Progress towards High-Efficiency and Stable Tin-Based Perovskite Solar Cells
Abstract
:1. Introduction
2. Methylammonium Tin Halides (CH3NH3SnX3, X = I, Br, Cl)
3. Formamidinium Tin Halides (FASnX3, X = I, Br, Cl)
4. Cesium Tin Halides (CsSnX3, X = I, Br, Cl)
5. Mix-Cations (MC) Tin Halides (MCSnX3, X = I, Br, Cl)
6. Conclusions and Outlook
- Minimizing oxygen exposure. One of the major reasons for low performance is Sn2+ oxidation. Reducing oxygen exposure during film growth by using techniques such as reducing vapor atmosphere [50] and vacuum growth [129] can significantly improve both efficiency and stability by minimizing p-type doping and enhancing film quality.
- Controlling perovskite crystallization. To reduce density of trap states and optimize charge carrier dynamics different strategies can be used such as introduction of [poly(ethylene-co-vinyl acetate) [82], pentafluorophen-oxyethylammonium iodide (FOEI) [130] or triethylphosphine (TEP) [115] in the perovskite matrix.
- Purification of Sn sources to prevent oxidation. Any commercial SnX2 source contains Sn4+, even those with 99 % purity contain a significant concentration of oxidized Sn4+ resulting in poor performance and reproducibility issues [80]. Addition of tin powder can solve this problem by reacting with Sn4+ and reducing it to Sn2+ state.
- Inverted p–i–n architecture should be preferred. Better quality of perovskite film can be formed on HTLs by avoiding using salt-doped hole selective layers (HSLs), known to damage Sn perovskite [51,70]. Also p-i-n architecture can favorably align the energy levels of HTL and ETL with perovskite than when used in conventional n-i-p configuration.
- Increasing VOC by optimizing energy levels. While, the short circuit current (JSC) of the PSCs is approaching the theoretical limit, the open circuit voltage (VOC) emerges as a major limiting factor for overall performance of Sn based PSCs. VOC is reduced greatly due to the existence of severe recombination and mismatched energy levels in the device. New techniques of bandgap engineering must be explored along trying more suitable materials as HTL and ETL. For example, Jiang et al. [132] used indene-C60 bisadduct (ICBA) as ETL instead of commonly used PCBM which considerably suppressed the iodide remote doping resulting in a record VOC of 0.94 V and PCE of 12.4 % with shelf life of more than 3800 h.
- Regulating the A site cation to achieve a tolerance factor of nearly 1. An inverse relation exists between tolerance factor and lattice strain of perovskite crystal. Optimizing A site cation with proper substitution is vital to achieve high performance and stability. Regulating A cite cation can make the tolerance factor as close to one as possible, resulting in a stable perovskite structure. For example Nishimura et al. [137] partially substituted formamidinium cation with ethylammonium cation to achieve tolerance factor of 0.9985, achieving record PCE exceeding 13%.
- Doping Ge in Sn based PSCs. Ge is known to passivate traps and stabilize the mixed 2D/3D perovskite lattice by simultaneously suppressing defect/trap states and Sn2+ oxidation [133,134]. The addition of an optimum amount of Ge to develop efficient and stable tin-based PSCs should be an efficient approach. Ge2+ oxidizes into Ge4+ resulting in a thin GeO4 protecting layer encapsulating tin perovskite crystals. The highest PCE of 13.24 % reported for Sn based PSCs is achieved doping Ge in the perovskite lattice [137].
- Enhancing transparency using bandgap engineering. Halides (Cl, Br, I) play a major role in determining the bandgap of the perovskite. As the halide radii decrease, the bandgap of perovskite increases, allowing more light in the visible region to pass through the perovskite film. For example, the optical bandgap changed from 1.27 eV for pure CsSnI3 to 1.37 eV for CsSnI2Br, and from 1.65 eV for CsSnIBr2 to 1.75 eV for CsSnBr3. The increasing bromine content also induced a change in the color of perovskite films from black to light brown, increasing transparency [88].
- Use of transparent contact. Currently most of the fabricated devices use relatively thick (~70 nm or more) metal film as back contact which makes the design opaque. However, a fully semitransparent PSC can be achieved by using 2D structures, transparent conducting oxides (TCOs), graphene electrodes and metal nanowires etc.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Green, M.A.; Hishikawa, Y.; Dunlop, E.D.; Levi, D.H.; Hohl-Ebinger, J.; Yoshita, M.; Ho-Baillie, A.W.Y. Solar cell efficiency tables (Version 53). Prog. Photovolt. Res. Appl. 2019, 27, 3–12. [Google Scholar] [CrossRef] [Green Version]
- Lin, J.-T.; Hu, Y.-K.; Hou, C.-H.; Liao, C.-C.; Chuang, W.-T.; Chiu, C.-W.; Tsai, M.-K.; Shyue, J.-J.; Chou, P.-T. Superior Stability and Emission Quantum Yield (23% ± 3%) of Single-Layer 2D Tin Perovskite TEA2SnI4 via Thiocyanate Passivation. Small 2020, 16, 2000903. [Google Scholar] [CrossRef] [PubMed]
- Gao, W.; Li, P.; Chen, J.; Ran, C.; Wu, Z. Interface Engineering in Tin Perovskite Solar Cells. Adv. Mater. Interfaces 2019, 6, 1901322. [Google Scholar] [CrossRef]
- Mali, S.S.; Shim, C.S.; Hong, C.K. Highly porous Zinc Stannate (Zn 2 SnO 4) nanofibers scaffold photoelectrodes for efficient methyl ammonium halide perovskite solar cells. Sci. Rep. 2015, 5, 11424. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mali, S.S.; Shim, C.S.; Hong, C.K. Highly stable and efficient solid-state solar cells based on methylammonium lead bromide (CH 3 NH 3 PbBr 3) perovskite quantum dots. NPG Asia Mater. 2015, 7, e208. [Google Scholar] [CrossRef] [Green Version]
- Xie, F.; Chen, C.-C.; Wu, Y.; Li, X.; Cai, M.; Liu, X.; Yang, X.; Han, L. Vertical recrystallization for highly efficient and stable formamidinium-based inverted-structure perovskite solar cells. Energy Environ. Sci. 2017, 10, 1942–1949. [Google Scholar] [CrossRef]
- Liu, T.; Zhou, Y.; Li, Z.; Zhang, L.; Ju, M.G.; Luo, D.; Yang, Y.; Yang, M.; Kim, D.H.; Yang, W. Stable Formamidinium-Based Perovskite Solar Cells via In Situ Grain Encapsulation. Adv. Energy Mater. 2018, 8, 1800232. [Google Scholar] [CrossRef]
- Zhou, W.; Zhao, Y.; Zhou, X.; Fu, R.; Li, Q.; Zhao, Y.; Liu, K.; Yu, D.; Zhao, Q. Light-independent ionic transport in inorganic perovskite and ultrastable Cs-based perovskite solar cells. J. Phys. Chem. Lett. 2017, 8, 4122–4128. [Google Scholar] [CrossRef]
- Liang, J.; Wang, C.; Wang, Y.; Xu, Z.; Lu, Z.; Ma, Y.; Zhu, H.; Hu, Y.; Xiao, C.; Yi, X. All-inorganic perovskite solar cells. J. Am. Chem. Soc. 2016, 138, 15829–15832. [Google Scholar] [CrossRef]
- Qin, P.; Tanaka, S.; Ito, S.; Tetreault, N.; Manabe, K.; Nishino, H.; Nazeeruddin, M.K.; Grätzel, M. Inorganic hole conductor-based lead halide perovskite solar cells with 12.4% conversion efficiency. Nat. Commun. 2014, 5, 3834. [Google Scholar] [CrossRef] [Green Version]
- Krishnamoorthy, T.; Ding, H.; Yan, C.; Leong, W.L.; Baikie, T.; Zhang, Z.; Sherburne, M.; Li, S.; Asta, M.; Mathews, N. Lead-free germanium iodide perovskite materials for photovoltaic applications. J. Mater. Chem. A 2015, 3, 23829–23832. [Google Scholar] [CrossRef]
