Electricity Price Forecasting Based on Self-Adaptive Decomposition and Heterogeneous Ensemble Learning
Abstract
:1. Introduction
1.1. Related Works
1.2. Objective and Contribution
- Firstly, this paper contributes to the field of time series pre-processing by coupling the CEEMD with metaheuristic approach named COA to tune its hyperparameters;
- Second, based on the literature review gap, exogenous variables related to supply and demand are used as inputs for each evaluated model, and their importance is assessed. The inputs associated to supply are the generation of hydraulic, nuclear, and thermal energy. Thus, the variables related to demand are the monthly consumption for each area (commercial and industrial). Through the use of these variables is intended to giving additional information for the models to learn the data behavior, so that they achieve high forecasting accuracy;
- Third, with the combination of the different non-linear models (ELM, SVR, GP, and GBM) to train and predict each component of the decomposed stage, the developed model can learn the data patterns and reflect the high-frequency of electricity price data; and,
- Also, this paper contributes for the literature of models used to forecasting electricity prices by investigating the performance of decomposed homogeneous and heterogeneous ensemble learning models.
2. Material & Methods
2.1. Material
2.2. Methods
2.2.1. Coyote Optimization Algorithm
2.2.2. Complementary Ensemble Empirical Mode Decomposition
2.2.3. Extreme Learning Machine
2.2.4. Gradient Boosting Machine
2.2.5. Gaussian Process
2.2.6. Support Vector Regression
2.3. Performance Indicators
3. The Proposed Self-Adaptive Decomposed Heterogeneous Ensemble Learning Model
4. Results
4.1. Comparison of Proposed and Self-Adaptive Decomposed Homogeneous Ensemble Learning Model
4.2. Comparison of Proposed and Non-Decomposed Models
4.3. Statistical Tests to Compare Proposed and Benchmark Models
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
ARIMA | Autoregressive Integrated Moving Average |
CEEMD | Complementary Ensemble Empirical Mode Decomposition |
COA | Coyote Optimization Algorithm |
DM | Diebold-Mariano |
EMD | Empirical Mode Decomposition |
EEMD | Ensemble Empirical Mode Decomposition |
ELM | Extreme Learning Machines |
GBM | Gradient Boosting Machines |
GP | Gaussian Process |
IMF | Intrinsic Mode Function |
IPEA | Institute of Applied Economics Research |
LSTM | Long Short-Term Memory |
LOOCV-TS | Leave-One-Out Cross-Validation Time Slice |
MOWDT | Maximal Overlap Wavelet Discrete Transform |
MWh | Mega-Watt Hour |
OI | Ortogonal Index |
OWA | Overall Weight Average |
PACF | Partial Auto-Correlation Function |
SVR | Support Vector Regression |
sMAPE | Symmetric Mean Absolute Percentage Error |
RMSE | Relative Mean Square Error |
R | Coefficient of Determination |
VMD | Variational Mode Decomposition |
References
- Abedinia, O.; Amjady, N.; Shafie-khah, M.; Catalão, J. Electricity price forecast using combinatorial neural network trained by a new stochastic search method. Energy Convers. Manag. 2015, 105, 642–654. [Google Scholar] [CrossRef]
- Zhang, J.L.; Zhang, Y.J.; Li, D.Z.; Tan, Z.F.; Ji, J.F. Forecasting day-ahead electricity prices using a new integrated model. Int. J. Electr. Power Energy Syst. 2019, 105, 541–548. [Google Scholar] [CrossRef]
- Muniain, P.; Ziel, F. Probabilistic forecasting in day-ahead electricity markets: Simulating peak and off-peak prices. Int. J. Forecast. 2020. [Google Scholar] [CrossRef] [Green Version]
- Yang, Z.; Ce, L.; Lian, L. Electricity price forecasting by a hybrid model, combining wavelet transform, ARMA and kernel-based extreme learning machine methods. Appl. Energy 2017, 190, 291–305. [Google Scholar] [CrossRef]
- Maciejowska, K. Assessing the impact of renewable energy sources on the electricity price level and variability—A quantile regression approach. Energy Econ. 2020, 85, 104532. [Google Scholar] [CrossRef]
- Corso, M.P.; Stefenon, S.F.; Couto, V.F.; Cabral, S.H.L.; Nied, A. Evaluation of methods for electric field calculation in transmission lines. IEEE Lat. Am. Trans. 2018, 16, 2970–2976. [Google Scholar] [CrossRef]
