Investigation of the Effects of Coke Reactivity and Iron Ore Reducibility on the Gas Utilization Efficiency of Blast Furnace
Abstract
:1. Introduction
2. Model Description
2.1. Process Variables and Chemical Reactions
2.2. Simplifications and Assumptions
- The BF stays a steady state.
- Radial distribution of process variables is ignored.
- Each solid particle is assumed to be homogeneous in temperature and all the burden particles are well mixed.
- The size and physical properties of each burden component are maintained as the cell moves down in the shaft and the movement is a cylindrical type.
- The void fraction in the furnace packed bed is constant.
- The mass and heat transfer in a phase along the axis of furnace is not considered.
2.3. Governing Equations
2.4. Reaction Rates
2.5. Computational Algorithm
2.6. Model Validation
3. Results and Discussion
3.1. Baseline Case
3.2. Influence of Coke Reactivity
3.3. Influence of Iron Ore Reducibility
4. Conclusions
- The height of indirect reduction region decreases from 21.3 m to 15.2 m and the starting temperature of coke solution loss reaction decreases from 1258 K to 1002 K with the increase of coke reactivity.
- The utilization efficiency of gas at top of the furnace increases first and then decreases with the increment in the coke reactivity.
- As the coke reactivity increases, the gas utilization efficiency may not increase in case of high H2 content.
- The reducibility of iron ore is proportional to the gas utilization efficiency.
- Either lowly or highly reactive coke needs to combine with highly reducible iron ore to make sure that the indirect reduction region is fully utilized and the gas utilization efficiency of the furnace is optimal.
- High gas utilization efficiency can be achieved by using lowly reducible iron ore with the appropriately reactive coke.
Author Contributions
Funding
Conflicts of Interest
References
- Nomura, S.; Matsuzaki, S.; Naito, M.; Ayukawa, H.; Koizumi, S.; Abe, T.; Kitaguchi, H.; Tahara, T. Improvement in blast furnace reaction efficiency through the use of catalyst-doped highly reactive coke. Shinnittetsu Giho 2006, 384, 100. [Google Scholar]
- Shimoyama, I. Research prospect on coke reactivity aiming at low-RAR blast furnace operation. Tetsu Hagané 2010, 96, 25–33. [Google Scholar] [CrossRef] [Green Version]
- Kasai, A.; Matsui, Y. Lowering of thermal reserve zone temperature in blast furnace by adjoining carbonaceous material and iron ore. ISIJ Int. 2004, 44, 2073–2078. [Google Scholar] [CrossRef]
- Nomura, S.; Ayukawa, H.; Kitaguchi, H.; Tahara, T.; Matsuzaki, S.; Naito, M.; Koizumi, S.; Ogata, Y.; Nakayama, T.; Abe, T. Improvement in blast furnace reaction efficiency through the use of highly reactive calcium rich coke. ISIJ Int. 2005, 45, 316–324. [Google Scholar] [CrossRef] [Green Version]
- Naito, M.; Okamoto, A.; Yamaguchi, K.; Yamaguchi, T.; Inoue, Y. Improvement of blast furnace reaction efficiency by the temperature control of thermal reserve zone. Shinnittetsu Giho 2006, 384, 95. [Google Scholar]
- Natsui, S.; Shibasaki, R.; Kon, T.; Ueda, S.; Inoue, R.; Ariyama, T. Effect of high reactivity coke for mixed charge in ore layer on reaction behavior of each particle in blast furnace. ISIJ Int. 2013, 53, 1770–1778. [Google Scholar] [CrossRef] [Green Version]
