Dynamic Stall Model for Tower Shadow Effects on Downwind Turbines and Its Scale Effects
Abstract
:1. Introduction
2. Methodology
- (1)
- The dynamic tower shadow model;
- (2)
- The wind speed profile model behind the tower;
- (3)
- The threshold of the entrance of the tower wake.
2.1. Dynamic Tower Shadow Model
2.2. Wind Speed Profile behind the Tower
2.3. Threshold of the Entrance of the Tower Shadow
3. Validation of the Model
3.1. Model
3.2. Test Conditions
3.3. Wind Speed Distribution
3.4. Validation of the Model
3.5. Sensitivity of Drag Coefficient of the Tower Section
3.6. Sensitivity of the Dead Band of Wake Entrance Condition
4. Scale Effect
4.1. Analysis Outline
4.2. Analysis Conditions
4.3. Analysis Results
5. Conclusions
Funding
Acknowledgments
Conflicts of Interest
Nomenclature
b | Wake width parameter in Belvin’s model |
Blade chord length or wake depth parameter in Belvin’s model | |
D | Tower diameter |
Dv | Wake depth parameter in Munduate’s model |
K | Wake depth parameter in Madsen’s model |
n | Rotor speed |
R | Tower radius |
s | Normalized time from the entrance of the wake |
Rotor thrust | |
t | Time from the entrance of the wake |
U | Longitudinal wind speed without the rotor |
U0 | Free stream wind speed |
UEx | Longitudinal wind speed in the external wake in Moriarty’s model |
VT | Tangential speed at 75% blade station radius |
Inflow wind speed at the blade element without the tower | |
w | Normalized wake width in Powles’ model |
wg | Wake wind speed profile |
x | Longitudinal (or windward) position from the tower center |
y | Lateral position to the left of the wind from just behind the tower |
Greek | |
Δ | Normalized wake depth in Powles’ Model |
ΔCl | Deviation of the tower lift coefficient |
η | Lateral position normalized by the tower radius |
ηB | Blade station radius of the blade element normalized by the rotor radius |
λ | Tip speed ratio |
ν | Coefficient of kinematic viscosity |
ξ | Longitudinal position normalized by the tower radius |
σ | Wake depth parameter in Madsen’s model |
ΦR | Rotor azimuth angle |
Ψ | Kussner function |
Abbreviations
BEM | Blade-element momentum method |
CFD | Computational fluid dynamics |
FOWT | Floating offshore wind turbine |
KU | Kyushu University |
UG | University of Glasgow |
References
- Yoshida, S. Performance of downwind turbines in complex terrains. Wind Eng. 2006, 30, 487–501. [Google Scholar] [CrossRef]
- Yoshida, S.; Soichiro, K. Advantage of Downwind Turbine in Nacelle Yaw Measurement of Downwind Turbines in Complex Terrains. In Proceedings of the 2008 European Wind Energy Conference, Brussels, Belgium, 31 March–3 April 2008. [Google Scholar]
- Utsunomiya, T.; Sato, I.; Shiraishi, T. Floating Offshore Wind Turbines in Goto Islands, Nagasaki, Japan. In WCFS2019: Proceedings of the World Conference on Floating Solutions; Lecture Notes in Civil Engineering 41; Springer: Berlin, Germany, 2020. [Google Scholar]
- Fukushima Offshore Wind Consortium Fukushima Floating Offshore Wind Farm Demonstration Project (Fukushima FORWARD)—Construction of Phase I, XX. Available online: http://www.fukushima-forward.jp/pdf/pamphlet4en.pdf (accessed on 12 August 2020).
- Fukushima Offshore Wind Consortium Fukushima Floating Offshore Wind Farm Demonstration Project (Fukushima FORWARD)—Construction of Phase II, XX. Available online: http://www.fukushima-forward.jp/pdf/pamphlet7en.pdf (accessed on 12 August 2020).
- X1Wind. Available online: https://www.x1wind.com/ (accessed on 12 August 2020).
- Aerodyn Engineering SCD Nezzy2 Brochure. Available online: https://aerodyn-engineering.com/fileadmin/Download/aerodyn_engineering_Data_sheet_SCD_nezzy_hoch2.pdf (accessed on 18 August 2020).