- Aineto, D.; Iranzo-Sánchez, J.; Lemus-Zúñiga, L.G.; Onaindia, E.; Urchueguía, J.F. On the influence of renewable energy sources in electricity price forecasting in the Iberian market. Energies 2019, 12, 82. [Google Scholar] [CrossRef] [Green Version]
- Brito, B.H.; Finardi, E.C.; Takigawa, F.Y. Unit-commitment via logarithmic aggregated convex combination in multi-unit hydro plants. Electr. Power Syst. Res. 2020, 189, 106784. [Google Scholar] [CrossRef]
- Colonetti, B.; Finardi, E.C. Combining Lagrangian relaxation, benders decomposition, and the level bundle method in the stochastic hydrothermal unit-commitment problem. Int. Trans. Electr. Energy Syst. 2020, 12514. [Google Scholar] [CrossRef]
- Stefenon, S.F.; Freire, R.Z.; Coelho, L.S.; Meyer, L.H.; Grebogi, R.B.; Buratto, W.G.; Nied, A. Electrical insulator fault forecasting based on a wavelet neuro-fuzzy system. Energies 2020, 13, 484. [Google Scholar] [CrossRef] [Green Version]
- Ribeiro, M.H.D.M.; Ribeiro, V.H.A.; Reynoso-Meza, G.; Coelho, L.S. Multi-objective ensemble model for short-term Price forecasting in corn price time series. In Proceedings of the International Joint Conference on Neural Networks (IJCNN), Budapest, Hungary, 14–19 July 2019; pp. 1–8. [Google Scholar] [CrossRef]
- Ribeiro, M.H.D.M.; Coelho, L.S. Ensemble approach based on bagging, boosting and stacking for short-term prediction in agribusiness time series. Appl. Soft Comput. 2020, 86. [Google Scholar] [CrossRef]
- Ribeiro, M.H.D.M.; da Silva, R.G.; Mariani, V.C.; Coelho, L.S. Short-term forecasting COVID-19 cumulative confirmed cases: Perspectives for Brazil. Chaos Solitons Fractals 2020, 135. [Google Scholar] [CrossRef]
- Zhang, W.; Qu, Z.; Zhang, K.; Mao, W.; Ma, Y.; Fan, X. A combined model based on CEEMDAN and modified flower pollination algorithm for wind speed forecasting. Energy Convers. Manag. 2017, 136, 439–451. [Google Scholar] [CrossRef]
- Ribeiro, G.T.; Sauer, J.G.; Fraccanabbia, N.; Mariani, V.C.; Coelho, L.S. Bayesian optimized echo state network applied to short-term load forecasting. Energies 2020, 13, 2390. [Google Scholar] [CrossRef]
- Zhang, D.; Cai, C.; Chen, S.; Ling, L. An improved genetic algorithm for optimizing ensemble empirical mode decomposition method. Syst. Sci. Control Eng. 2019, 7, 53–63. [Google Scholar] [CrossRef] [Green Version]
- Yang, W.; Wang, J.; Niu, T.; Du, P. A hybrid forecasting system based on a dual decomposition strategy and multi-objective optimization for electricity price forecasting. Appl. Energy 2019, 235, 1205–1225. [Google Scholar] [CrossRef]
- Zhang, J.; Tan, Z.; Wei, Y. An adaptive hybrid model for short term electricity price forecasting. Appl. Energy 2020, 258. [Google Scholar] [CrossRef]
- Qiao, W.; Yang, Z. Forecast the electricity price of U.S. using a wavelet transform-based hybrid model. Energy 2020, 193, 116704. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, J.; Gao, Y. A hybrid short-term electricity price forecasting framework: Cuckoo search-based feature selection with singular spectrum analysis and SVM. Energy Econ. 2019, 81, 899–913. [Google Scholar] [CrossRef]
- Kasburg, C.; Stefenon, S.F. Deep learning for photovoltaic generation forecast in active solar trackers. IEEE Lat. Am. Trans. 2019, 17, 2013–2019. [Google Scholar] [CrossRef]
- Yang, W.; Wang, J.; Niu, T.; Du, P. A novel system for multi-step electricity price forecasting for electricity market management. Appl. Soft Comput. 2020, 88. [Google Scholar] [CrossRef]
- Zhou, S.; Zhou, L.; Mao, M.; Tai, H.; Wan, Y. An optimized heterogeneous structure LSTM network for electricity price forecasting. IEEE Access 2019, 7, 108161–108173. [Google Scholar] [CrossRef]
- Khalid, R.; Javaid, N.; Al-zahrani, F.A.; Aurangzeb, K.; Qazi, E.U.H.; Ashfaq, T. Electricity load and price forecasting using Jaya-Long Short Term Memory (JLSTM) in smart grids. Entropy 2020, 22, 10. [Google Scholar] [CrossRef] [Green Version]
- Alipour, M.; Aghaei, J.; Norouzi, M.; Niknam, T.; Hashemi, S.; Lehtonen, M. A novel electrical net-load forecasting model based on deep neural networks and wavelet transform integration. Energy 2020, 205, 118106. [Google Scholar] [CrossRef]
- Kazemzadeh, M.R.; Amjadian, A.; Amraee, T. A hybrid data mining driven algorithm for long term electric peak load and energy demand forecasting. Energy 2020, 204, 117948. [Google Scholar] [CrossRef]