- Asghar, M.; Zhang, J.; Wang, H.; Lund, P. Device stability of perovskite solar cells—A review. Renew. Sustain. Energy Rev. 2017, 77, 131–146. [Google Scholar] [CrossRef] [Green Version]
- Chondroudis, K.; Mitzi, D.B. Electroluminescence from an organic− inorganic perovskite incorporating a quaterthiophene dye within lead halide perovskite layers. Chem. Mater. 1999, 11, 3028–3030. [Google Scholar] [CrossRef]
- Mitzi, D.B.; Chondroudis, K.; Kagan, C.R. Organic-inorganic electronics. IBM J. Res. Dev. 2001, 45, 29–45. [Google Scholar] [CrossRef]
- Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 2009, 131, 6050–6051. [Google Scholar] [CrossRef] [PubMed]
- Im, J.-H.; Lee, C.-R.; Lee, J.-W.; Park, S.-W.; Park, N.-G. 6.5% efficient perovskite quantum-dot-sensitized solar cell. Nanoscale 2011, 3, 4088–4093. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.-S.; Lee, C.-R.; Im, J.-H.; Lee, K.-B.; Moehl, T.; Marchioro, A.; Moon, S.-J.; Humphry-Baker, R.; Yum, J.-H.; Moser, J.E. Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci. Rep. 2012, 2, 591. [Google Scholar] [CrossRef] [Green Version]
- Zhu, X. The Perovskite Fever and Beyond; ACS Publications: Washington, DC, USA, 2016. [Google Scholar]
- Heo, J.H.; Im, S.H.; Noh, J.H.; Mandal, T.N.; Lim, C.-S.; Chang, J.A.; Lee, Y.H.; Kim, H.-j.; Sarkar, A.; Nazeeruddin, M.K. Efficient inorganic–organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors. Nat. Photonics 2013, 7, 486. [Google Scholar] [CrossRef]
- Zhou, H.; Chen, Q.; Li, G.; Luo, S.; Song, T.-b.; Duan, H.-S.; Hong, Z.; You, J.; Liu, Y.; Yang, Y. Interface engineering of highly efficient perovskite solar cells. Science 2014, 345, 542–546. [Google Scholar] [CrossRef]
- Park, J.H.; Seo, J.; Park, S.; Shin, S.S.; Kim, Y.C.; Jeon, N.J.; Shin, H.W.; Ahn, T.K.; Noh, J.H.; Yoon, S.C. Efficient CH3NH3PbI3 perovskite solar cells employing nanostructured p-type NiO electrode formed by a pulsed laser deposition. Adv. Mater. 2015, 27, 4013–4019. [Google Scholar] [CrossRef]
- Dong, Q.; Yuan, Y.; Shao, Y.; Fang, Y.; Wang, Q.; Huang, J. Abnormal crystal growth in CH3 NH3 PbI3−x Cl x using a multi-cycle solution coating process. Energy Environ. Sci. 2015, 8, 2464–2470. [Google Scholar] [CrossRef]
- Carnie, M.J.; Charbonneau, C.; Davies, M.L.; Troughton, J.; Watson, T.M.; Wojciechowski, K.; Snaith, H.; Worsley, D.A. A one-step low temperature processing route for organolead halide perovskite solar cells. Chem. Commun. 2013, 49, 7893–7895. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Zhu, K. Solution Chem. engineering toward high-efficiency perovskite solar cells. J. Phys. Chem. Lett. 2014, 5, 4175–4186. [Google Scholar] [CrossRef] [PubMed]
- Hao, F.; Stoumpos, C.C.; Liu, Z.; Chang, R.P.; Kanatzidis, M.G. Controllable perovskite crystallization at a gas–solid interface for hole conductor-free solar cells with steady power conversion efficiency over 10%. J. Am. Chem. Soc. 2014, 136, 16411–16419. [Google Scholar] [CrossRef]
- Zhao, D.; Ke, W.; Grice, C.R.; Cimaroli, A.J.; Tan, X.; Yang, M.; Collins, R.W.; Zhang, H.; Zhu, K.; Yan, Y. Annealing-free efficient vacuum-deposited planar perovskite solar cells with evaporated fullerenes as electron-selective layers. Nano Energy 2016, 19, 88–97. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Munir, R.; Fan, Y.; Niu, T.; Liu, Y.; Zhong, Y.; Yang, Z.; Tian, Y.; Liu, B.; Sun, J. Phase Transition Control for High-Performance Blade-Coated Perovskite Solar Cells. Joule 2018, 2, 1313–1330. [Google Scholar] [CrossRef] [Green Version]
- Gribkova, O.L.; Kabanova, V.A.; Tameev, A.R.; Nekrasov, A.A. Ink-Jet Printing of Polyaniline Layers for Perovskite Solar Cells. Tech. Phys. Lett. 2019, 45, 858–861. [Google Scholar] [CrossRef]
- Barrows, A.T.; Pearson, A.J.; Kwak, C.K.; Dunbar, A.D.; Buckley, A.R.; Lidzey, D.G. Efficient planar heterojunction mixed-halide perovskite solar cells deposited via spray-deposition. Energy Environ. Sci. 2014, 7, 2944–2950. [Google Scholar] [CrossRef]
- Rong, Y.; Ming, Y.; Ji, W.; Li, D.; Mei, A.; Hu, Y.; Han, H. Toward Industrial-Scale Production of Perovskite Solar Cells: Screen Printing, Slot-Die Coating, and Emerging Techniques. J. Phys. Chem. Lett. 2018, 9, 2707–2713. [Google Scholar] [CrossRef]
- Song, Z.; Watthage, S.C.; Phillips, A.B.; Heben, M.J. Pathways toward high-performance perovskite solar cells: Review of recent advances in organo-metal halide perovskites for photovoltaic applications. J. Photonics Energy 2016, 6, 022001. [Google Scholar] [CrossRef]
- Green, M.A.; Dunlop, E.D.; Hohlebinger, J.; Yoshita, M.; Kopidakis, N.; Hobaillie, A. Solar cell efficiency tables (Version 55). Prog. Photovolt. 2020, 28, 3–15. [Google Scholar] [CrossRef]
- Saliba, M.; Correa-Baena, J.-P.; Wolff, C.M.; Stolterfoht, M.; Phung, N.; Albrecht, S.; Neher, D.; Abate, A. How to Make over 20% Efficient Perovskite Solar Cells in Regular (n–i–p) and Inverted (p–i–n) Architectures. Chem. Mater. 2018, 30, 4193–4201. [Google Scholar] [CrossRef]
- Abate, A. Perovskite solar cells go lead free. Joule 2017, 1, 659–664. [Google Scholar] [CrossRef] [Green Version]
- Kopacic, I.; Friesenbichler, B.; Hoefler, S.F.; Kunert, B.; Plank, H.; Rath, T.; Trimmel, G. Enhanced Performance of Germanium Halide Perovskite Solar Cells through Compositional Engineering. ACS Appl. Energy Mater. 2018, 1, 343–347. [Google Scholar] [CrossRef]
- Stoumpos, C.C.; Frazer, L.; Clark, D.J.; Kim, Y.S.; Rhim, S.H.; Freeman, A.J.; Ketterson, J.B.; Jang, J.I.; Kanatzidis, M.G. Hybrid Germanium Iodide Perovskite Semiconductors: Active Lone Pairs, Structural Distortions, Direct and Indirect Energy Gaps, and Strong Nonlinear Optical Properties. J. Am. Chem. Soc. 2015, 137, 6804–6819. [Google Scholar] [CrossRef]
- Qian, J.; Xu, B.; Tian, W. A comprehensive theoretical study of halide perovskites ABX3. Org. Electron. 2016, 37, 61–73. [Google Scholar] [CrossRef]
- Cortecchia, D.; Dewi, H.A.; Yin, J.; Bruno, A.; Chen, S.; Baikie, T.; Boix, P.P.; Grätzel, M.; Mhaisalkar, S.; Soci, C.; et al. Lead-Free MA2CuClxBr4–x Hybrid Perovskites. Inorg. Chem. 2016, 55, 1044–1052. [Google Scholar] [CrossRef]
- Stoumpos, C.C.; Malliakas, C.D.; Kanatzidis, M.G. Semiconducting tin and lead iodide perovskites with organic cations: Phase transitions, high mobilities, and near-infrared photoluminescent properties. Inorg. Chem. 2013, 52, 9019–9038. [Google Scholar] [CrossRef]
- Abdelaziz, S.; Zekry, A.; Shaker, A.; Abouelatta, M. Investigating the performance of formamidinium tin-based perovskite solar cell by SCAPS device simulation. Opt. Mater. 2020, 101, 109738. [Google Scholar] [CrossRef]
- Takahashi, Y.; Hasegawa, H.; Takahashi, Y.; Inabe, T. Hall mobility in tin iodide perovskite CH3NH3SnI3: Evidence for a doped semiconductor. J. Solid State Chem. 2013, 205, 39–43. [Google Scholar] [CrossRef]
- Noel, N.K.; Stranks, S.D.; Abate, A.; Wehrenfennig, C.; Guarnera, S.; Haghighirad, A.-A.; Sadhanala, A.; Eperon, G.E.; Pathak, S.K.; Johnston, M.B. Lead-free organic–inorganic tin halide perovskites for photovoltaic applications. Energy Environ. Sci. 2014, 7, 3061–3068. [Google Scholar] [CrossRef]
