Analysis and Evaluation of WBG Power Device in High Frequency Induction Heating Application
Abstract
:1. Introduction
2. IH System with Half-Bridge Converter
2.1. System Description
2.2. Characteristics of High-Frequency Operation
3. Loss Analysis of WBG Device in IH System
3.1. Conduction Loss Considering Junction Temperature
3.2. Switching Loss Considering System
3.3. Reverse Conduction Loss Considering Current
4. Device Suitability Analysis in IH System
4.1. Power Loss
4.2. Thermal Performance
4.3. Cost
5. Experimental Comparative Analysis and Verification
5.1. Power Loss
5.2. Thermal Performance
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Domes, D.; Hofmann, W.; Lutz, J. A first loss evaluation using a vertical SiC-JFET and a conventional Si-IGBT in the bidirectional matrix converter switch topology. In Proceedings of the European Conference on Power Electronics and Application, Dresden, Germany, 11–14 September 2005; pp. 3–10. [Google Scholar]
- Gao, Y.; Huang, A.; Krishnaswami, S.; Richmond, J.; Agarwal, A. Comparison of static and switching characteristics of 1200 V 4H-SiC BJT and 1200 V Si-IGBT. IEEE Trans. Ind. Appl. 2008, 44, 887–893. [Google Scholar] [CrossRef]
- Biela, J.; Schweizer, M.; Waffler, S.; Kolar, J.W. SiC versus Si-evaluation of potentials for performance improvement of inverter and DC-DC converter system by SiC power semiconductors. IEEE Trans. Ind. Electron. 2011, 58, 2872–2882. [Google Scholar] [CrossRef]
- Zapico, A.; Gabiola, I.; Apinaniz, S.; Santiago, F.; Pujana, A.; Rodriguez, A.; Briz, F. SiC and Si transistors comparison in boost converter. In Proceedings of the International Power Electronics and Motion Control Conference (EPE/PEMC), Novi Sad, Serbia, 4–6 September 2012; pp. 1–6. [Google Scholar]
- Shirabe, K.; Swamy, M.; Kang, J.K.; Hisatsune, M.; Wu, Y.; Kebort, D.; Honea, J. Efficiency comparison between Si-IGBT-based drive and GaN-based drive. IEEE Trans. Ind. Appl. 2014, 50, 566–572. [Google Scholar] [CrossRef]
- Tuysuz, A.; Bosshard, R.; Kolar, J.W. Performance comparison of a GaN GIT and a Si IGBT for high-speed drive applications. In Proceedings of the International Power Electronics Conference (ECCE ASIA), Hiroshima, Japan, 18–21 May 2014; pp. 1904–1911. [Google Scholar]
- Leon-Masich, A.; Blavi-Valderrama, H.; Bosque-Moncusi, J.M.; Martinez-Salamero, L. Efficiency comp-arison between Si and SiC-based implementations in a high gain DC-DC boost converter. IET Power Electron. 2015, 8, 869–878. [Google Scholar] [CrossRef]
- Swamy, M.; Kang, J.K.; Shirabe, K. Power loss, system efficiency, and leakage current comparison between Si IGBT VFD and SiC FET VFD with various filtering options. IEEE Trans. Ind. Appl. 2015, 51, 3858–3866. [Google Scholar] [CrossRef]
- Gurpinar, E.; Yang, Y.; Iannuzzo, F.; Castellazzi, A.; Blaabjerg, F. Reliability-driven assessment of GaN HEMTs and Si IGBTs in 3L-ANPC PV inverters. IEEE J. Emerg. Sel. Topics Power Electron. 2016, 4, 956–969. [Google Scholar] [CrossRef] [Green Version]
- Duarte, R.R.; Ferreira, G.F.; Dalla-Costa, M.A.; Alonso, J.M. Performance comparison of Si and GaN transistors in a family of synchronous buck converters for LED lighting applications. In Proceedings of the IEEE Industry Applications Society Annual Meeting, Portland, OR, USA, 2–6 October 2016; pp. 1–7. [Google Scholar]
- Acharya, S.; She, X.; Datta, R.; Todorovic, M.H.; Mandrusiak, G. Comparison of 1.7kV 450A SiC-MOSFET and Si-IGBT based modular three phase power block. In Proceedings of the IEEE Energy Conversion (ECCE), Cincinnati, OH, USA, 1–5 October 2017; pp. 5119–5125. [Google Scholar]