- Kaboli, S.H.A.; Fallahpour, A.; Selvaraj, J.; Rahim, N. Long-term electrical energy consumption formulating and forecasting via optimized gene expression programming. Energy 2017, 126, 144–164. [Google Scholar] [CrossRef]
- Heydari, A.; Majidi Nezhad, M.; Pirshayan, E.; Astiaso Garcia, D.; Keynia, F.; De Santoli, L. Short-term electricity price and load forecasting in isolated power grids based on composite neural network and gravitational search optimization algorithm. Appl. Energy 2020, 277, 115503. [Google Scholar] [CrossRef]
- Stefenon, S.F.; Silva, M.C.; Bertol, D.W.; Meyer, L.H.; Nied, A. Fault diagnosis of insulators from ultrasound detection using neural networks. J. Intell. Fuzzy Syst. 2019, 37, 6655–6664. [Google Scholar] [CrossRef]
- Stefenon, S.F.; Ribeiro, M.H.D.M.; Nied, A.; Mariani, V.C.; Coelho, L.S.L.; da Rocha, D.F.M.; Grebogi, R.B.; de Barros Ruano, A.E. Wavelet group method of data handling for fault prediction in electrical power insulators. Int. J. Electr. Power Energy Syst. 2020, 123, 106269. [Google Scholar] [CrossRef]
- da Silva, R.G.; Ribeiro, M.H.D.M.; Mariani, V.C.; Coelho, L.S. Forecasting Brazilian and American COVID-19 cases based on artificial intelligence coupled with climatic exogenous variables. Chaos Solitons Fractals 2020, 139. [Google Scholar] [CrossRef]
- Brito, B.; Finardi, E.; Takigawa, F. Mixed-integer nonseparable piecewise linear models for the hydropower production function in the unit commitment problem. Electr. Power Syst. Res. 2020, 182, 106234. [Google Scholar] [CrossRef]
- Fredo, G.L.M.; Finardi, E.C.; de Matos, V.L. Assessing solution quality and computational performance in the long-term generation scheduling problem considering different hydro production function approaches. Renew. Energy 2019, 131, 45–54. [Google Scholar] [CrossRef]
- Finardi, E.; Lobato, R.; de Matos, V.; Sagastizábal, C.; Tomasgard, A. Stochastic hydro-thermal unit commitment via multi-level scenario trees and bundle regularization. Optim. Eng. 2020, 21, 393–426. [Google Scholar] [CrossRef]
- Van Ackooij, W.; Finardi, E.C.; Ramalho, G.M. An exact solution method for the hydrothermal Unit commitment under wind power uncertainty with joint probability constraints. IEEE Trans. Power Syst. 2018, 33, 6487–6500. [Google Scholar] [CrossRef]
- Gontijo, T.S.; Costa, M.A. Forecasting hierarchical time series in power generation. Energies 2020, 13, 3722. [Google Scholar] [CrossRef]
- Wu, J.; Chen, Y.; Zhou, T.; Li, T. An adaptive hybrid learning paradigm integrating CEEMD, ARIMA and SBL for crude oil price forecasting. Energies 2019, 12, 1239. [Google Scholar] [CrossRef] [Green Version]
- Niu, D.; Wang, K.; Sun, L.; Wu, J.; Xu, X. Short-term photovoltaic power generation forecasting based on random forest feature selection and CEEMD: A case study. Appl. Soft Comput. 2020, 93, 106389. [Google Scholar] [CrossRef]
- Wu, J.; Zhou, T.; Li, T. Detecting epileptic seizures in EEG signals with complementary ensemble empirical mode decomposition and extreme gradient boosting. Entropy 2020, 22, 140. [Google Scholar] [CrossRef] [Green Version]
- Yeh, J.R.; Shieh, J.S.; Huang, N.E. Complementary ensemble empirical mode decomposition: A novel noise enhanced data analysis method. Adv. Adapt. Data Anal. 2010, 2, 135–156. [Google Scholar] [CrossRef]
- Pierezan, J.; Coelho, L.S. Coyote optimization algorithm: A new metaheuristic for global optimization problems. In Proceedings of the IEEE Congress on Evolutionary Computation (CEC), Rio de Janeiro, Brazil, 8–13 July 2018; pp. 1–8. [Google Scholar] [CrossRef]
- Huang, G.B.; Zhu, Q.Y.; Siew, C.K. Extreme learning machine: Theory and applications. Neurocomputing 2006, 70, 489–501. [Google Scholar] [CrossRef]
- Tipping, M.E. Sparse Bayesian learning and the relevance vector machine. J. Mach. Learn. Res. 2001, 1, 211–244. [Google Scholar]
- Rasmussen, C.E. Gaussian processes in machine learning. In Advanced Lectures on Machine Learning: ML Summer Schools 2003, Canberra, Australia, Tübingen, Germany, 2–14 February 2003, 4–16 August 2003, Revised Lectures; Springer: Heidelberg, Germany, 2004; pp. 63–71. [Google Scholar]
- Friedman, J.H. Greedy function approximation: A gradient boosting machine. Ann. Stat. 2001, 29, 1189–1232. [Google Scholar] [CrossRef]