- Stranks, S.D.; Eperon, G.E.; Grancini, G.; Menelaou, C.; Alcocer, M.J.; Leijtens, T.; Herz, L.M.; Petrozza, A.; Snaith, H.J. Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science 2013, 342, 341–344. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hao, F.; Stoumpos, C.C.; Cao, D.H.; Chang, R.P.; Kanatzidis, M.G. Lead-free solid-state organic–inorganic halide perovskite solar cells. Nat. Photonics 2014, 8, 489. [Google Scholar] [CrossRef]
- Hao, F.; Stoumpos, C.C.; Guo, P.; Zhou, N.; Marks, T.J.; Chang, R.P.; Kanatzidis, M.G. Solvent-mediated crystallization of CH3NH3SnI3 films for heterojunction depleted perovskite solar cells. J. Am. Chem. Soc. 2015, 137, 11445–11452. [Google Scholar] [CrossRef] [PubMed]
- Burschka, J.; Pellet, N.; Moon, S.-J.; Humphry-Baker, R.; Gao, P.; Nazeeruddin, M.K.; Grätzel, M. Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 2013, 499, 316. [Google Scholar] [CrossRef]
- Zhang, S.; Audebert, P.; Wei, Y.; Al Choueiry, A.; Lanty, G.; Bréhier, A.; Galmiche, L.; Clavier, G.; Boissiere, C.; Lauret, J.-S. Preparations and characterizations of luminescent two dimensional organic-inorganic perovskite semiconductors. Materials 2010, 3, 3385–3406. [Google Scholar] [CrossRef]
- Jeon, N.J.; Noh, J.H.; Kim, Y.C.; Yang, W.S.; Ryu, S.; Seok, S.I. Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells. Nat. Mater. 2014, 13, 897. [Google Scholar] [CrossRef]
- Greul, E.; Docampo, P.; Bein, T. Synthesis of Hybrid Tin Halide Perovskite Solar Cells with Less Hazardous Solvents: Methanol and 1, 4-Dioxane. Z. Für Anorg. Und Allg. Chem. 2017, 643, 1704–1711. [Google Scholar] [CrossRef] [Green Version]
- Song, T.-B.; Yokoyama, T.; Stoumpos, C.C.; Logsdon, J.; Cao, D.H.; Wasielewski, M.R.; Aramaki, S.; Kanatzidis, M.G. Importance of reducing vapor atmosphere in the fabrication of tin-based perovskite solar cells. J. Am. Chem. Soc. 2017, 139, 836–842. [Google Scholar] [CrossRef]
- Yokoyama, T.; Cao, D.H.; Stoumpos, C.C.; Song, T.-B.; Sato, Y.; Aramaki, S.; Kanatzidis, M.G. Overcoming short-circuit in lead-free CH3NH3SnI3 perovskite solar cells via kinetically controlled gas–solid reaction film fabrication process. J. Phys. Chem. Lett. 2016, 7, 776–782. [Google Scholar] [CrossRef]
- Yokoyama, T.; Song, T.-B.; Cao, D.H.; Stoumpos, C.C.; Aramaki, S.; Kanatzidis, M.G. The origin of lower hole carrier concentration in methylammonium tin halide films grown by a vapor-assisted solution process. ACS Energy Lett. 2016, 2, 22–28. [Google Scholar] [CrossRef]
- Weiss, M.; Horn, J.; Richter, C.; Schlettwein, D. Preparation and characterization of methylammonium tin iodide layers as photovoltaic absorbers. Phys. Status Solidi 2016, 213, 975–981. [Google Scholar] [CrossRef] [Green Version]
- Hoshi, H.; Shigeeda, N.; Dai, T. Improved oxidation stability of tin iodide cubic perovskite treated by 5-ammonium valeric acid iodide. Mater. Lett. 2016, 183, 391–393. [Google Scholar] [CrossRef]
- Fujihara, T.; Terakawa, S.; Matsushima, T.; Qin, C.; Yahiro, M.; Adachi, C. Fabrication of high coverage MASnI 3 perovskite films for stable, planar heterojunction solar cells. J. Mater. Chem. C 2017, 5, 1121–1127. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhang, T.; Li, C.; Liang, Z.; Gong, L.; Chen, J.; Xie, W.; Xu, J.; Liu, P. Rapid growth of high quality perovskite crystal by solvent mixing. CrystEngComm 2016, 18, 1184–1189. [Google Scholar] [CrossRef]
- Handa, T.; Yamada, T.; Kubota, H.; Ise, S.; Miyamoto, Y.; Kanemitsu, Y. Photocarrier recombination and injection dynamics in long-term stable lead-free CH3NH3SnI3 perovskite thin films and solar cells. J. Phys. Chem. C 2017, 121, 16158–16165. [Google Scholar] [CrossRef]
- Ma, L.; Hao, F.; Stoumpos, C.C.; Phelan, B.T.; Wasielewski, M.R.; Kanatzidis, M.G. Carrier diffusion lengths of over 500 nm in lead-free perovskite CH3NH3SnI3 films. J. Am. Chem. Soc. 2016, 138, 14750–14755. [Google Scholar] [CrossRef]
- Tsai, C.M.; Mohanta, N.; Wang, C.Y.; Lin, Y.P.; Yang, Y.W.; Wang, C.L.; Hung, C.H.; Diau, E.W.G. Formation of Stable Tin Perovskites Co-crystallized with Three Halides for Carbon-Based Mesoscopic Lead-Free Perovskite Solar Cells. Angew. Chem. Int. Ed. 2017, 56, 13819–13823. [Google Scholar] [CrossRef]
- Wang, P.; Li, F.; Jiang, K.; Zhang, Y.; Fan, H.; Zhang, Y.; Miao, Y.; Huang, J.; Gao, C.; Zhou, X. Ion Exchange/Insertion Reactions for Fabrication of Efficient Methylammonium Tin Iodide Perovskite Solar Cells. Adv. Sci. 2020, 1903047. [Google Scholar] [CrossRef]
- Yu, Y.; Zhao, D.; Grice, C.R.; Meng, W.; Wang, C.; Liao, W.; Cimaroli, A.J.; Zhang, H.; Zhu, K.; Yan, Y. Thermally evaporated methylammonium tin triiodide thin films for lead-free perovskite solar cell fabrication. RSC Adv. 2016, 6, 90248–90254. [Google Scholar] [CrossRef]
- Peng, L.; Xie, W. Theoretical and experimental investigations on the bulk photovoltaic effect in lead-free perovskites MASnI3 and FASnI3. RSC Adv. 2020, 10, 14679–14688. [Google Scholar] [CrossRef] [Green Version]
- Wang, F.; Ma, J.; Xie, F.; Li, L.; Chen, J.; Fan, J.; Zhao, N. Organic Cation-Dependent Degradation Mechanism of Organotin Halide Perovskites. Adv. Funct. Mater. 2016, 26, 3417–3423. [Google Scholar] [CrossRef]
- Shi, T.; Zhang, H.-S.; Meng, W.; Teng, Q.; Liu, M.; Yang, X.; Yan, Y.; Yip, H.-L.; Zhao, Y.-J. Effects of organic cations on the defect physics of tin halide perovskites. J. Mater. Chem. A 2017, 5, 15124–15129. [Google Scholar] [CrossRef]
- Baikie, T.; Fang, Y.; Kadro, J.M.; Schreyer, M.; Wei, F.; Mhaisalkar, S.G.; Graetzel, M.; White, T.J. Synthesis and crystal Chem. of the hybrid perovskite (CH3 NH3) PbI3 for solid-state sensitised solar cell applications. J. Mater. Chem. A 2013, 1, 5628–5641. [Google Scholar] [CrossRef]
- Amat, A.; Mosconi, E.; Ronca, E.; Quarti, C.; Umari, P.; Nazeeruddin, M.K.; Graätzel, M.; de Angelis, F. Cation-induced band-gap tuning in organohalide perovskites: Interplay of spin–orbit coupling and octahedra tilting. Nano Lett. 2014, 14, 3608–3616. [Google Scholar] [CrossRef]
- Koh, T.M.; Krishnamoorthy, T.; Yantara, N.; Shi, C.; Leong, W.L.; Boix, P.P.; Grimsdale, A.C.; Mhaisalkar, S.G.; Mathews, N. Formamidinium tin-based perovskite with low E g for photovoltaic applications. J. Mater. Chem. A 2015, 3, 14996–15000. [Google Scholar] [CrossRef]
- Lee, S.J.; Shin, S.S.; Kim, Y.C.; Kim, D.; Ahn, T.K.; Noh, J.H.; Seo, J.; Seok, S.I. Fabrication of efficient formamidinium tin iodide perovskite solar cells through SnF2–pyrazine complex. J. Am. Chem. Soc. 2016, 138, 3974–3977. [Google Scholar] [CrossRef] [PubMed]
- Liao, W.; Zhao, D.; Yu, Y.; Grice, C.R.; Wang, C.; Cimaroli, A.J.; Schulz, P.; Meng, W.; Zhu, K.; Xiong, R.G. Lead-free inverted planar formamidinium tin triiodide perovskite solar cells achieving power conversion efficiencies up to 6.22%. Adv. Mater. 2016, 28, 9333–9340. [Google Scholar] [CrossRef] [PubMed]
- Jung, M.-C.; Raga, S.R.; Qi, Y. Properties and solar cell applications of Pb-free perovskite films formed by vapor deposition. RSC Adv. 2016, 6, 2819–2825. [Google Scholar] [CrossRef]
- Zeng, W.; Cui, D.; Li, Z.; Tang, Y.; Yu, X.; Li, Y.; Deng, Y.; Ye, R.; Niu, Q.; Xia, R. Surface optimization by poly(α-methylstyrene) as additive in the antisolution to enhance lead-free Sn-based perovskite solar cells. Sol. Energy 2019, 194, 272–278. [Google Scholar] [CrossRef]