- Yoshida, S.; Utsunomiya, T. Yawing Characteristics of SPAR Type Floating Offshore Wind Turbine. In Proceedings of the RE2010 International Conference, Yokohama, Japan, 27 June–2 July 2010. [Google Scholar]
- Kress, C.; Chokani, N.; Abhari, R.S. Downwind Wind Turbine Yaw Stability and Performance. Renew. Energy 2015, 83, 1157–1165. [Google Scholar] [CrossRef]
- Noyes, C.; Qin, C.; Loth, E. Pre-aligned Downwind Rotor for a 13.2 MW Wind Turbine. Renew. Energy 2018, 116, 749–754. [Google Scholar] [CrossRef]
- Gipe, P. Wind Energy Comes of Age; John Wiley and Sons: Chichester, UK, 1995. [Google Scholar]
- International Electrotechnical Commission. Wind Turbines—Part 1: Design Requirements, 4th ed.; IEC61400-1; International Electrotechnical Commission: Geneva, Switzerland, 2019. [Google Scholar]
- International Electrotechnical Commission. Wind Turbines—Part 3-1: Design Requirements for Fixed Offshore Wind Turbines; IEC61400-3-1; International Electrotechnical Commission: Geneva, Switzerland, 2019. [Google Scholar]
- Burton, T.; Jenkins, N.; Sharpe, D.; Bossanyi, E. Wind Energy Handbook, 2nd ed.; John Wiley and Sons: Chichester, UK, 2011. [Google Scholar]
- Jonkman, J.M.; Buhl, M.L. FAST User’s Guide; NREL/TP-500-38230; National Renewable Energy Laboratory: Golden, CO, USA, 2005. [Google Scholar]
- Matiz-Chicacausa, A.; Lopez, O.D. Full Downwind Turbine Simulations Using Actuator Line Method. Model. Simul. Eng. 2018, 2018, 2536897. [Google Scholar] [CrossRef] [Green Version]
- Wang, T.; Coton, F.N. A High Resolution Tower Shadow Model for Downwind Wind Turbines. J. Wind Eng. Ind. Aerodyn. 2001, 89, 873–892. [Google Scholar] [CrossRef]
- Zahle, F.; Madsen, H.A.; Sorensen, N.N. Evaluation of Tower Shadow Effects on Various Wind Turbine Concepts; Riso-R-1698; Technical University of Denmark: Roskilde, Denmark, 2009; pp. 11–31. [Google Scholar]
- Zhao, Q.; Sheng, C.; Afjeh, A. Computational Aerodynamic Analysis of Offshore Upwind and Downwind Turbines. J. Aerodyn. 2014, 2014, 860637. [Google Scholar] [CrossRef] [Green Version]
- Van der Male, P.; van Schaik, R.; Vergassola, M.; van Dalen, K.N. Tower Shadow Excitation of a Downwind Rotor Blade of a Turbine with a Tubular Tower. J. Phys. Conf. Ser. 2020, 1618, 032019. [Google Scholar] [CrossRef]
- Yoshida, S.; Kiyoki, S. Load Equivalent Tower Shadow Modeling for Downwind Turbines. J. JSME 2007, 73, 1273–1279. [Google Scholar] [CrossRef] [Green Version]
- Nagao, T.; Kato, T.; Shiraishi, T.; Yoshida, S.; Sugino, J. Development of Advanced Wind Turbine Systems for Remote Islands. Wind Eng. 2006, 28, 729–740. [Google Scholar] [CrossRef]
- Saeki, M.; Sano, T.; Kato, H.; Owada, M.; Yoshida, S. Concept of the HITACHI 5MW Offshore Downwind Turbine. In Proceedings of the European Wind Energy Conference 2014, Barcelona, Spain, 10–13 March 2014. [Google Scholar]
- Munduate, X.; Coton, F.N.; Galbraithiet, R.A.M. An Investigation of the Aerodynamic Responses of a Wind Turbine Blade to Tower Shadow. J. Solar Energy Eng. 2004, 126, 1034–1040. [Google Scholar] [CrossRef]
- Sears, W.R.; Sparkes, B.O. On the Reaction of an Elastic Wing to Vertical Gusts. J. Aeronaut. Sci. 1941, 8, 64–67. [Google Scholar] [CrossRef]