- Zhao, X.; Wei, H.; Li, C.; Zhang, K. A hybrid nonlinear forecasting strategy for short-term wind speed. Energies 2020, 13, 1596. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.; Hur, J. An ensemble forecasting model of wind power outputs based on improved statistical approaches. Energies 2020, 13, 1071. [Google Scholar] [CrossRef] [Green Version]
- Stefenon, S.F.; Grebogi, R.B.; Freire, R.Z.; Nied, A.; Meyer, L.H. Optimized ensemble extreme learning machine for classification of electrical insulators conditions. IEEE Trans. Ind. Electron. 2020, 67, 5170–5178. [Google Scholar] [CrossRef]
- Percival, D.B.; Walden, A.T. The maximal overlap discrete wavelet transform. In Wavelet Methods for Time Series Analysis; Cambridge Series in Statistical and Probabilistic Mathematics; Cambridge University Press: Cambridge, UK, 2000; Chapter 5; pp. 206–254. [Google Scholar] [CrossRef]
- Box, G.E.; Jenkins, G.M.; Reinsel, G.C.; Ljung, G.M. Time Series Analysis: Forecasting and Control, 5th ed.; Wiley Series in Probability and Statistics; John Wiley & Sons: Hoboken, NJ, USA, 2015; p. 712. [Google Scholar]
- Athanasopoulos, G.; Hyndman, R.J. Forecasting: Principles and Practice, 2nd ed.; OTexts: Online; Available online: https://otexts.com/fpp2/ (accessed on 24 July 2020).
- Assimakopoulos, V.; Nikolopoulos, K. The theta model: A decomposition approach to forecasting. Int. J. Forecast. 2000, 16, 521–530. [Google Scholar] [CrossRef]
- Fiorucci, J.A.; Pellegrini, T.R.; Louzada, F.; Petropoulos, F.; Koehler, A.B. Models for optimising the theta method and their relationship to state space models. Int. J. Forecast. 2016, 32, 1151–1161. [Google Scholar] [CrossRef] [Green Version]
- De Souza, R.C.T.; de Macedo, C.A.; Coelho, L.S.; Pierezan, J.; Mariani, V.C. Binary coyote optimization algorithm for feature selection. Pattern Recognit. 2020, 107, 107470. [Google Scholar] [CrossRef]
- Pierezan, J.; Maidl, G.; Yamao, E.M.; Coelho, L.S.; Mariani, V.C. Cultural coyote optimization algorithm applied to a heavy duty gas turbine operation. Energy Convers. Manag. 2019, 199. [Google Scholar] [CrossRef]
- Li, Z.; Cao, Y.; Dai, L.V.; Yang, X.; Nguyen, T.T. Optimal power flow for transmission power networks using a novel metaheuristic algorithm. Energies 2019, 12, 4310. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, T.T.; Nguyen, T.T.; Nguyen, N.A.; Duong, T.L. A novel method based on coyote algorithm for simultaneous network reconfiguration and distribution generation placement. Ain Shams Eng. J. 2020. [Google Scholar] [CrossRef]
- Yuan, Z.; Wang, W.; Wang, H.; Yildizbasi, A. Developed coyote optimization algorithm and its application to optimal parameters estimation of PEMFC model. Energy Rep. 2020, 6, 1106–1117. [Google Scholar] [CrossRef]
- Huang, N.E.; Shen, Z.; Long, S.R.; Wu, M.C.; Shih, H.H.; Zheng, Q.; Yen, N.C.; Tung, C.C.; Liu, H.H. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc. R. Soc. London. Ser. A Math. Phys. Eng. Sci. 1998, 454, 903–995. [Google Scholar] [CrossRef]
- Li, T.; Zhou, Y.; Li, X.; Wu, J.; He, T. Forecasting daily crude oil prices using improved CEEMDAN and Ridge regression-based predictors. Energies 2019, 12, 3603. [Google Scholar] [CrossRef] [Green Version]
- Huang, N.; Xing, E.; Cai, G.; Yu, Z.; Qi, B.; Lin, L. Short-term wind speed forecasting based on low redundancy feature selection. Energies 2018, 11, 1638. [Google Scholar] [CrossRef] [Green Version]
- Zhu, S.; Wang, X.; Shi, N.; Lu, M. CEEMD-subset-OASVR-GRNN for ozone forecasting: Xiamen and Harbin as cases. Atmos. Pollut. Res. 2020. [Google Scholar] [CrossRef]
- Mariani, V.C.; Och, S.H.; Coelho, L.S.; Domingues, E. Pressure prediction of a spark ignition single cylinder engine using optimized extreme learning machine models. Appl. Energy 2019, 249, 204–221. [Google Scholar] [CrossRef]
- Drucker, H.; Burges, C.J.C.; Kaufman, L.; Smola, A.J.; Vapnik, V. Support vector regression machines. In Advances in Neural Information Processing Systems 9; Mozer, M.C., Jordan, M.I., Petsche, T., Eds.; MIT Press: Cambridge, MA, USA, 1997; pp. 155–161. Available online: https://papers.nips.cc/book/advances-in-neural-information-processing-systems-9-1996 (accessed on 24 July 2020).