- Ke, W.; Stoumpos, C.C.; Logsdon, J.L.; Wasielewski, M.R.; Yan, Y.; Fang, G.; Kanatzidis, M.G. TiO2–ZnS cascade electron transport layer for efficient formamidinium tin iodide perovskite solar cells. J. Am. Chem. Soc. 2016, 138, 14998–15003. [Google Scholar] [CrossRef] [PubMed]
- Xi, J.; Wu, Z.; Jiao, B.; Dong, H.; Ran, C.; Piao, C.; Lei, T.; Song, T.B.; Ke, W.; Yokoyama, T. Multichannel Interdiffusion Driven FASnI3 Film Formation Using Aqueous Hybrid Salt/Polymer Solutions toward Flexible Lead-Free Perovskite Solar Cells. Adv. Mater. 2017, 29, 1606964. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Z.; Chueh, C.C.; Li, N.; Mao, C.; Jen, A.K.Y. Realizing Efficient Lead-Free Formamidinium Tin Triiodide Perovskite Solar Cells via a Sequential Deposition Route. Adv. Mater. 2018, 30, 1703800. [Google Scholar] [CrossRef] [PubMed]
- Hsu, C.; Geanangel, R. Synthesis and studies of trimethylamine adducts with tin (II) halides. Inorg. Chem. 1977, 16, 2529–2534. [Google Scholar] [CrossRef]
- Noh, J.H.; Im, S.H.; Heo, J.H.; Mandal, T.N.; Seok, S.I. Chemical management for colorful, efficient, and stable inorganic–organic hybrid nanostructured solar cells. Nano Lett. 2013, 13, 1764–1769. [Google Scholar] [CrossRef] [PubMed]
- Eperon, G.E.; Stranks, S.D.; Menelaou, C.; Johnston, M.B.; Herz, L.M.; Snaith, H.J. Formamidinium lead trihalide: A broadly tunable perovskite for efficient planar heterojunction solar cells. Energy Environ. Sci. 2014, 7, 982–988. [Google Scholar] [CrossRef]
- Zhang, M.; Lyu, M.; Yun, J.-H.; Noori, M.; Zhou, X.; Cooling, N.A.; Wang, Q.; Yu, H.; Dastoor, P.C.; Wang, L. Low-temperature processed solar cells with formamidinium tin halide perovskite/fullerene heterojunctions. Nano Res. 2016, 9, 1570–1577. [Google Scholar] [CrossRef]
- Lee, S.J.; Shin, S.S.; Im, J.; Ahn, T.K.; Noh, J.H.; Jeon, N.J.; Seok, S.I.; Seo, J. Reducing carrier density in formamidinium tin perovskites and its beneficial effects on stability and efficiency of perovskite solar cells. ACS Energy Lett. 2017, 3, 46–53. [Google Scholar] [CrossRef]
- Gu, F.; Ye, S.; Zhao, Z.; Rao, H.; Liu, Z.; Bian, Z.; Huang, C. Improving Performance of Lead-Free Formamidinium Tin Triiodide Perovskite Solar Cells by Tin Source Purification. Sol. RRL 2018, 2, 1800136. [Google Scholar] [CrossRef]
- Wu, T.; Liu, X.; He, X.; Wang, Y.; Meng, X.; Noda, T.; Yang, X.; Han, L. Efficient and stable tin-based perovskite solar cells by introducing π-conjugated Lewis base. Sci.China-Chem. 2020, 63, 107–115. [Google Scholar] [CrossRef]
- Liu, G.; Liu, C.; Lin, Z.; Yang, J.; Huang, Z.; Tan, L.; Chen, Y. Regulated Crystallization of Efficient and Stable Tin-Based Perovskite Solar Cells via a Self-Sealing Polymer. ACS Appl. Mater. Interfaces 2020, 12, 14049–14056. [Google Scholar] [CrossRef]
- Lee, B.; He, J.; Chang, R.P.; Kanatzidis, M.G. All-solid-state dye-sensitized solar cells with high efficiency. Nature 2012, 485, 486. [Google Scholar]
- Chen, Z.; Wang, J.J.; Ren, Y.; Yu, C.; Shum, K. Schottky solar cells based on CsSnI3 thin-films. Appl. Phys. Lett. 2012, 101, 093901. [Google Scholar] [CrossRef]
- Kumar, M.H.; Dharani, S.; Leong, W.L.; Boix, P.P.; Prabhakar, R.R.; Baikie, T.; Shi, C.; Ding, H.; Ramesh, R.; Asta, M. Lead-free halide perovskite solar cells with high photocurrents realized through vacancy modulation. Adv. Mater. 2014, 26, 7122–7127. [Google Scholar] [CrossRef]
- Park, N.-G. Organometal perovskite light absorbers toward a 20% efficiency low-cost solid-state mesoscopic solar cell. J. Phys. Chem. Lett. 2013, 4, 2423–2429. [Google Scholar] [CrossRef]
- Chung, I.; Song, J.-H.; Im, J.; Androulakis, J.; Malliakas, C.D.; Li, H.; Freeman, A.J.; Kenney, J.T.; Kanatzidis, M.G. CsSnI3: Semiconductor or metal? High electrical conductivity and strong near-infrared photoluminescence from a single material. High hole mobility and phase-transitions. J. Am. Chem. Soc. 2012, 134, 8579–8587. [Google Scholar] [CrossRef] [PubMed]
- Sabba, D.; Mulmudi, H.K.; Prabhakar, R.R.; Krishnamoorthy, T.; Baikie, T.; Boix, P.P.; Mhaisalkar, S.; Mathews, N. Impact of anionic Br–substitution on open circuit voltage in lead free perovskite (CsSnI3-xBr x) solar cells. J. Phys. Chem. C 2015, 119, 1763–1767. [Google Scholar] [CrossRef]
- Marshall, K.P.; Walton, R.I.; Hatton, R.A. Tin perovskite/fullerene planar layer photovoltaics: Improving the efficiency and stability of lead-free devices. J. Mater. Chem. A 2015, 3, 11631–11640. [Google Scholar] [CrossRef] [Green Version]
- Song, T.-B.; Yokoyama, T.; Aramaki, S.; Kanatzidis, M.G. Performance enhancement of lead-free tin-based perovskite solar cells with reducing atmosphere-assisted dispersible additive. ACS Energy Lett. 2017, 2, 897–903. [Google Scholar] [CrossRef]
- Marshall, K.; Walker, M.; Walton, R.; Hatton, R. Enhanced stability and efficiency in hole-transport-layer-free CsSnI3 perovskite photovoltaics. Nat. Energy 2016, 1, 16178. [Google Scholar] [CrossRef] [Green Version]
- Gupta, S.; Bendikov, T.; Hodes, G.; Cahen, D. CsSnBr3, a lead-free halide perovskite for long-term solar cell application: Insights on SnF2 addition. ACS Energy Lett. 2016, 1, 1028–1033. [Google Scholar] [CrossRef] [Green Version]
- Moghe, D.; Wang, L.; Traverse, C.J.; Redoute, A.; Sponseller, M.; Brown, P.R.; Bulović, V.; Lunt, R.R. All vapor-deposited lead-free doped CsSnBr3 planar solar cells. Nano Energy 2016, 28, 469–474. [Google Scholar] [CrossRef]
- Song, T.-B.; Yokoyama, T.; Logsdon, J.; Wasielewski, M.R.; Aramaki, S.; Kanatzidis, M.G. Piperazine Suppresses Self-Doping in CsSnI3 Perovskite Solar Cells. ACS Appl. Energy Mater. 2018, 1, 4221–4226. [Google Scholar] [CrossRef]
- Li, W.; Li, J.; Li, J.; Fan, J.; Mai, Y.; Wang, L. Addictive-assisted construction of all-inorganic CsSnIBr 2 mesoscopic perovskite solar cells with superior thermal stability up to 473 K. J. Mater. Chem. A 2016, 4, 17104–17110. [Google Scholar] [CrossRef]
- Wang, N.; Zhou, Y.; Ju, M.G.; Garces, H.F.; Ding, T.; Pang, S.; Zeng, X.C.; Padture, N.P.; Sun, X.W. Heterojunction-Depleted Lead-Free Perovskite Solar Cells with Coarse-Grained B-γ-CsSnI3 Thin Films. Adv. Energy Mater. 2016, 6, 1601130. [Google Scholar] [CrossRef]
- Chen, L.-J.; Lee, C.-R.; Chuang, Y.-J.; Wu, Z.-H.; Chen, C. Synthesis and optical properties of lead-free cesium tin halide perovskite quantum rods with high-performance solar cell application. J. Phys. Chem. Lett. 2016, 7, 5028–5035. [Google Scholar] [CrossRef]
- Tan, L.; Wang, W.; Li, Q.; Luo, Z.; Zou, C.; Tang, M.; Zhang, L.; He, J.; Quan, Z. Colloidal syntheses of zero-dimensional Cs 4 SnX 6 (X= Br, I) nanocrystals with high emission efficiencies. Chem. Commun. 2020, 56, 387–390. [Google Scholar] [CrossRef]
- Wang, A.; Guo, Y.; Muhammad, F.; Deng, Z. Controlled synthesis of lead-free cesium tin halide perovskite cubic nanocages with high stability. Chem. Mater. 2017, 29, 6493–6501. [Google Scholar] [CrossRef]