- Nomura, S.; Higuchi, K.; Kunitomo, K.; Naito, M. Reaction behavior of formed iron coke and its effect on decreasing thermal reserve zone temperature in blast furnace. ISIJ Int. 2010, 50, 1388–1395. [Google Scholar] [CrossRef] [Green Version]
- Babich, A.; Senk, D.; Gudenau, H.W. Effect of coke reactivity and nut coke on blast furnace operation. Ironmak Steelmak 2009, 36, 222–229. [Google Scholar] [CrossRef] [Green Version]
- Ueda, S.; Yanagiya, K.; Watanabe, K.; Murakami, T.; Inoue, R.; Ariyama, T. Reaction model and reduction behavior of carbon iron ore composite in blast furnace. ISIJ Int. 2009, 49, 827–836. [Google Scholar] [CrossRef] [Green Version]
- Naito, M.; Okamoto, A.; Yamaguchi, K.; Yamaguchi, T.; Inoue, Y. Improvement of blast furnace reaction efficiency by use of high reactivity coke. Tetsu Hagané 2001, 87, 357–364. [Google Scholar] [CrossRef] [Green Version]
- Acevedo, U. Mathematical Modelling and Control of the Blast Furnace Process. Ph.D. Thesis, Perdue University, Michigan, USA, 1981. [Google Scholar]
- Yagi, J.; Muchi, I. Improved mathematical model for estimating process variables in blast furnace. Trans. ISIJ 1970, 10, 181–187. [Google Scholar] [CrossRef] [Green Version]
- Muchi, I.; Yagi, J.; Tamura, K.; Moriyama, A. Reaction kinetics in the blast furnace. J. Jpn. Inst. Met. Mater. 1966, 30, 826–831. [Google Scholar] [CrossRef] [Green Version]
- Yagi, J.; Sasaki, K.; Muchi, I. Theoretical investigation on the blast furnace operations with the aid of mathematical model. Tetsu Hagané 1968, 54, 1019–1031. [Google Scholar] [CrossRef] [Green Version]
- Smith, J.M.; Van, N.H.C. Introduction to Chemical Engineering Thermodynamics, 3rd ed.; McGraw-Hill: New York, NY, USA, 1975; p. 107. [Google Scholar]
- Tsay, Q.T.; Ray, W.H.; Szekely, J. The modeling of hematite reduction with hydrogen plus carbon monoxide mixtures: Part I. The behavior of single pellets. AIChE J. 1976, 22, 1064–1072. [Google Scholar] [CrossRef]
- McKewan, W.M. Reduction kinetics of magnetite in hydrogen at high pressures. Trans. Metall. Soc. AIME 1962, 224, 387–393. [Google Scholar]
- Murayama, T.; Ono, Y.; Kawai, Y. Step-wise reduction of hematite pellets with CO-CO2 gas mixtures. Tetsu Hagané 1977, 63, 1099–1107. [Google Scholar] [CrossRef] [Green Version]
- Miyasaka, N.; Kondo, S.I. The rate of cokes gasification by gas consisting of CO2, H2O, CO, H2 and N2. Tetsu Hagané 1968, 54, 1427–1431. [Google Scholar] [CrossRef] [Green Version]
- Bi, X.G.; Krister, T.; Olle, W. Simulation of the blast furnace process by a mathematical model. ISIJ Int. 1992, 32, 470–480. [Google Scholar] [CrossRef] [Green Version]
- Asaki, Z.; Fukunaka, Y.; Nagase, T.; Kondo, Y. Thermal decomposition of limestone in a fluidized bed. Metall. Trans. 1974, 5, 381–390. [Google Scholar] [CrossRef]
- Kosti, A.A.; Anastassi, Z.A.; Simos, T.E. An optimized explicit runge-kutta method with increased phase-lag order for the numerical solution of the schrödinger equation and related problems. J. Math. Chem. 2010, 47, 315. [Google Scholar] [CrossRef]
- Kasai, A.; Toyota, H.; Nozawa, K.; Kitayama, S. Reduction of reducing agent rate in blast furnace operation by carbon composite iron ore hot briquette. ISIJ Int. 2011, 51, 1333–1335. [Google Scholar] [CrossRef] [Green Version]
Name | Index | Chemical Equation | Symbol of Rate |
---|---|---|---|
Indirect reduction by CO | 1-a | 3Fe2O3 + CO = 2Fe3O4 + CO2 | R1 |
1-b | Fe3O4 + CO = 3FeO + CO2 | ||
1-c | FeO + CO = Fe + CO2 | ||