- Makridakis, S.; Spiliotis, E.; Assimakopoulos, V. The M4 Competition: 100,000 time series and 61 forecasting methods. Int. J. Forecast. 2020, 36, 54–74. [Google Scholar] [CrossRef]
- Diebold, F.X.; Mariano, R.S. Comparing predictive accuracy. J. Bus. Econ. Stat. 1995, 13, 253–263. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2018. [Google Scholar]
- Kuhn, M. Building Predictive Models in R Using the Caret Package. J. Stat. Softw. Artic. 2008, 28, 1–26. [Google Scholar] [CrossRef] [Green Version]
- Fiorucci, J.A.; Louzada, F.; Yiqi, B. forecTheta: Forecasting Time Series by Theta Models. R package version 2.2. 2016. Available online: https://cran.r-project.org/web/packages/forecTheta/forecTheta.pdf (accessed on 1 August 2020).
- Hyndman, R.; Athanasopoulos, G.; Bergmeir, C.; Caceres, G.; Chhay, L.; O’Hara-Wild, M.; Petropoulos, F.; Razbash, S.; Wang, E.; Yasmeen, F. Forecast: Forecasting Functions for Time Series and Linear Models. R package version 8.12. 2020. Available online: http://pkg.robjhyndman.com/forecast (accessed on 1 August 2020).
- Hyndman, R.J.; Khandakar, Y. Automatic time series forecasting: The forecast package for R. J. Stat. Softw. 2008, 26, 1–22. [Google Scholar]
- Zefrehi, H.G.; Altınçay, H. Imbalance learning using heterogeneous ensembles. Expert Syst. Appl. 2020, 142. [Google Scholar] [CrossRef]
- Hao, Y.; Tian, C.; Wu, C. Modelling of carbon price in two real carbon trading markets. J. Clean. Prod. 2020, 244. [Google Scholar] [CrossRef]
- Agrawal, R.K.; Muchahary, F.; Tripathi, M.M. Ensemble of relevance vector machines and boosted trees for electricity price forecasting. Appl. Energy 2019, 250, 54–548. [Google Scholar] [CrossRef]
- De Vasconcelos Segundo, E.H.; Mariani, V.C.; Coelho, L.C. Design of heat exchangers using Falcon Optimization Algorithm. Appl. Therm. Eng. 2019, 156, 119–144. [Google Scholar] [CrossRef]
- De Vasconcelos Segundo, E.H.; Mariani, V.C.; Coelho, L.C. Metaheuristic inspired on owls behavior applied to heat exchangers design. Therm. Sci. Eng. Prog. 2019, 14. [Google Scholar] [CrossRef]
- Klein, C.E.; Mariani, V.; Coelho, L.S. Cheetah Based Optimization Algorithm: A Novel Swarm Intelligence Paradigm. In Proceedings of the 26th European Symposium on Artificial Neural Networks, ESANN, Bruges, Belgium, 25–27 April 2018; pp. 685–690. [Google Scholar]
- Askarzadeh, A.; Coelho, L.C.; Klein, C.E.; Mariani, V.C. A population-based simulated annealing algorithm for global optimization. In Proceedings of the 2016 IEEE International Conference on Systems, Man, and Cybernetics (SMC), Budapest, Hungary, 9–12 October 2016; pp. 004626–004633. [Google Scholar] [CrossRef]
- Galuzio, P.P.; de Vasconcelos Segundo, E.H.; dos Coelho, L.C.; Mariani, V.C. MOBOpt—Multi-objective Bayesian optimization. SoftwareX 2020, 12, 100520. [Google Scholar] [CrossRef]
Variable | Set | Dataset | Statistical Indicator | ||||
---|---|---|---|---|---|---|---|
Minimun | Median | Mean | Maximum | Standard Deviation | |||
Output (Price) | Whole | Commercial | 95.63 | 276.62 | 274.83 | 570.80 | 123.04 |
Training | 95.63 | 254.01 | 215.50 | 314.14 | 75.74 | ||
Test | 254.58 | 441.55 | 414.16 | 570.80 | 97.69 | ||
Whole | Industrial | 53.13 | 217.03 | 215.70 | 500.05 | 125.31 | |