- Qiu, X.; Cao, B.; Yuan, S.; Chen, X.; Qiu, Z.; Jiang, Y.; Ye, Q.; Wang, H.; Zeng, H.; Liu, J. From unstable CsSnI3 to air-stable Cs2SnI6: A lead-free perovskite solar cell light absorber with bandgap of 1.48 eV and high absorption coefficient. Sol. Energy Mater. Sol. Cells 2017, 159, 227–234. [Google Scholar] [CrossRef] [Green Version]
- Zhang, T.; Li, H.; Ban, H.; Sun, Q.; Shen, Y.; Wang, M. Efficient CsSnI3-based inorganic perovskite solar cells based on a mesoscopic metal oxide framework via incorporating a donor element. J. Mater. Chem. 2020, 8, 4118–4124. [Google Scholar] [CrossRef]
- Li, J.; Huang, J.; Zhao, A.; Li, Y.; Wei, M. An inorganic stable Sn-based perovskite film with regulated nucleation for solar cell application. J. Mater. Chem. C 2020, 8, 8840–8845. [Google Scholar] [CrossRef]
- Namvar, M.J.; Abbaspour, F.M.H.; Rezaei, R.M.; Behjat, A.; Mirzaei, M. The effect of inserting combined Rubidium-Cesium cation on performance of perovkite solar cell FAMAPb (IBr) 3. J. Res. Many Body Syst. 2019, 8, 12–142. [Google Scholar]
- Zhang, X.; Liu, H.; Wang, W.; Zhang, J.; Xu, B.; Karen, K.L.; Zheng, Y.; Liu, S.; Chen, S.; Wang, K. Hybrid Perovskite Light-Emitting Diodes Based on Perovskite Nanocrystals with Organic–Inorganic Mixed Cations. Adv. Mater. 2017, 29, 1606405. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Peng, J.; Chen, Y.; Yao, Y.; Liang, Z. Triple-cation mixed-halide perovskites: Towards efficient, annealing-free and air-stable solar cells enabled by Pb (SCN) 2 additive. Sci. Rep. 2017, 7, 46193. [Google Scholar] [CrossRef] [PubMed]
- Salado, M.; Kokal, R.K.; Calio, L.; Kazim, S.; Deepa, M.; Ahmad, S. Identifying the charge generation dynamics in Cs+-based triple cation mixed perovskite solar cells. Phys. Chem. Chem. Phys. 2017, 19, 22905–22914. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.; Gu, F.; Li, Y.; Sun, W.; Ye, S.; Rao, H.; Liu, Z.; Bian, Z.; Huang, C. Mixed-Organic-Cation Tin Iodide for Lead-Free Perovskite Solar Cells with an Efficiency of 8.12%. Adv. Sci. 2017, 4, 1700204. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Ozaki, M.; Yakumaru, S.; Handa, T.; Nishikubo, R.; Kanemitsu, Y.; Saeki, A.; Murata, Y.; Murdey, R.; Wakamiya, A. Lead-Free Solar Cells based on Tin Halide Perovskite Films with High Coverage and Improved Aggregation. Angew. Chem. Int. Ed. 2018, 57, 13221–13225. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Yan, K.; Tan, D.; Liang, X.; Zhang, H.; Huang, W. Solvent engineering improves efficiency of lead-free tin-based hybrid perovskite solar cells beyond 9%. ACS Energy Lett. 2018, 3, 2701–2707. [Google Scholar] [CrossRef]
- Ke, W.; Stoumpos, C.C.; Zhu, M.; Mao, L.; Spanopoulos, I.; Liu, J.; Kontsevoi, O.Y.; Chen, M.; Sarma, D.; Zhang, Y. Enhanced photovoltaic performance and stability with a new type of hollow 3D perovskite {en} FASnI3. Sci. Adv. 2017, 3, e1701293. [Google Scholar] [CrossRef] [Green Version]
- Ke, W.; Stoumpos, C.C.; Spanopoulos, I.; Mao, L.; Chen, M.; Wasielewski, M.R.; Kanatzidis, M.G. Efficient lead-free solar cells based on hollow {en} MASnI3 perovskites. J. Am. Chem. Soc. 2017, 139, 14800–14806. [Google Scholar] [CrossRef]
- Vegiraju, S.; Ke, W.; Priyanka, P.; Ni, J.; Wu, Y.C.; Spanopoulos, I.; Yau, S.L.; Marks, T.J.; Chen, M.; Kanatzidis, M.G. Benzodithiophene Hole-Transporting Mater. for Efficient Tin-Based Perovskite Solar Cells. Adv. Funct. Mater. 2019, 29, 1905393. [Google Scholar] [CrossRef]
- Smith, I.C.; Hoke, E.T.; Solis-Ibarra, D.; McGehee, M.D.; Karunadasa, H.I. A layered hybrid perovskite solar-cell absorber with enhanced moisture stability. Angew. Chem. Int. Ed. 2014, 53, 11232–11235. [Google Scholar] [CrossRef] [PubMed]
- Cao, D.H.; Stoumpos, C.C.; Farha, O.K.; Hupp, J.T.; Kanatzidis, M.G. 2D homologous perovskites as light-absorbing materials for solar cell applications. J. Am. Chem. Soc. 2015, 137, 7843–7850. [Google Scholar] [CrossRef] [PubMed]
- Cao, D.H.; Stoumpos, C.C.; Yokoyama, T.; Logsdon, J.L.; Song, T.-B.; Farha, O.K.; Wasielewski, M.R.; Hupp, J.T.; Kanatzidis, M.G. Thin films and solar cells based on semiconducting two-dimensional ruddlesden–popper (CH3 (CH2) 3NH3) 2 (CH3NH3) n− 1Sn n I3 n+ 1 perovskites. ACS Energy Lett. 2017, 2, 982–990. [Google Scholar] [CrossRef]
- Liao, Y.; Liu, H.; Zhou, W.; Yang, D.; Shang, Y.; Shi, Z.; Li, B.; Jiang, X.; Zhang, L.; Quan, L.N. Highly oriented low-dimensional tin halide perovskites with enhanced stability and photovoltaic performance. J. Am. Chem. Soc. 2017, 139, 6693–6699. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Xie, Y.; Hu, Y.; Long, M.; Zhang, Y.; Xu, J.; Qin, M.; Lu, X.; Liu, M. Effects of Alkyl Chain Length on Crystal Growth and Oxidation Process of Two-Dimensional Tin Halide Perovskites. ACS Energy Lett. 2020, 5, 1422–1429. [Google Scholar] [CrossRef]
- Ran, C.; Xi, J.; Gao, W.; Yuan, F.; Lei, T.; Jiao, B.; Hou, X.; Wu, Z. Bilateral interface engineering toward efficient 2D–3D bulk heterojunction tin halide lead-free perovskite solar cells. ACS Energy Lett. 2018, 3, 713–721. [Google Scholar] [CrossRef]
- Shao, S.; Liu, J.; Portale, G.; Fang, H.H.; Blake, G.R.; ten Brink, G.H.; Koster, L.J.A.; Loi, M.A. Highly reproducible Sn-based hybrid perovskite solar cells with 9% efficiency. Adv. Energy Mater. 2018, 8, 1702019. [Google Scholar] [CrossRef]
- Marshall, K.P.; Tao, S.; Walker, M.; Cook, D.S.; Lloyd-Hughes, J.; Varagnolo, S.; Wijesekara, A.; Walker, D.; Walton, R.I.; Hatton, R.A. Cs 1−x Rb x SnI 3 light harvesting semiconductors for perovskite photovoltaics. Mater. Chem. Front. 2018, 2, 1515–1522. [Google Scholar] [CrossRef] [Green Version]
- Gao, W.; Ran, C.; Li, J.; Dong, H.; Jiao, B.; Zhang, L.; Lan, X.; Hou, X.; Wu, Z. Robust Stability of Efficient Lead-Free Formamidinium Tin Iodide Perovskite Solar Cells Realized by Structural Regulation. J. Phys. Chem. Lett. 2018, 9, 6999–7006. [Google Scholar] [CrossRef] [Green Version]
- Jokar, E.; Chien, C.-H.; Fathi, A.; Rameez, M.; Chang, Y.-H.; Diau, E.W.-G. Slow surface passivation and crystal relaxation with additives to improve device performance and durability for tin-based perovskite solar cells. Energy Environ. Sci. 2018, 11, 2353–2362. [Google Scholar] [CrossRef]
- Weber, S.; Rath, T.; Kunert, B.; Resel, R.; Dimopoulos, T.; Trimmel, G. Dependence of material properties and photovoltaic performance of triple cation tin perovskites on the iodide to bromide ratio. Mon. Fur Chem. 2019, 150, 1921–1927. [Google Scholar] [CrossRef] [Green Version]
- Jokar, E.; Chien, C.H.; Tsai, C.M.; Fathi, A.; Diau, E.W.G. Robust Tin-Based Perovskite Solar Cells with Hybrid Organic Cations to Attain Efficiency Approaching 10%. Adv. Mater. 2019, 31, 1804835. [Google Scholar] [CrossRef] [PubMed]
- Kieslich, G.; Sun, S.; Cheetham, A.K. An extended tolerance factor approach for organic–inorganic perovskites. Chem. Sci. 2015, 6, 3430–3433. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stoumpos, C.C.; Mao, L.; Malliakas, C.D.; Kanatzidis, M.G. Structure–band gap relationships in hexagonal polytypes and low-dimensional structures of hybrid tin iodide perovskites. Inorg. Chem. 2016, 56, 56–73. [Google Scholar] [CrossRef]
- Fu, Q.; Tang, X.; Li, D.; Huang, L.; Xiao, S.; Chen, Y.; Hu, T. An efficient and stable tin-based perovskite solar cell passivated by aminoguanidine hydrochloride. J. Mater. Chem. C 2020, 8, 7786–7792. [Google Scholar] [CrossRef]
