Numerical Investigations on the Propagation of Fire in a Railway Carriage
Abstract
:1. Introduction
2. Literature Review
3. Materials and Methods
3.1. Railway Carriage Model
3.2. Spatial Discretisation of the Railway Carriage
3.3. Fire Propagation Governing Equations
3.4. Material Properties
3.5. Boundary Conditions
4. Results and Discussion
4.1. Mesh Independence Testing
4.2. Effects of Ignition Position
4.3. Effects of Ignition Heat Energy
4.4. Effects of Cabin Upholstery
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Nomenclature
Latin Letters | |
Ignition surface area | |
External force vector (excluding acceleration due to gravity) (N) | |
Acceleration due to gravity ( | |
Height of domain (m) | |
Heat of combustion () | |
Mass flux ( | |
Sub-grid kinetic energy (J) | |
molar mass ( | |
Mass production rate per unit volume of species by evaporating particles ( | |
Filtered pressure vector (MPa) | |
Pressure vector (MPa) | |
Ignition heat release rate (kW) | |
Solid component Favre filtered production rate | |
Time (s) | |
Favre filtered velocity vector () | |
Small-scale function | |
Favre filtered velocity operator () | |
Fraction of hydrogen atoms within the soot | |
Soot yield () | |
Greek Letters | |
Mass proportion of combustion () | |
Kronecker delta | |
Product of local mesh spacing in x, y and z directions | |
Minimum eddy size | |
Viscosity ( | |
Turbulent viscosity ( | |
Stochiometric coefficient | |
Density vector ( | |
Total deviatoric stress (Pa) | |
Sub-grid scale stress tensor (Pa) | |
Favre filtered porosity | |
Subscripts | |
Bulk phase property | |
Carbon | |
Carbon monoxide | |
Drag | |
Fuel | |
Gas phase cell indices | |
Nitrogen | |
Soot |
References
- Office of Rail and Road. Passenger Rail Usage 2019-20—Q4 Statistical Release; Office of Rail and Road: London, UK, 2020.
- Electrified Rail Network: The Venefits. Available online: https://www.telegraph.co.uk/news/uknews/road-and-rail-transport/5892821/Electrified-rail-network-the-benefits.html (accessed on 10 September 2020).
- European Commission. Report on the Electrification of the Transport System; European Commission: Brussels, Belgium, 2017. [Google Scholar]
- Specific CO2 Emissions per Passenger-km and per Mode of Transport in Europe. Available online: https://www.eea.europa.eu/data-and-maps/daviz/specific-co2-emissions-per-passenger-3#tab-chart_1 (accessed on 17 June 2020).
- Zhou, Y.; Wang, H.; Bi, H.; Gou, Q. Heat Release Rate of High-Speed Train Fire in Railway Tunnels. Tunn. Undergr. Space Technol. 2020, 105, 103563. [Google Scholar]
- Li, Y.Z.; Inagson, H.; Lönnermark, A. Fire Development in Different Scales of Train Carriage. Fire Saf. Sci. 2014, 11, 302–315. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.Z.; Inagson, H. A New Methodology of Design Fires for Train Carriages Based on Exponential Curve Method. Fire Technol. 2015, 52, 1449–1464. [Google Scholar] [CrossRef]
- Lee, D.H.; Park, W.H.; Hwang, J.; Hadjisophocleous, G. Full-Scale Fire Test of an Intercity Train Car. Fire Technol. 2016, 52, 1559–1574. [Google Scholar]
- Arsonist Sets Fire in South Korean Subway. Available online: https://www.history.com/this-day-in-history/arsonist-sets-fire-in-south-korean-subway (accessed on 19 September 2019).
- NTSB—National Transportation Safety Board. Aircraft Accident Report: Air Canada Flight 797, 1986; NTSB—National Transportation Safety Board, US Government: Washington, DC, USA.
- Fire Safety on Trains. Available online: https://www.railengineer.co.uk/2016/12/22/fire-safety-on-trains/ (accessed on 19 September 2019).
- EN 45545-2 European Railway Standard for Fire Safety. Available online: https://dge-europe.com/en-45545-european-railway-standard-fire-safety/ (accessed on 15 September 2020).