Training | 53.13 | 160.81 | 152.52 | 265.07 | 73.22 | ||
Test | 208.54 | 391.88 | 364.10 | 500.05 | 92.58 | ||
Input (Demand) | Whole | Commercial | 2647.00 | 5068.00 | 5312.33 | 8198.00 | 1629.53 |
Training | 2647.00 | 4214.00 | 4429.82 | 7037.00 | 1039.63 | ||
Test | 6454.00 | 7380.50 | 7385.21 | 8198.00 | 460.02 | ||
Whole | Industrial | 8753.00 | 13,602.00 | 12,914.72 | 15,886.00 | 2036.33 | |
Training | 8753.00 | 12,017.00 | 12,329.83 | 15,853.00 | 2138.43 | ||
Test | 12,538.00 | 14,122.50 | 14,288.53 | 15,886.00 | 681.88 | ||
Input (Supply) | Whole | Hydraulic | 20,593.00 | 31,434.50 | 31,300.98 | 43,604.00 | 4520.99 |
Training | 20,593.00 | 29,586.50 | 30,197.74 | 42,429.00 | 4441.69 | ||
Test | 27,940.00 | 33,484.00 | 33,892.31 | 43,604.00 | 3560.08 | ||
Whole | Thermal | 265.00 | 1833.00 | 3888.18 | 13181.00 | 3721.82 | |
Training | 265.00 | 1462.50 | 1654.18 | 7158.00 | 1046.48 | ||
Test | 4569.00 | 9119.00 | 9135.48 | 13,181.00 | 2112.50 | ||
Whole | Nuclear | 0 | 1172.50 | 1003.05 | 1504.00 | 450.61 | |
Training | 0 | 1068.00 | 880.25 | 1480.00 | 464.16 | ||
Test | 515.00 | 1395.00 | 1291.49 | 1504.00 | 236.90 |
Hyperparameter | Boundaries | Selected Hyperparameters | ||
---|---|---|---|---|
Lower Bound | Upper Bound | Commercial | Industrial | |
Number of ensembles | 50 | 100 | 51 | 85 |
Number of Components | 2 | 5 | 4 | 4 |
Noise amplitude | 0.2 | 0.5 | 0.4049 | 0.3134 |
Dataset | Component | Forecasting Horizon | ||
---|---|---|---|---|
One-Month-Ahead | Two-Months-Ahead | Three-Months-Ahead | ||
Commercial | IMF | GBM | GBM | ELM |
IMF | ELM | ELM | GBM | |
IMF | SVR | SVR | GP | |
Residue | SVR | SVR | GP | |
Industrial | IMF | GBM | GBM | GP |
IMF | GBM | GP | GP | |
IMF | GP | GP | GBM | |
Residue | GP | GP | SVR |
Dataset | Component | Forecasting Horizon | ELM | SVR | GBM | |||
---|---|---|---|---|---|---|---|---|
# Neurons | Activation Function | Weights Initialization | Cost | Boosting Interactions | Maximum Tree Deph | |||
Commercial | IMF | One-month-ahead | 12 | Sigmoide | Uniform Positive | 0.25 | 50 | 1 |
Two-months-ahead | 8 | Tribas | Uniform Negative | 1 | 50 | 1 | ||
Three-months-ahead | 8 | Satlins | Uniform Negative | 1 | 50 | 1 | ||
IMF | One-month-ahead | 8 | Relu | Uniform Positive | 0.25 | 150 | 3 | |
Two-months-ahead | 5 | Hardlin | Uniform Negative | 0.5 | 50 | 3 | ||
Three-months-ahead | 5 | Sigmoide | Uniform Negative | 0.25 | 50 | 3 | ||
IMF | One-month-ahead | 3 | Radial Basis | Uniform Negative | 0.25 | 50 | 1 | |
Two-months-ahead | 8 | Hardlin | Normal Gaussian | 0.25 | 150 | 2 | ||
Three-months-ahead | 12 | Sine | Uniform Negative | 0.25 | 50 | 1 | ||
Residue | One-month-ahead | 8 | Sigmoide | Uniform Negative | 0.5 | 150 | 3 | |
Two-months-ahead | 12 | Sigmoide | Uniform Negative | 0.5 | 150 | 3 | ||
Three-months-ahead | 12 | Sigmoide | Uniform Negative | 0.5 | 150 | 3 | ||
Non-Decomposed | One-month-ahead | 12 | Sigmoide | Uniform Negative | 1 | 150 | 3 | |
Two-months-ahead | 12 | Sigmoide | Uniform Negative | 1 | 150 | 3 | ||
Three-months-ahead | 12 | Sigmoide | Uniform Negative | 1 | 150 | 3 | ||
Industrial | IMF | One-month-ahead | 12 | Purelin | Uniform Positive | 1 | 50 | 2 |
Two-months-ahead | 8 | Relu | Uniform Positive | 1 | 100 | 3 | ||