- Ran, C.; Gao, W.; Li, J.; Xi, J.; Li, L.; Dai, J.; Yang, Y.; Gao, X.; Dong, H.; Jiao, B. Conjugated Organic Cations Enable Efficient Self-Healing FASnI3 Solar Cells. Joule 2019, 3, 3072–3087. [Google Scholar] [CrossRef]
- Jin, Z.; Yu, B.-B.; Liao, M.; Liu, D.; Xiu, J.; Zhang, Z.; Lifshitz, E.; Tang, J.; Song, H.; He, Z. Enhanced efficiency and stability in Sn-based perovskite solar cells with secondary crystallization growth. J. Energy Chem. 2021, 54, 414–421. [Google Scholar] [CrossRef]
- Meng, X.; Wang, Y.; Lin, J.; Liu, X.; He, X.; Barbaud, J.; Wu, T.; Noda, T.; Yang, X.; Han, L. Surface-Controlled Oriented Growth of FASnI3 Crystals for Efficient Lead-free Perovskite Solar Cells. Joule 2020, 4, 902–912. [Google Scholar] [CrossRef]
- Liu, X.; Wang, Y.; Wu, T.; He, X.; Meng, X.; Barbaud, J.; Chen, H.; Segawa, H.; Yang, X.; Han, L. Efficient and stable tin perovskite solar cells enabled by amorphous-polycrystalline structure. Nat. Commun. 2020, 11, 2678. [Google Scholar] [CrossRef]
- Jiang, X.; Wang, F.; Wei, Q.; Li, H.; Shang, Y.; Zhou, W.; Wang, C.; Cheng, P.; Chen, Q.; Chen, L. Ultra-high open-circuit voltage of tin perovskite solar cells via an electron transporting layer design. Nat. Commun. 2020, 11, 1245. [Google Scholar] [CrossRef] [PubMed]
- Hayase, S.; Ito, N.; Kamarudin, M.A.K.; Shen, Q.; Ogomi, Y.; Iikubo, S.; Yoshino, K.; Minemoto, T.; Toyoda, T. Pb free perovskite solar cells consisting of mixed metal SnGe perovskite as light absorber. In Proceedings of the Conference Presentation SPIE, San Diego, CA, USA, 18 September 2018. [Google Scholar]
- Chen, M.; Ju, M.-G.; Garces, H.F.; Carl, A.D.; Ono, L.K.; Hawash, Z.; Zhang, Y.; Shen, T.; Qi, Y.; Grimm, R.L.; et al. Highly stable and efficient all-inorganic lead-free perovskite solar cells with native-oxide passivation. Nat. Commun. 2019, 10, 16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ali, R.; Hou, G.; Zhu, Z.; Yan, Q.; Zheng, Q.; Su, G. Stable mixed group II (Ca, Sr) and XIV (Ge, Sn) lead-free perovskite solar cells. J. Mater. Chem. 2018, 6, 9220–9227. [Google Scholar] [CrossRef]
- Ng, C.H.; Hamada, K.; Kapil, G.; Kamarudin, M.A.; Wang, Z.; likubo, S.; Shen, Q.; Yoshino, K.; Minemoto, T.; Hayase, S. Reducing trap density and carrier concentration by a Ge additive for an efficient quasi 2D/3D perovskite solar cell. J. Mater. Chem. A 2020, 8, 2962–2968. [Google Scholar] [CrossRef]
- Nishimura, K.; Kamarudin, M.A.; Hirotani, D.; Hamada, K.; Shen, Q.; Iikubo, S.; Minemoto, T.; Yoshino, K.; Hayase, S. Lead-free tin-halide perovskite solar cells with 13% efficiency. Nano Energy 2020, 74, 104858. [Google Scholar] [CrossRef]
Year | Device Architecture | Perovskite Film Fabrication Technique/PEROVSKITE Film | JSC (mA·cm−2) | VOC (V) | FF | EFF (%) | Ref. |
---|---|---|---|---|---|---|---|
2014 | FTO/c-TiO2/mp-TiO2-Perovskite/HTL/Au | Spin Coating using DMF as solvent/MASnI3 | 16.8 | 0.88 | 0.42 | 6.4 | [42] |
2014 | FTO/c-TiO2/mp-TiO2-Perovskite/HTL/Au | Spin Coating using DMF as solvent/MASnI3–xBrx | 12.3 | 0.82 | 0.57 | 5.73 | [44] |
2015 | FTO/c-TiO2/mp-TiO2-Perovskite/Au | Spin Coating +Annealing using DMSO as solvent/MASnI3 | 21.4 | 0.32 | 0.46 | 3.15 | [45] |
2016 | FTO/c-TiO2/mp-TiO2-Perovskite/Au | LT-VASP/ MASnI3 | 17.8 | 0.273 | 0.39 | 1.86 | [51] |
2016 | ITO/PEDOT:PSS/Poly-TPD/MASnI3/C60/BCP/Ag | Thermal evaporation/MASnI3 | 12.1 | 0.377 | 0.366 | 1.7 | [61] |
2017 | ITO/PEDOT:PSS/MASnI3/C60/BCP/Ag | SB Method using DMSO as solvent/MASnI3:SnF2 | 11.82 ± 1.20 | 0.45 ± 0.01 | 0.40 ± 0.03 | 2.14 ± 0.35 | [55] |
2017 | FTO/c-TiO2/mp-TiO2-perovskite/perovskite capping layer/PTAA/Au | Spin Coating in Hydrazine environment using DMSO as Solvent/MASnI3 | 19.92 | 0.377 | 0.517 | 3.89 | [50] |
2017 | FTO/c-TiO2/mp-TiO2-perovskite/ PTAA/Au | Spin Coating +Annealing using DMSO as solvent/MASnI3:SnF2 | 26.1 | 0.25 | 0.30 | 1.94 | [57] |
2017 | FTO/c-TiO2/mp-TiO2-perovskite/Al2O3-Perovskite/C | Spin Coating using DMF as solvent/MASnIBr2-xClx | 13.99 | 0.38 | 0.573 | 3.11 | [59] |
2020 | ITO/PEDOT:PSS/MASnI3/ PC61BM/BCP/Ag | Ion exchange/insertion reactions/MASnI3 | 20.68 | 0.57 | 0.66 | 7.78 | [60] |
2020 | ITO/PEDOT:PSS/Perovskite/PCBM/PEI/Ag | Spin Coating in Nitrogen environment/MASnI3 | 12.47 | 0.57 | 0.44 | 3.13 | [62] |
Year | Device Architecture | Testing Environment | Stability | Ref. |
---|---|---|---|---|
2014 | FTO/c-TiO2/mp-TiO2- MASnI3–xBrx /HTL/Au | Devices were stored in nitrogen glove box and were sealed with Surlyn films | Retained almost 80% of initial performance for 12 h | [44] |
2016 | Two step process of vapor deposition + solution based technique to obtain CH3NH3SnI2 films | Exposed to air and continuous illumination | Films retained almost 80% of their initial absorbance for 2 h | [53] |
2016 | 5-AVAI:MASnI3 films (1:20) | Exposed to air | 113.5 h | [54] |
2017 | ITO/PEDOT:PSS/MASnI3/ C60/BCP/Ag | Under 1 Sun illumination | Devices retained 50% of their initial efficiencies for 200 h | [55] |
2017 | FTO/c-TiO2/mp-TiO2- MASnI3:SnF2/PTAA/Au | Encapsulated devices were kept under 1 Sun illumination in ambient conditions, | Devices were stable for 500 h | [57] |
2017 | FTO/c-TiO2/mp-TiO2-perovskite/Al2O3- MASnIBr2-xClx/C | Encapsulated devices while being stored | Retained 90% of their efficiencies for 2000 h | [59] |
2020 | ITO/PEDOT:PSS/MASnI3/ PC61BM/BCP/Ag | Un-encapsulated device under continuous 1 Sun illumination in inert environment | Retained almost 70% of initial performance for 200 h | [60] |
Year | Device Architecture | Perovskite Film Fabrication Technique/Perovskite Film | JSC (mA·cm−2) | VOC (V) | FF | EFF (%) | Ref. |
---|---|---|---|---|---|---|---|
2015 | FTO/c-TiO2/mp-TiO2-Perovskite/spiro-OMeTAD/Au | Spin Coating + Annealing/FASnI3 +SnF2 | 24.45 | 0.238 | 0.36 | 2.10 | [67] |
2016 | ITO/PEDOT:PSS/Perovskite/C60/Ca/Al | Spin Coating using DMF as solvent + chlorobenzene dripping + Annealing/FASnI2Br | 6.82 | 0.467 | 0.543 | 1.72 | [78] |
2016 | FTO/c-TiO2/mp-TiO2-Perovskite/Spiro-OMeTAD/Au | Spin Coating using DMF+DMSO as solvent + Annealing/FASnI3 + SnF2 + Pyrazine | 23.7 | 0.32 | 0.63 | 4.8 | [68] |
2016 | ITO/PEDOT:PSS/Perovskite/C60/BCP/Ag | Spin Coating using DMF+DMSO as solvent + diethyl ether dripping + Annealing/FASnI3+SnF2 | 22.07 | 0.465 | 0.606 | 6.22 | [69] |
2016 | FTO/c-TiO2/mp-TiO2-ZnS-Perovskite/PTAA/Au | Spin Coating using DMF+DMSO as solvent + diethyl ether dripping + Annealing/FASnI3+SnF2 | 23.09 | 0.380 | 0.601 | 5.27 | [72] |
2017 | ITO/PEDOT:PSS/PP-Perovskite/C60/ BCP/Ag | Spin Coating FAI:PEDOT:PSS using water as solvent + Annealing + Evaporation of SnI2/FASnI3 | 17.78 | 0.33 | 0.679 | 3.98 | [73] |
2017 | FTO/c-TiO2/mp-TiO2-Perovskite /spiro-OMeTAD/Au | Spin Coating using DMF+DMSO as solvent/FASnI3-xBrx + SnF2 + Pyrazine | 19.8 | 0.414 | 0.669 | 5.5 | [79] |
2018 | ITO/PEDOT:PSS/Perovskite/C60:1 wt% TBAI/Ag | Sequential Deposition Route/FASnI3 + SnF2 + TMA | 22.45 | 0.47 | 0.678 | 7.09 | [74] |
2018 | ITO/PEDOT:PSS/Perovskite/ C60/ BCP/Ag. | Adding Sn powder in precursor solution + Spin Coating using DMSO as solvent+ Annealing/FASnI3+SnF2 | 17.5 | 0.58 | 0.663 | 6.75 | [80] |