- Choi, J.W.; Tsukiyama, D.; Rivas, J. Comparison of SiC and eGaN devices in a 6.78 Mhz 2.2 kW resonant inverter for wireless power transfer. In Proceedings of the IEEE Energy Conversion (ECCE), Milwaukee, WI, USA, 18–22 September 2016. [Google Scholar]
- Gurpinar, E.; Castellazzi, A. Single-phase T-type inverter performance benchmark using Si IGBTs, SiC MOSFETs, and GaN HEMTs. IEEE Trans. Power Electron. 2016, 31, 7148–7160. [Google Scholar] [CrossRef]
- Liu, Y.; Ge, B.; Abu-Rub, H.; Zhang, H.; Balog, R.S. Comparison of SiC and GaN devices for front-end isolation of quasi-Z-source cascaded multilevel photovoltaic inverter. In Proceedings of the IEEE Energy Conversion (ECCE), Milwaukee, WI, USA, 18–22 September 2016. [Google Scholar]
- Taylor, A.; Lu, J.; Zhu, L.; Bai, K.H.; McAmmond, M.; Brown, A. Comparison of SiC MOSFET-based and GaN HEMT-based high-efficiency high-power-density 7.2 kW EV battery chargers. IET Power Electron. 2018, 11, 1849–1857. [Google Scholar] [CrossRef]
- Abdelrahman, A.S.; Erdem, Z.; Attia, Y.; Youssef, M.Z. Wide bandgap devices in electric vehicle converters: A performance survey. Can. J. Elect. Comput. E 2018, 41, 45–54. [Google Scholar]
- Su, G.J. Comparison of Si, SiC, and GaN based isolation converters for onboard charger applications. In Proceedings of the IEEE Energy Conversion (ECCE), Portland, OR, USA, 23–27 September 2018; pp. 1233–1239. [Google Scholar]
- Tanaka, T. A new induction cooking range for heating any kind of metal vessels. IEEE Trans. Consum. Electron. 1989, 35, 635–641. [Google Scholar] [CrossRef]
- GaN Systems, GS66516T DATA SHEET. Available online: https://gansystems.com/wp-content/uploads/2020/04/GS66516T-DS-Rev-200402.pdf (accessed on 2 April 2020).
- ROHM Semiconductor, SCT3030AR DATA SHEET. Available online: https://fscdn.rohm.com/en/products/databook/datasheet/discrete/sic/mosfet/sct3030ar-e.pdf (accessed on 31 July 2019).
- Kazimierczuk, M.K. Class D voltage-switching MOSFET power amplifier. IEE Electric. Power. Appl. 1991, 138, 285–296. [Google Scholar] [CrossRef]
- Chen, Z. Characterization and Modeling of High-Switching-Speed Behavior of SiC Active Devices. Master’s Thesis, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA, December 2009. [Google Scholar]
Parameter | GaN HEMT | SiC MOSFET |
---|---|---|
Part Number | GS66516T | SCT3030AR |
Breakdown Voltage | 650 V | 650 V |
Continuous Current | 60 A | 70 A |
Component | Value |
---|---|
Input Voltage VDC | 260 V |
Equivalent Inductance Leq | 18.40 µH |
Equivalent Resistance Req | 5.16 Ω |
Resonant Capacitance Cr1 Cr2 | 0.068 µF |
Snubber Capacitance Cs1 Cs2 | 10 nF |
Rated Power | 2 kW |
Dead Time tdead | 500 ns |
Total Gate Resistance RG | 7 Ω |
Component | Comparison |
---|---|
DC-DC Converter | GaN < SiC |
Gate Driver | GaN SiC |
Main Switch | GaN > SiC |
Snubber Capacitor | GaN = SiC |
Resonant Capacitor | GaN = SiC |
Working Coil | GaN = SiC |
Total Cost | GaN > SiC |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cha, K.-H.; Ju, C.-T.; Kim, R.-Y. Analysis and Evaluation of WBG Power Device in High Frequency Induction Heating Application. Energies 2020, 13, 5351. https://doi.org/10.3390/en13205351
Cha K-H, Ju C-T, Kim R-Y. Analysis and Evaluation of WBG Power Device in High Frequency Induction Heating Application. Energies. 2020; 13(20):5351. https://doi.org/10.3390/en13205351
Chicago/Turabian StyleCha, Kwang-Hyung, Chang-Tae Ju, and Rae-Young Kim. 2020. "Analysis and Evaluation of WBG Power Device in High Frequency Induction Heating Application" Energies 13, no. 20: 5351. https://doi.org/10.3390/en13205351
APA StyleCha, K. -H., Ju, C. -T., & Kim, R. -Y. (2020). Analysis and Evaluation of WBG Power Device in High Frequency Induction Heating Application. Energies, 13(20), 5351. https://doi.org/10.3390/en13205351