Three-months-ahead | 15 | Satlins | Uniform Negative | 0.25 | 150 | 2 | ||
IMF | One-month-ahead | 12 | Purelin | Uniform Positive | 0.25 | 50 | 2 | |
Two-months-ahead | 8 | Relu | Uniform Positive | 0.25 | 50 | 2 | ||
Three-months-ahead | 8 | Relu | Uniform Positive | 0.25 | 50 | 2 | ||
IMF | One-month-ahead | 8 | Sigmoide | Uniform Negative | 1 | 50 | 1 | |
Two-months-ahead | 8 | Sigmoide | Uniform Positive | 0.25 | 50 | 1 | ||
Three-months-ahead | 3 | Tansig | Uniform Negative | 0.25 | 50 | 1 | ||
Residue | One-month-ahead | 5 | Sigmoide | Uniform Positive | 1 | 150 | 3 | |
Two-months-ahead | 5 | Sigmoide | Uniform Positive | 1 | 150 | 3 | ||
Three-months-ahead | 5 | Sigmoide | Uniform Positive | 1 | 150 | 3 | ||
Non-Decomposed | One-month-ahead | 5 | Sigmoide | Uniform Positive | 0.25 | 150 | 3 | |
Two-months-ahead | 5 | Sigmoide | Uniform Positive | 1 | 100 | 3 | ||
Three-months-ahead | 1 | Sigmoide | Uniform Positive | 1 | 150 | 2 |
Dataset | Model | Forecasting Horizon | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
One-month-Ahead | Two-Months-Ahead | Three-Months-Ahead | ||||||||
RMSE | R | sMAPE | RMSE | R | sMAPE | RMSE | R | sMAPE | ||
Commercial | COA-CEEMD–Proposed | 13.5556 | 0.9812 | 0.0253 | 16.8360 | 0.9701 | 0.0306 | 20.7988 | 0.9544 | 0.0380 |
COA-CEEMD–GP | 14.2734 | 0.9798 | 0.0260 | 17.2289 | 0.9692 | 0.0313 | 21.0945 | 0.9531 | 0.0382 | |
COA-CEEMD–SVR | 16.1779 | 0.9774 | 0.0315 | 18.7674 | 0.9652 | 0.0352 | 21.5886 | 0.9516 | 0.0387 | |
COA-CEEMD–ELM | 123.9228 | 0.6636 | 0.3032 | 122.1742 | 0.7888 | 0.2660 | 126.9495 | 0.7244 | 0.2871 | |
COA-CEEMD–GBM | 143.4820 | 0.5415 | 0.2971 | 143.8438 | 0.4960 | 0.3001 | 143.9894 | 0.5081 | 0.3021 | |
MODWT–GP | 22.9283 | 0.965 | 0.0412 | 31.4405 | 0.94 | 0.0571 | 35.6375 | 0.924 | 0.066 | |
MODWT–SVR | 23.6391 | 0.969 | 0.0444 | 29.5238 | 0.948 | 0.0571 | 34.2929 | 0.92 | 0.0687 | |
MODWT–ELM | 106.667 | 0.852 | 0.2512 | 120.765 | 0.636 | 0.2832 | 151.884 | 0.638 | 0.4098 | |
MODWT–GBM | 145.605 | 0.398 | 0.3055 | 146.527 | 0.355 | 0.3078 | 145.6 | 0.367 | 0.3068 | |
Industrial | COA-CEEMD–Proposed | 11.5992 | 0.9849 | 0.0256 | 14.8531 | 0.9750 | 0.0327 | 19.7095 | 0.9544 | 0.0418 |
COA-CEEMD–SVR | 12.0007 | 0.9844 | 0.0252 | 15.1032 | 0.9741 | 0.0341 | 20.4148 | 0.9510 | 0.0432 | |
COA-CEEMD–GP | 16.4187 | 0.9785 | 0.0368 | 16.7976 | 0.9694 | 0.0351 | 28.8510 | 0.9460 | 0.0606 | |
COA-CEEMD–ELM | 127.7698 | 0.6352 | 0.3150 | 128.7123 | 0.6397 | 0.3187 | 130.8896 | 0.4547 | 0.3248 | |
COA-CEEMD–GBM | 143.0262 | 0.4078 | 0.3467 | 141.0850 | 0.4990 | 0.3420 | 140.7303 | 0.4346 | 0.3443 | |
MODWT–SVR | 31.0218 | 0.964 | 0.0697 | 52.2598 | 0.887 | 0.1164 | 52.3042 | 0.859 | 0.1159 | |
MODWT–GP | 32.647 | 0.958 | 0.0732 | 40.9644 | 0.915 | 0.0898 | 42.0218 | 0.892 | 0.0973 | |
MODWT–ELM | 93.2804 | 0.634 | 0.2387 | 110.765 | 0.697 | 0.2752 | 123.604 | 0.496 | 0.3069 | |
MODWT–GBM | 141.895 | 0.357 | 0.3503 | 142.396 | 0.325 | 0.3534 | 143.233 | 0.227 | 0.3583 |
Dataset | Model | Forecasting Horizon | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
One-Month-Ahead | Two-Months-Ahead | Three-Months-Ahead | ||||||||
RMSE | R | sMAPE | RMSE | R | sMAPE | RMSE | R | sMAPE | ||
Commercial | COA–CEEMD–Proposed | 13.5556 | 0.9812 | 0.0253 | 16.8360 | 0.9701 | 0.0306 | 20.7988 | 0.9544 | 0.0380 |