2019 | ITO/PEDOT:PSS/Perovskite/ PCBM/BCP/Ag | Spin Coating using DMF+DMSO as solvent + diethyl ether blended with PAMS dripping + Annealing/FASnI3 | 17.64 | 0.314 | 0.410 | 2.28 | [71] |
2019 | ITO/PEDOT:PSS/Perovskite/C60 /BCP/Ag | Adding CDTA in precursor solution + Spin Coating using DMSO as solvent+ CB dripping + Annealing/ FASnI3 + CDTA + SnF2 | 21.22 | 0.63 | 0.747 | 10.17 | [81] |
2020 | ITO/PEDOT:PSS/Perovskite/ PCBM/PEI/Ag | Spin Coating in Nitrogen environment/FASnI3 | 15.36 | 0.64 | 0.56 | 5.51 | [62] |
2020 | ITO/PEDOT:PSS/perovskite /PC61BM/BCP/Ag | Spin Coating + EVA in CB as dripping/FASnI3-EVA | 22.80 | 0.523 | 0.646 | 7.72 | [82] |
Year | Device Architecture | Testing Environment | Stability | Ref. |
---|---|---|---|---|
2016 | ITO/PEDOT:PSS/ FASnI2Br /C60/Ca/Al | Un-encapsulated devices were stored in nitrogen environment | Retained over 60% of their initial efficiency for more than 30 h | [78] |
2016 | ITO/PEDOT:PSS/FASnI3 + SnF2/C60/BCP/Ag | Encapsulated devices stored in dark under inert environment | Retained almost 85% efficiency for 720 h | [69] |
2016 | FTO/c-TiO2/mp-TiO2- FASnI3 + SnF2 + Pyrazine/Spiro-OMeTAD/Au | Encapsulated devices stored in dark under ambient conditions | Retained almost 98% of their initial efficiencies for 2400 h | [68] |
2017 | FTO/c-TiO2/mp-TiO2- FASnI3-xBrx + SnF2+ Pyrazine /spiro-OMeTAD/Au | Encapsulated devices under continuous 1 Sun irradiation in ambient environment | Retained almost 83% of initial performance after 1000 h | [79] |
2018 | ITO/PEDOT:PSS/FASnI3 + SnF2 + TMA/C60:1 wt% TBAI/Ag | Encapsulated devices stored in ambient conditions | Retained almost 80% of initial performance for 420 h | [74] |
2019 | ITO/PEDOT:PSS/FASnI3 + CDTA + SnF2/C60/BCP/Ag | Encapsulated devices under continuous 1 Sun irradiation | Retained almost 90% of its initial efficiency for 1000 h | [81] |
2020 | ITO/PEDOT:PSS/FASnI3-EVA /PC61BM/BCP/Ag | Un-encapsulated devices stored in ambient conditions with RH of 60% | Retained 62.4% of their initial efficiencies for 48 h | [82] |
Year | Device Architecture | Perovskite Film Fabrication Technique/Perovskite Film | JSC (mA·cm−2) | VOC (V) | FF | EFF (%) | Ref. |
---|---|---|---|---|---|---|---|
2014 | FTO/c-TiO2/mp-TiO2-Perovskite/m-MTDATA/Au | Spin Coating using DMSO as solvent + Annealing/CsSnI3 + SnF2 | 22.70 | 0.24 | 0.37 | 2.02 | [85] |
2015 | FTO/c-TiO2/mp-TiO2-Perovskite/Spiro-OMeTAD/Au | Spin Coating using DMSO as solvent + Annealing/CsSnI2Br + SnF2 | 15.06 | 0.289 | 0.38 | 1.67 | [88] |
2015 | ITO/CuI/Perovskite/ICBA/BCP/Al | Spin Coating using DMF as solvent + /CsSnI3+excess SnI2 | 12.30 ± 0.48 | 0.430 ± 0.061 | 0.395 ± 0.053 | 2.13 ± 0.53 | [89] |
2016 | ITO/Perovskite/PC61BM/BCP/Al | Spin Coating using DMF as solvent + Annealing/CsSnI3+SnCl2 | 9.89 ± 0.55 | 0.50 ± 0.01 | 0.68 ± 0.01 | 3.35 ± 0.21 | [91] |
2016 | FTO/c-TiO2/mp-TiO2-Perovskite/Al2O3-Perovskite/C-Perovskite | Spin Coating using DMSO as solvent + Annealing/CsSnIBr2+SnF2+ Hypophosphorous Acid (HPA) | 16.7 ± 0.7 | 0.33± 0.02 | 0.53 ± 0.02 | 3 ± 0.2 | [95] |
2016 | FTO/c-TiO2/mp-TiO2-Perovskite/Spiro-MeOTAD/Au | Spin Coating using DMSO as a Solvent + Annealing/CsSnBr3+SnF2 | 9.1 | 0.42 | 0.57 | 2.17 | [92] |
2016 | ITO/MoO3/Perovskite/C60/BCP/Ag, | Vapor Deposition + Anealing/CsSnBr3+ SnF2 + Excess SnBr2 | 2.1 ± 0.2 | 0.45 ± 0.05 | 0.52 ± 0.05 | 0.50 ± 0.05 | [93] |
2016 | ITO/NiOx/Perovskite/PCBM/Al | Spin Coating using a mixed polar Solvent + Annealing/B-γ-CsSnI3 | 10.21 | 0.52 | 0.625 | 3.31 | [96] |
2016 | ITO/mp-TiO2-Quantum Rods of CsSnI3/spiro-OMeTAD/Au | Spin Coating using CsSnX3 perovskites (160 mg/mL) in toluene +Annealing/QRs of CsSnI3 | 23.2 | 0.86 | 0.65 | 12.96 | [97] |
2017 | FTO/c-TiO2/mp-TiO2-perovskite/perovskite capping layer /PTAA/Au | Spin Coating in Hydrazine environment using DMSO as Solvent/CsSnBr3 | 13.96 | 0.366 | 0.593 | 3.04 | [50] |
2017 | FTO/c-TiO2/mp-TiO2-Perovskite/PTAA/Au | Spin Coating using DMF + DMSO as solvent + Annealing + Hydraizne environment/ CsSnI3+ Excess SnI2 | 25.71 | 0.381 | 0.49 | 4.81 | [90] |
2017 | FTO/c-TiO2/Cs2SnI6/P3HT/Ag | Vapor deposition of CsI,SnI2 + Solid State Reaction + Oxidation/Cs2SnI6 | 5.41 | 0.51 | 0.35, | 0.96 | [100] |
2018 | FTO/c-TiO2/mp-TiO2-Perovskite /PTAA/Au | Spin Coating using DMF+DMSO as solvent/CsSnI3 + Excess SnI2 + SnF2 + Piperazine | 20.63 | 0.338 | 0.541 | 3.83 | [94] |
2020 | Mp-TiO2/CoCp2-CsSnI3/Al2O3/NiO/ carbon framework | Drop Casting using DMSO as solvent + Annealing/CoCp2-CsSnI3 | 18.24 | 0.36 | 0.46 | 3 | [101] |
2020 | ITO/Perovskite/C60/BCP/Ag | Vacuum flash-assisted solution processing (VASP)/CsSnI3 | 16.5 | 0.41 | 0.55 | 3.8 | [102] |
Year | Device Architecture | Testing Environment | Stability | Ref. |
---|---|---|---|---|
2014 | FTO/c-TiO2/mp-TiO2- CsSnI3 + SnF2/m-MTDATA/Au | Devices stored in inert environment | Showed no significant loss of performance for almost 250 h | [85] |
2015 | ITO/CuI/CsSnI3+excess SnI2/ICBA/BCP/Al | Un-encapsulated devices tested under 1 Sun constant illumination in ambient conditions | Retained 70% of their initial efficiencies for 16 h | [89] |
2016 | ITO/MoO3/ CsSnBr3+ SnF2+Excess SnBr2/C60/BCP/Ag, | Un-encapsulated devices tested under 1 Sun illumination in ambient conditions | Devices remained stable for 50 min | [93] |
2016 | ITO/mp-TiO2-Quantum Rods of CsSnI3/spiro-OMeTAD/Au | ------ | Sealed Devices remained stable for 240 h | [97] |
2016 | FTO/c-TiO2/mp-TiO2-Perovskite/Al2O3- CsSnIBr2+SnF2+ HPA/C-Perovskite | Encapsulated devices stored under ambient condition | Retained almost all of their initial efficiencies for 1848 h | [95] |
2017 | Cubic nanocages of CsSnBr3 | Ambient conditions | 24 h stable | [99] |
2020 | ITO/VASP-CsSnI3/C60/BCP/Ag | Stored in inert environment | Increased its PCE from 2% to 3.8% after 2160 h | [102] |
Year | Device Architecture | Perovskite Film Fabrication Technique/Perovskite Film | JSC (mA·cm−2) | VOC (V) | FF | EFF (%) | Ref. |
---|---|---|---|---|---|---|---|
2017 | ITO/PEDOT:PSS/Perovskite/C60/BCP/Ag | Spin Coating using DMSO as solvent + Annealing/(FA)x(MA)1−xSnI3 + SnF2 | 21.2 | 0.61 | 0.627 | 8.12 | [107] |
2017 | FTO/c-TiO2/mp-TiO2-Perovskite/PTAA/Au | Spin Coating using DMF + DMSO as solvent + Annealing /{en}FASnI3 + SnF2 | 22.54 | 0.480 | 65.96 | 7.14 | [110] |
2017 | FTO/c-TiO2/mp-TiO2-Perovskite/PTAA/Au | Spin Coating using DMF + DMSO as solvent + Annealing /{en}MASnI3 + SnF2 | 24.28 | 0.428 | 0.6372 | 6.63 | [111] |
2017 | FTO/c-TiO2/mp-TiO2-Perovskite/PTAA/Au | Spin Coating using DMF + DMSO as solvent + Annealing /{en}CsSnI3 + SnF2 | 25.07 | 0.280 | 0.5382 | 3.79 | [111] |
2017 | FTO/c-TiO2/mp-TiO2-Perovskite/PTAA/Au | Spin coating using DMSO as solvent/(BA)2(MA)3Sn4I13 + SnF2 + triethylphosphine (TEP) | 24.1 | 0.229 | 0.457 | 2.53 | [115] |
2017 | ITO/NiOx/Perovskite/PCBM/Al | Spin Coating using DMF + DMSO as solvent /(PEA)2(FA)n-1SnnI3n+1+ SnF2 | 14.44 | 0.59 | 0.69 | 5.94 | [116] |
2018 | ITO/LiF/PEDOT:PSS/Perovskite/C60/BCP/Ag | Multichannel interdiffusion two-step film fabrication protocol/(PEA,FA)SnI3 | 20.07 | 0.47 | 0.74 | 6.98 | [118] |