- Hjohlman, M.; Försth, M.; Axelsson, J. Design Fire for a Train Compartment; Technical Research Institute of Sweden: Borås, Sweden, 2009; ISBN 978-9-1858-2979-8. [Google Scholar]
- Li, S.C.; Huang, D.F.; Meng, N.; Chen, L.F.; Hu, L.H. Smoke Spread along a Corridor Induced by an Adjacent Compartment Fire with Outdoor Wind. Appl. Therm. Eng. 2017, 111, 420–430. [Google Scholar]
- Jia, F.; Galea, E.R.; Patel, M.K. The Prediction of Fire Propagation in Enclosure Fires. Fire Saf. Sci. 1997, 5, 439–450. [Google Scholar] [CrossRef] [Green Version]
- Galea, E.R.; Wang, Z.; Jia, F. Numerical Investigation of the Fatal 1985 Manchester Airport B737 Fire. Aeronaut. J. 2017, 121, 287–319. [Google Scholar]
- Stollard, P. Fire from First Principles a Design Guide to International Building Fire Safety, 4th ed.; Roultedge: London, UK, 2014; ISBN 9781317919049. [Google Scholar]
- Tsukahara, M.; Koshiba, Y.; Ohtani, H. Effectiveness of Downward Evacuation in a Large-scale Subway Fire using Fire Dynamics Simulator. Tunn. Undergr. Space Technol. 2011, 26, 573–581. [Google Scholar] [CrossRef]
- Enbaya, A.A.F.; Asim, T.; Mishra, R.; Raj Rao, B.K.N. Numerical Analysis of a Railway Compartment Fire using Computational Fluid Dynamics. Int. J. COMADEM 2015, 18, 37–44. [Google Scholar]
- Jung, J.T.; Kang, S.G.; Yoon, H.J.; Shin, K.B.; Lee, J.K.; Stochino, F. Analysis of Heat and Smoke Flow according to Platform Screen Door and Fan Conditions on Fire in Underground Platform. Adv. Civ. Eng. 2018, 2018, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Chow, W.K.; Lam, K.C.; Fong, N.K.; Li, S.S.; Gao, Y.; Yeoh, G. Numerical Simulations for a Typical Train Fire in China. Model. Simul. Eng. 2011, 2011, 1–7. [Google Scholar]
- Drysdale, D. An Introduction to Fire Dynamics, 2nd ed; Wiley: Chichester, UK, 2004; ISBN 047-1-972-916. [Google Scholar]
- Wang, F.; Wang, M.; Carvel, R.; Wang, Y. Numerical Study on Fire Smoke Movement and Control in Curved Road Runnels. Tunn. Undergr. Space Technol. 2017, 6, 1–7. [Google Scholar]
- Ozetkin, E.S. Heat and Mass Transfer due to a Small Fire in an Aircraft Cargo Compartment. Int. J. Heat Mass Transf. 2014, 73, 562–573. [Google Scholar]
- Stec, A.A. Fire Toxicity—The Elephant in the Room? Fire Saf. J. 2017, 91, 79–90. [Google Scholar]
- Stec, A.A.; Hull, T.R.; Purser, D.A.; Purser, J.A. Fire Toxicity Assessment: Comparison of Asphyxiant Yields from Laboratory and Large Scale Flaming Fires. Fire Saf. Sci. 2014, 11, 404–418. [Google Scholar]
- Alarie, Y. Toxicity of Fire Smoke. Crit. Rev. Toxicol. 2002, 32, 264–282. [Google Scholar]
- Carbon Monoxide Questions and Answers. Available online: https://www.cpsc.gov/Safety-Education/Safety-Education-Centers/Carbon-Monoxide-Information-Center/Carbon-Monoxide-Questions-and-Answers (accessed on 13 January 2020).
- Henderson, R.E. Carbon Dioxide Measures Up As A Real Hazard; BW Technologies by Honywell: Calgary, AB, Canada, 2006. [Google Scholar]
- Mouritz, A.P.; Gibson, A.G. Fire Properties of Polymer Composite Materials; Springer: Dordrecht, The Netherlands, 2006; ISBN 978-1-4020-5356-6. [Google Scholar]
- Deans, T.; Schiraldi, D.A. Flammability of Polyesters. Polymer 2014, 55, 825–830. [Google Scholar]
- Global Market Study on Train Seat Materials. Available online: https://www.persistencemarketresearch.com/market-research/train-seat-materials-market.asp (accessed on 1 June 2020).
- McKenna, S.T.; Birtles, R.; Dickens, K.; Walker, R.G.; Spearpoint, M.J.; Stec, A.A.; Hull, T.R. Flame Retardants in UK Furniture Increase Smoke Toxicity More Than They Reduce Fire Growth Rate. Chemosphere 2018, 196, 429–439. [Google Scholar]
- Cai, W. Mussel-inspired Functionalization of Electrochemically Exfoliated Graphene: Based on self-polymerization of dopamine and its suppression effect on the fire hazards and smoke toxicity of thermoplastic polyurethane. J. Hazadr. Mater. 2018, 352, 57–69. [Google Scholar]
- Siemans Viaggio Comfort Push/Pull Train. Available online: https://www.railway-technology.com/projects/siemens-viaggio-comfort-push-pull-train/ (accessed on 10 February 2020).
- McGrattan, K.; McDermott, R.; Vanella, M.; Hostikka, S.; Floyd, J. Fire Dynamics Simulator User’s Guide, 6th ed.; NIST—National Institute of Standards and Technology: Gaithersburg, MD, USA, 2020. [CrossRef]
- Rodriguez, S. Applied Computational Fluid Dynamics and Turbulence Modelling; Springer: Cham, Switzerland, 2019; ISBN 978-3-0302-8691-0. [Google Scholar]
- Vreman, B.; Guerts, B.; Kuerten, H. Subgrid Modelling in LES of Compressible Flow. Appl. Sci. Res. 1995, 54, 191–203. [Google Scholar] [CrossRef] [Green Version]
- McGrattan, K.; McDermott, R.; Vanella, M.; Hostikka, S.; Floyd, J. Fire Dynamics Simulator Technical Reference Guide, 6th ed.; Mathematical Model; NIST—National Institute of Standards and Technology: Gaithersburg, MD, USA, 2020; Volume 1. [CrossRef]
- Polyamide or Nylon: Complete Guide. Available online: https://omnexus.specialchem.com/selection-guide/polyamide-pa-nylon (accessed on 28 November 2019).