Indirect reduction by H2 | 2-a | 3Fe2O3 + H2 = 2Fe3O4 + H2O | R2 |
2-b | Fe3O4 + H2 = 3FeO + H2O | ||
2-c | FeO + H2 = Fe + H2O | ||
Solution loss of carbon (in coke) | 3 | C + CO2 = 2CO | R3 |
Carbon gasification by water vapor (H2O) | 4 | C + H2O = CO + H2 | R4 |
Decomposition of flux | 5 | MeCO3 = MeO + CO2, Me = Ca, Mg | R5 |
Water gas shift reaction | 6 | CO + H2O = H2 + CO | R6 |
Direct reduction of (liquid) FeO | 7 | FeO + C = Fe + CO | R7 |
Frequency Factor | Units | The Values of L-Furnace | The Values of No. 7 Algoma |
---|---|---|---|
Coke solution loss reaction | m3/(kg·s) | 0.00033 | 0.00058 |
Coke gasification reaction | m3/(kg·s) | 0.061 | 0.086 |
Parameters | L-Furnace | Algoma’s NO.7 Furnace |
---|---|---|
Mass flow rate of pellets (kg/s) | 87.6 | 49.3 |
Mass flow rate of sinter (kg/s) | 76.1 | 42.5 |
Mass flow rate of coke (kg/s) | 46.6 | 24.8 |
Mass flow rate of limestone (kg/s) | 0.9 | 2.1 |
Mass flow rate of dolomite (kg/s) | 0 | 0 |
Solid temperature (K) | 294.7 | 286.9 |
Blast temperature (K) | 1475.8 | 1423.4 |
Blast rate (Nm3/s) | 109.9 | 71.6 |
Blast pressure (kPa) | 402.3 | 372.9 |
CO fraction in top gas (-) | 0.2118 | 0.2112 |
CO2 fraction in top gas (-) | 0.2042 | 0.1868 |
H2 fraction in top gas (-) | 0.0293 | 0.0389 |
Temperature of top gas (K) | 416.4 | 414.5 |
Pressure of top gas (kPa) | 244.2 | 203.7 |
Weight Fraction (-) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Fe2O3 | FeO | Fe | SiO2 | CaO | MgO | Al2O3 | Mn | P | S | |
L-Furnace | ||||||||||
Sinter | - | 0.0839 | 0.5177 | 0.0664 | 0.13358 | 0.04094 | 0.01336 | 0.0058 | 0.00071 | 0.00016 |
Pellets | - | 0 | 0.6513 | 0.0515 | 0.0038 | 0.0018 | 0.0061 | 0.0019 | 0.00009 | 0.00015 |
Algoma’s NO.7 Furnace | ||||||||||
Sinter | - | 0.1211 | 0.4946 | 0.0952 | 0.1024 | 0.0628 | 0.01343 | 0.0252 | 0.00028 | 0.00069 |
Pellets | - | 0 | 0.656 | 0.0464 | 0.0042 | 0.0027 | 0.0058 | 0.0009 | 0.00028 | 0.00001 |
CO | CO2 | H2 | N2 | Tg (K) | |
---|---|---|---|---|---|
L-Furnace | 0.3857 | 0 | 0.0619 | 0.5524 | 2010 |
No.7 Algoma Furnace | 0.3473 | 0 | 0.088 | 0.5647 | 1904 |
CO | CO2 | H2 | Gas Temperature | |
---|---|---|---|---|
L-Furnace | 0.2118 | 0.2042 | 0.0293 | 416.4 |
Results | 0.1989 | 0.1956 | 0.0270 | 407.6 |
Error value (%) | 6.1 | 4.2 | 7.9 | 2.1 |
No.7 Algoma Furnace | 0.2112 | 0.1868 | 0.0389 | 414.5 |
Results | 0.1931 | 0.1708 | 0.0356 | 421.9 |
Error value (%) | 8.6 | 8.6 | 8.5 | 1.8 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meng, F.; Shao, L.; Zou, Z. Investigation of the Effects of Coke Reactivity and Iron Ore Reducibility on the Gas Utilization Efficiency of Blast Furnace. Energies 2020, 13, 5062. https://doi.org/10.3390/en13195062
Meng F, Shao L, Zou Z. Investigation of the Effects of Coke Reactivity and Iron Ore Reducibility on the Gas Utilization Efficiency of Blast Furnace. Energies. 2020; 13(19):5062. https://doi.org/10.3390/en13195062
Chicago/Turabian StyleMeng, Fanchao, Lei Shao, and Zongshu Zou. 2020. "Investigation of the Effects of Coke Reactivity and Iron Ore Reducibility on the Gas Utilization Efficiency of Blast Furnace" Energies 13, no. 19: 5062. https://doi.org/10.3390/en13195062
APA StyleMeng, F., Shao, L., & Zou, Z. (2020). Investigation of the Effects of Coke Reactivity and Iron Ore Reducibility on the Gas Utilization Efficiency of Blast Furnace. Energies, 13(19), 5062. https://doi.org/10.3390/en13195062