GP | 16.5411 | 0.9725 | 0.0294 | 21.8210 | 0.9572 | 0.0388 | 24.6019 | 0.9427 | 0.0438 | |
SVR | 17.6207 | 0.9710 | 0.0324 | 25.3748 | 0.9537 | 0.0489 | 23.7418 | 0.9430 | 0.0397 | |
ELM | 121.6424 | 0.7708 | 0.2559 | 126.6971 | 0.7882 | 0.2879 | 133.8389 | 0.7073 | 0.3095 | |
GBM | 143.9112 | 0.5083 | 0.2978 | 145.1188 | 0.4954 | 0.3034 | 143.3755 | 0.5001 | 0.2986 | |
Industrial | COA–CEEMD–Proposed | 11.5992 | 0.9849 | 0.0256 | 14.8531 | 0.9750 | 0.0327 | 19.7095 | 0.9544 | 0.0418 |
SVR | 16.8467 | 0.9692 | 0.0335 | 20.4888 | 0.9507 | 0.0401 | 23.6189 | 0.9374 | 0.0489 | |
GP | 21.0049 | 0.9642 | 0.0445 | 24.6607 | 0.9417 | 0.0541 | 23.2372 | 0.9404 | 0.0466 | |
ELM | 127.2140 | 0.6150 | 0.3146 | 128.3130 | 0.6206 | 0.3166 | 145.2424 | 0.0236 | 0.3718 | |
GBM | 148.5723 | 0.3560 | 0.3680 | 145.9830 | 0.4461 | 0.3610 | 142.8180 | 0.5746 | 0.3506 |
Model | Forecasting Horizon | |||||
---|---|---|---|---|---|---|
One-Month-Ahead | TwO-Months-Ahead | ThRee-Months-Ahead | ||||
Commercial | Industrial | Commercial | Industrial | Commercial | Industrial | |
COA-CEEMD–ELM | −10.63 *** | −9.88 *** | −5.68 *** | −5.70 *** | −4.61 *** | −4.41 *** |
COA-CEEMD–SVR | −3.53 *** | −0.64 | −1.65 * | −1.09 * | −1.52 * | −2.72 ** |
COA-CEEMD–GP | −1.75 ** | −3.69 *** | −0.80 | −1.25 * | −0.65 | −1.32 * |
COA-CEEMD–GBM | −9.37 *** | −9.95 *** | −5.45 *** | −5.89 *** | −4.18 *** | −4.45 *** |
MODWT–ELM | −11.10 *** | −8.33 *** | −6.07 *** | −5.84 *** | −6.66 *** | −4.37 *** |
MODWT–SVR | −5.34 *** | −7.03 *** | −3.51*** | −5.94 *** | −2.73 *** | −3.84 *** |
MODWT–GP | −5.13 *** | −6.99 *** | −3.84 *** | −4.94 *** | −3.18 *** | −4.52 *** |
MODWT–GBM | −9.49 *** | −10.15 *** | −5.45 *** | −5.89 *** | −4.14 *** | −4.47 *** |
ELM | −9.06 *** | −9.85 *** | −5.17 *** | −6.32 *** | −4.94 *** | −4.59 *** |
SVR | −3.20 *** | −4.29 *** | −5.34 *** | −7.86 *** | −2.10 ** | −1.67 * |
GP | −2.55 ** | −2.88 ** | −6.10 *** | −7.06 *** | −1.33 * | −2.20 *** |
GBM | −9.42 *** | −10.21 *** | −5.51 *** | −6.48 *** | −4.19 *** | −4.51 *** |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ribeiro, M.H.D.M.; Stefenon, S.F.; de Lima, J.D.; Nied, A.; Mariani, V.C.; Coelho, L.d.S. Electricity Price Forecasting Based on Self-Adaptive Decomposition and Heterogeneous Ensemble Learning. Energies 2020, 13, 5190. https://doi.org/10.3390/en13195190
Ribeiro MHDM, Stefenon SF, de Lima JD, Nied A, Mariani VC, Coelho LdS. Electricity Price Forecasting Based on Self-Adaptive Decomposition and Heterogeneous Ensemble Learning. Energies. 2020; 13(19):5190. https://doi.org/10.3390/en13195190
Chicago/Turabian StyleRibeiro, Matheus Henrique Dal Molin, Stéfano Frizzo Stefenon, José Donizetti de Lima, Ademir Nied, Viviana Cocco Mariani, and Leandro dos Santos Coelho. 2020. "Electricity Price Forecasting Based on Self-Adaptive Decomposition and Heterogeneous Ensemble Learning" Energies 13, no. 19: 5190. https://doi.org/10.3390/en13195190
APA StyleRibeiro, M. H. D. M., Stefenon, S. F., de Lima, J. D., Nied, A., Mariani, V. C., & Coelho, L. d. S. (2020). Electricity Price Forecasting Based on Self-Adaptive Decomposition and Heterogeneous Ensemble Learning. Energies, 13(19), 5190. https://doi.org/10.3390/en13195190