- Węgrzyński, W.; Vigne, G. Experimental and Numerical Evaluation of the Influence of the Soot Yield on the Visibility in Smoke in CFD Analysis. Fire Saf. J. 2017, 91, 389–398. [Google Scholar]
- Hurley, M.J.; Gottuk, D.; Hall, J.R., Jr.; Harada, K.; Kuligowski, E.; Puchovsky, M.; Torero, J.; Watts, J.M., Jr.; Wieczorek, C. Inferring Functional Relationships from Conservation of Gene Order. In SPFE Handbook of Fire Protection Engineering, 5th ed.; Springer: New York, NY, USA, 2016; pp. 3467–3469. ISBN 978-1-4939-2565-0. [Google Scholar]
- Updated FDS Combustion and Fuel Composition Calculators. Available online: https://www.thunderheadeng.com/2015/09/updated-fds-combustion-and-fuel-composition-calculators/ (accessed on 9 September 2020).
- ISO 7730:2005—Ergonomics of the Thermal Environment; International Organization of Standardization: Geneva, Switzerland, 2005.
- Hong, W.H. The Process and Controlling Situation of Daegu Subway Fire Disaster; Urban Environmental System & Research Lab: Daegu, Korea, 2004. [Google Scholar]
- Both, K.; Haack, A. Present-Day Design Fire Scenarios and Comparison with Test Results and Real Fires. In Proceedings of the First International Symposium, Prague, Czech Republic, 4–6 February 2004. [Google Scholar]
Characteristic | Dimension |
---|---|
Carriage length | 26.5 m |
Carriage width | 2.825 m |
Carriage height | 2.8 m |
Cabin length | 21.5 m |
Cabin partition wall thickness | 0.4 m |
Aisle width | 0.9 m |
Cabin door width | 0.7 m |
Cabin door height | 1.985 m |
Seating base | 0.45 × 0.4 × 0.1 m |
Seating back | 0.06 × 0.4 × 0.85 m |
Leg room (base to back) | 0.541 m |
Number of seating rows | 21 |
Number of seats | 84 |
Characteristic | Polyurethane Foam | Nylon | Polyester |
---|---|---|---|
Molecular formula | C2.5 | C1.2 | C1.0 |
H4.2 | H2.2 | H0.8 | |
N0.2 | N0.2 | N0.1 | |
O0.6 | O0.2 | O0.4 | |
Density (kg/m3) | 17.00 | 1130.00 | 1380.00 |
Specific heat capacity (J/kg∙K) | 1.45 | 1.90 | 1.20 |
Thermal conductivity (W/m∙K) | 0.26 | 0.15 | 0.50 |
Heat of reaction (kJ/kg) | 710 | 820 | 795 |
Heat of combustion (kJ/kg) | 25,300 | 23,633 | 23,800 |
Soot yield (g/g) | 0.131 | 0.075 | 0.080 |
CO yield (g/g) | 0.010 | 0.038 | 0.089 |
Seating colour (Solely illustrative) | - | Teal | Red |
Stochiometric Coefficients | Products PUF | Products PN6 | Products PLY |
---|---|---|---|
1.979113 | 1.029281 | 0.789749 | |
0.384504 | 2.071987 | 0.391591 | |
0.044164 | 0.016659 | 0.058886 | |
0.309912 | 0.560253 | 0.168184 | |
0.100000 | 0.100000 | 0.050000 | |
2.723436 | 1.490774 | 0.814987 |
Material | Ignition Heat Release Rate (kW) | Mass Flux of Foam (g/m2∙s) | Mass Flux of Lining (g/m2∙s) |
---|---|---|---|
PN6 | 250 | 53.7989 | 1.1754 |
125 | 26.8994 | 0.5877 | |
PLY | 250 | 53.7989 | 1.1671 |
125 | 26.8994 | 0.5836 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Craig, M.; Asim, T. Numerical Investigations on the Propagation of Fire in a Railway Carriage. Energies 2020, 13, 4999. https://doi.org/10.3390/en13194999
Craig M, Asim T. Numerical Investigations on the Propagation of Fire in a Railway Carriage. Energies. 2020; 13(19):4999. https://doi.org/10.3390/en13194999
Chicago/Turabian StyleCraig, Matthew, and Taimoor Asim. 2020. "Numerical Investigations on the Propagation of Fire in a Railway Carriage" Energies 13, no. 19: 4999. https://doi.org/10.3390/en13194999
APA StyleCraig, M., & Asim, T. (2020). Numerical Investigations on the Propagation of Fire in a Railway Carriage. Energies, 13(19), 4999. https://doi.org/10.3390/en13194999