill, S.; Smoot, L.D. Modeling of nitrogen oxides formation and destruction in combustion systems. Prog. Energy Combust. Sci. 2000, 26, 417–458. [Google Scholar] [CrossRef]
- Sanders, W.A.; Lin, C.Y.; Lin, M.C. On the Importance of the Reaction CH2 +N2? HCN+NH as a Precursor for Prompt NO Formation. Combust. Sci. Technol. 1987, 51, 103–108. [Google Scholar] [CrossRef]
- Smith, G.P.; Golden, D.M.; Frenklach, M.; Moriarty, N.W.; Eiteneer, B.; Goldenberg, M.; Bowman, C.T.; Hanson, R.K.; Song, S.; Gardiner, W.C., Jr.; et al. GRI-Mech. Available online: http://www.me.berkeley.edu/gri_mech/ (accessed on 9 July 2020).
- Miller, J.A.; Bowman, C.T. Mechanism and modeling of nitrogen chemistry in combustion. Prog. Energy Combust. Sci. 1989, 15, 287–338. [Google Scholar] [CrossRef]
- Ślefarski, R. Study on the Combustion Process of Premixed Methane Flames with CO2 Dilution at Elevated Pressures. Energies 2019, 12, 348. [Google Scholar] [CrossRef] [Green Version]
SR (Main Combustion Zone) | |||||||||
---|---|---|---|---|---|---|---|---|---|
0.5 | 0.6 | 0.7 | 0.8 | 0.9 | 1 | 1.1 | 1.2 | 2 | |
Primary gas (Ncm3/min): | |||||||||
CH4 | 735 | 612.5 | 525 | 459.4 | 408.3 | 367.5 | 334.1 | 306.2 | 183.8 |
O2 | 735 | 735 | 735 | 735 | 735 | 735 | 735 | 735 | 735 |
N2 (CO2 or Ar) | 2765 | 2765 | 2765 | 2765 | 2765 | 2765 | 2765 | 2765 | 2765 |
NH3 | 3.46 | 2.88 | 2.47 | 2.16 | 1.92 | 1.73 | 1.57 | 1.44 | 0.86 |
HCN | 5.19 | 4.32 | 3.71 | 3.24 | 2.88 | 2.59 | 2.36 | 2.16 | 1.30 |
Secondary gas (Ncm3/min): | |||||||||
O2 | 1029 | 735 | 525 | 367.5 | 245 | 147 | 66.8 | 0 | 0 |
N2 (CO2 or Ar) | 3871 | 2765 | 1975 | 1382.5 | 921.7 | 553 | 251.4 | 0 | 0 |
SRglobal | 1.2 | 1.2 | 1.2 | 1.2 | 1.2 | 1.2 | 1.2 | 1.2 | 2 |
Reaction temperature: 1200–1800 °C (Main combustion zone); 1100–1400 °C (Burnout zone) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, S.; Che, D.; Wang, Z.; Su, X. NOx Emissions and Nitrogen Fate at High Temperatures in Staged Combustion. Energies 2020, 13, 3557. https://doi.org/10.3390/en13143557
Wu S, Che D, Wang Z, Su X. NOx Emissions and Nitrogen Fate at High Temperatures in Staged Combustion. Energies. 2020; 13(14):3557. https://doi.org/10.3390/en13143557
Chicago/Turabian StyleWu, Song, Defu Che, Zhiguo Wang, and Xiaohui Su. 2020. "NOx Emissions and Nitrogen Fate at High Temperatures in Staged Combustion" Energies 13, no. 14: 3557. https://doi.org/10.3390/en13143557
APA StyleWu, S., Che, D., Wang, Z., & Su, X. (2020). NOx Emissions and Nitrogen Fate at High Temperatures in Staged Combustion. Energies, 13(14), 3557. https://doi.org/10.3390/en13143557