- Blevins, R.D. Flow-Induced Vibrations; Van Nostrand Reinhold: New York, NY, USA, 1990. [Google Scholar]
- Madsen, H.A.; Johansen, J.; Sorensen, N.N.; Larsen, G.C.; Hansen, M.H. Simulation of Low Frequency Noise from a Downwind Wind Turbine Rotor; AIAA-2007-623; American Institute of Aeronautics and Astronautics: Reston, VA, USA, 2007; pp. 1–12. [Google Scholar]
- Moriarty, P.J.; Hansen, A.C. AeroDyn Theory Manual; NREL/EL-500-36881; National Renewable Energy Laboratory: Golden, CO, USA, 2005. [Google Scholar]
- Powles, S.R.J. The Effects of Tower Shadow on the Dynamics of a Horizontal Axis Wind Turbine. Wind Eng. 1983, 7, 26–42. [Google Scholar]
- Schlichting, H.; Gersten, K. Boundary-Layer Theory, 8th ed.; Springer: Berlin, Germany, 2000. [Google Scholar]
- De Vries, O.; den Blanken, M.H.G. Second Series of Wind-Tunnel Tests on a Model of Two-Bladed Horizontal-Axis Wind Turbine; Influence on the Turbine Performance and Results of a Flow Survey behind the Rotor; NLR-TR 81069L; National Aerospace Laboratory: Amsterdam, The Netherlands, 1981. [Google Scholar]
- Bell, W.H. Turbulence vs Drag—Some Future Consideration. Ocean Eng. 1983, 10, 47–63. [Google Scholar] [CrossRef]
Model | Outlines | Equation |
---|---|---|
Blevin [26] | (5) | |
Madsen [27] | (6) | |
Moriarty [28] | (7) | |
Munduate [24] | (8) | |
Powles [29] | (9) | |
Schlichting [30] | (10) |
Item | Specification |
---|---|
Rotor diameter | 1.0 m |
Number of blades | 2 |
Blade section | NACA4415 |
Chord length c | 0.1 m |
Twist angle | 0 deg |
Blade set angle | 12 deg |
Rotor tilt angle | 0 deg |
Rotor coning angle | 0 deg |
Dummy tower diameter D | 0.07 m |
Dummy tower position | 0.14 m |
Case | 1 | 2 | 3 |
---|---|---|---|
Wind speed U0 | 9.0 m/s | 11.0 m/s | 11.7 m/s |
Rotor speed n | 918 min−1 | 1122 min−1 | 1188 min−1 |
Tip speed ratio λ | 5.34 | 5.33 | 5.31 |
Tangential speed at ηB = 75% VT | 36.0 m/s | 44.1 m/s | 46.7 m/s |
Scale | 100% | 300% | 1000% |
---|---|---|---|
Rotor diameter | 1.0 m | 3.0 m | 10.0 m |
Number of blades | 2 | 2 | 2 |
Blade section | NACA4415 | NACA4415 | NACA4415 |
Chord length | 0.1 m | 0.3 m | 1.0 m |
Twist angle | 0 deg | 0 deg | 0 deg |
Blade set angle | 12 deg | 12 deg | 12 deg |
Rotor tilt angle | 0 deg | 0 deg | 0 deg |
Rotor coning angle | 0 deg | 0 deg | 0 deg |
Tower diameter | 0.07 m | 0.21 m | 0.7 m |
Tower position | 0.14 m | 0.42 m | 1.4 m |
Reynolds number of the tower | 4.5×104 | 1.4 ×105 | 4.5×105 |
Drag coefficient of the tower section [32] | 1.2 | 1.2 | 0.33 (1.2) |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yoshida, S. Dynamic Stall Model for Tower Shadow Effects on Downwind Turbines and Its Scale Effects. Energies 2020, 13, 5237. https://doi.org/10.3390/en13195237
Yoshida S. Dynamic Stall Model for Tower Shadow Effects on Downwind Turbines and Its Scale Effects. Energies. 2020; 13(19):5237. https://doi.org/10.3390/en13195237
Chicago/Turabian StyleYoshida, Shigeo. 2020. "Dynamic Stall Model for Tower Shadow Effects on Downwind Turbines and Its Scale Effects" Energies 13, no. 19: 5237. https://doi.org/10.3390/en13195237
APA StyleYoshida, S. (2020). Dynamic Stall Model for Tower Shadow Effects on Downwind Turbines and Its Scale Effects. Energies, 13(19), 5237. https://doi.org/10.3390/en13195237