2018 | ITO/PEDOT:PSS/Perovskite/C60/BCP/Al | Spin Coating using DMF + DMSO as solvent + Anti solvent dripping + Annealing/(PEA)2(FA)n-1SnnI3n+1 | 24.1 | 0.525 | 0.71 | 9 | [119] |
2018 | ITO/PEDOT:PSS/Perovskite/C60/BCP/Ag | Spin Coating using DMSO as solvent+ Hot antisolvent treatment+Annealing in DMSO vapor atmoshpere/ (FA)x(MA)1−xSnI3 + SnF2 | 19.4 | 0.55 | 0.67 | 7.2 | [110] |
2018 | ITO/PEDOT:PSS/Perovskite/C60/BCP/Al | Spin Coating using DMF + DMSO as solvent + Antisolvent dripping / FA0.75MA0.25SnI3 + SnF2 | 24.3 | 0.55 | 0.673 | 9.06 | [109] |
2018 | ITO/Perovskite/PC61BM/BCP/ Al | Spin Coating using DMF as solvent /CsxRb1-x SnI3 + Excess SnI2 | 8.11 ± 0.53 | 0.48 ± 0.04 | 0.46 ± 0.05 | 1.81 ± 0.30 | [120] |
2018 | ITO/PEDOT:PSS/Perovskite/C60/BCP/Ag | Spin Coating +Annealing/CsxFA1-xFASnI3 | 20.70 | 0.44 | 0.668 | 6.08 | [121] |
2018 | ITO/PEDOT:PSS/Perovskite/C60 /BCP/Ag | Spin Coating using DMSO as solvent + Antisolvent dripping/FASnI3–yEDAI2+SnF2 | 21.3 | 0.538 | 0.718 | 8.9 | [122] |
2019 | FTO/mp-TiO2-Perovskite/BDT-4D/Au | Spin Coating using DMF + DMSO as solvent + Annealing /{en}FASnI3 + SnF2 | 22.41 | 0.497 | 0.682 | 7.59 | [112] |
2019 | ITO/PEDOT:PSS/Perovskite/PC60BM/Al | Spin Coating using DMF + DMSO as solvent + Antisolvent dripping/ MA0.75FA0.15PEA0.1Sn(Br0.25I0.75)3 | 16.45 | 0.49 | 0.633 | 4.63 | [123] |
2019 | ITO/PEDOT:PSS/Perovskite/C60 /BCP/Ag. | -----/GAxFA1−x−2ySnI3–yEDAI2+SnF2 | 21.2 | 0.619 | 0.729 | 9.6 | [124] |
2019 | ITO/PEDOT:PSS/Perovskite/C60/BCP/Ag | Spin Coating using DMSO as solvent + Antisolvent dripping + Annealing/ PPAxFA1-xSnI3 | 23.34 | 0.56 | 0.735 | 9.61 | [128] |
2020 | ITO/PEDOT:PSS/ Perovskite/PCBM+PEI/Ag | Spin Coating using DMSO + DMF as solvent + Antisolvent dripping + Annealing/ NH2GACl+FASnI3+SnF2 | 19.30 ± 0.35 | 0.54 ± 0.02 | 0.681 ± 0.084 | 7.10 ± 0.2 | [127] |
2020 | FTO/c-TiO2/mp-TiO2/perovskite/PTAA/Au | BA2(FA)n-1SnnI3n+1 | 22.02 | 0.439 | 0.433 | 4.12 | [117] |
2020 | ITO/PEDOT:PSS/Perovskite/C60/BCP/Ag | Secondary crystallization growth (SCG) technique/ FA0.75MA0.25SnI2.75Br0.25 | 22.3 | 0.52 | 0.695 | 8.07 | [129] |
2020 | ITO/PEDOT:PSS/Perovskite/C60/BCP/Ag | Spin Coating using DMSO as solvent + Antisolvent dripping of CB + Annealing/FASnI3-FOEI | 21.59 | 0.67 | 0.75 | 10.81 | [130] |
2020 | ITO/PEDOT:PSS/Perovskite/ PCBM/BCP/Ag | Spin Coating using DMSO as solvent + Antisolvent dripping of CB + Annealing/CsFASnI3 | 21.6 | 0.64 | 0.752 | 10.4 | [131] |
2020 | ITO/PEDOT/Perovskite/ICBA/BCP/Ag | Spin Coating using DMSO + DMF as solvent + Antisolvent dripping of toluene + Annealing/ PEAxFA1−xSnI3+SCN | 17.4 | 0.94 | 0.75 | 12.4 | [132] |
2020 | FTO/PEDOT:PSS/Perovskite/C60/BCP/Ag/Au | Spin Coating using DMSO + DMF as solvent + Antisolvent dripping of CB + Annealing/FA0.92PEA0.08SnxGe1-xI3 | 21.92 | 0.46 | 0.73 | 7.45 | [136] |
2020 | FTO/PEDOT:PSS/perovskite/C60/BCP/Ag/Au. | GeI2 doped (FA0.9EA0.1)0.98EDA0.01SnI3 | 20.32 | 0.84 | 0.78 | 13.24 | [137] |
Year | Device Architecture | Testing Environment | Stability | Ref. |
---|---|---|---|---|
2017 | FTO/c-TiO2/mp-TiO2-(BA)2(MA)3Sn4I13 + SnF2 + triethylphosphine (TEP)/PTAA/Au | Encapsulated devices under inert environment | Retained almost 90% of initial efficiency after 720 h | [115] |
2017 | ITO/PEDOT:PSS/(FA)x(MA)1−xSnI3 + SnF2/C60/BCP/Ag | Encapsulated devices stored in inert environment | Retained almost 80% of initial efficiency after 400 h | [107] |
2017 | FTO/c-TiO2/mp-TiO2- {en}FASnI3 + SnF2/PTAA/Au | Encapsulated devices when stored | Retained almost all of their initial performance after 1000 h | [110] |
2018 | ITO/PEDOT:PSS/FA0.75MA0.25SnI3 + SnF2/C60/BCP/Al | Encapsulated devices stored in inert environment | Retained almost 75% of their initial efficiencies after 720 h | [109] |
2018 | ITO/PEDOT:PSS/CsxFA1-xFASnI3/C60/BCP/Ag | Encapsulated devices stored in inert environment | Remained stable for almost 2000 h | [121] |
2018 | ITO/PEDOT:PSS/FASnI3–yEDAI2+SnF2/C60/BCP/Ag | Encapsulated devices | Retained 90% of their initial efficiencies upto 2000 h | [122] |
2019 | ITO/PEDOT:PSS/ GAxFA1−x−2ySnI3–yEDAI2+SnF2/C60 /BCP/Ag. | Encapsulated device under 1 Sun illumination in ambient condition (RH = 50%) Un-encapsulated device stored in ambient condition (RH = 60%) Un-encapsulated device stored in ambient condition (RH = 20%)Un-encapsulated device stored in inert environment | Efficiency remained stable for 1 h Retained 80% of its initial PCE after 96 h Retained 100% of its initial PCE after 170 h PCE increased from 7.3% to 9.6% after 2000 h | [124] |
2019 | ITO/PEDOT:PSS/ PPAxFA1-xSnI3/C60/BCP/Ag | Un-encapsulated device stored in inert environment | Retained 90% of its initial PCE after 1440 h | [128] |
2020 | ITO/PEDOT:PSS/NH2GACl+FASnI3/PCBM+PEI/Ag | Un-encapsulated device stored in inert environment | Retained 90% of its initial PCE after 720 h | [127] |
2020 | FTO/c-TiO2/mp-TiO2/BA2(FA)n-1SnnI3n+1/PTAA/Au | Un-encapsulated device stored in inert environment | Retained 80% of its initial PCE after 336 h | [117] |
2020 | ITO/PEDOT:PSS/FA0.75MA0.25SnI2.75Br0.25/C60/ BCP/Ag | Un-encapsulated devices stored in inert environment | Retained 87% of their initial PCEs after 1000 h | [129] |
2020 | ITO/PEDOT:PSS/ FASnI3-FOEI /C60/BCP/Ag | Under continuous 1 Sun irradiation | Remained Stable for 500 h | [130] |
2020 | ITO/PEDOT:PSS/CsFASnI3/ PCBM/BCP/Ag | Encapsulated device operation at simulated illumination of AM 1.5 G | Retained 95% of its initial PCE after 1000 h | [131] |
2020 | ITO/PEDOT / PEAxFA1−xSnI3+SCN/ICBA/BCP/Ag | Encapsulated device stored in shelf | Retained 90% of its initial PCE for 3800 h | [132] |
2020 | FTO/PEDOT:PSS/FA0.92PEA0.08SnxGe1-xI3/C60/BCP/Ag/Au | Un-encapsulated devices continuous operation at simulated illumination of AM 1.5 G in ambient conditions | Retained 70% of their initial PCEs for 3 h | [136]. |
2020 | FTO/PCBM/CsSn0.5Ge0.5I3-Native oxide/Spiro-OMeTAD/Au | Un-encapsulated devices continuous operation at simulated illumination of AM 1.5 G in inert conditions | Retained more than 90% of their initial PCEs for 500 h | [134] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shah, S.A.A.; Sayyad, M.H.; Khan, K.; Guo, K.; Shen, F.; Sun, J.; Tareen, A.K.; Gong, Y.; Guo, Z. Progress towards High-Efficiency and Stable Tin-Based Perovskite Solar Cells. Energies 2020, 13, 5092. https://doi.org/10.3390/en13195092
Shah SAA, Sayyad MH, Khan K, Guo K, Shen F, Sun J, Tareen AK, Gong Y, Guo Z. Progress towards High-Efficiency and Stable Tin-Based Perovskite Solar Cells. Energies. 2020; 13(19):5092. https://doi.org/10.3390/en13195092
Chicago/Turabian StyleShah, Syed Afaq Ali, Muhammad Hassan Sayyad, Karim Khan, Kai Guo, Fei Shen, Jinghua Sun, Ayesha Khan Tareen, Yubin Gong, and Zhongyi Guo. 2020. "Progress towards High-Efficiency and Stable Tin-Based Perovskite Solar Cells" Energies 13, no. 19: 5092. https://doi.org/10.3390/en13195092
APA StyleShah, S. A. A., Sayyad, M. H., Khan, K., Guo, K., Shen, F., Sun, J., Tareen, A. K., Gong, Y., & Guo, Z. (2020). Progress towards High-Efficiency and Stable Tin-Based Perovskite Solar Cells. Energies, 13(19), 5092. https://doi.org/10.3390/en13195092