Economic and Environmental Analysis of Small-Scale Anaerobic Digestion Plants on Irish Dairy Farms
Abstract
:1. Introduction
- Examine the technical parameters associated with the operation of an SSAD plant at various capacities.
- Conduct a CO2 balance to assess the various scenarios investigated.
- Conduct an economic analysis investigating total revenues, expenditures and financial indicators, such as net present value (NPV) and internal rate of return (IRR).
2. Materials and Methods
2.1. System Boundary
- Associated agricultural processes: (i) crop production; (ii) crop harvest and transport; (iii) manure collection and transport; (iv) storage; (v) transport to digester;
- Biogas production: (i) digester feeding (ii) the AD process;
- Energy conversion: (i) energy generation (production of electricity and heat); (ii) final use of energy produced;
- End of life of digestate: (i) storage; (ii) transport and digestate spreading.
2.2. Feedstock Yield
2.3. Pre-Digestion Farm Activities
2.4. Operation of the Biogas Plant
2.5. Final use of Energy Produced
2.6. Environmental Considerations
2.7. Establishment and Operating Costs
- The plants incur an annual maintenance cost of 2.5% of the total capital cost, as reported in the literature [70].
- Insurance costs are typically 1% of total capital costs, which was observed in the model [71].
2.8. Revenue Streams and Financial Indicators
3. Results
3.1. Technical Results
3.2. Environmental Results
3.3. Economic Results
4. Discussion
4.1. Financial Significance
4.2. Environmental Outlook
4.3. Comparison to Other Studies
4.4. Irelands Future Outlook
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Decision No. 406/2009/EC of the European Parliament and of the Council of 23 April 2009 on the Effort of Member States to Reduce their Greenhouse Gas Emissions to Meet the Community’s Greenhouse Gas Emission Reduction Commitments up to 2020; European Commission: Strasbourg, France, 2009.
- Enviromental Protection Agency. Ireland ’s Greenhouse Gas Emissions Projections 2018–2040; Enviromental Protection Agency, Johnstown Castle Estate: Wexford, Ireland, 2020.
- Parliamentary Budget Office. An Overview of Carbon Pricing: PBO Publication 35 of 2019; Tithe an Oireachtais Houses of the Oireachtas: Dublin, Ireland, 2019.
- Howley, M.; Holland, M. Energy-Related CO2 Emissions in Ireland 2005–2016; Sustainable Energy Authority of Ireland Energy: Cork, Ireland, 2018.
- Hung, Y.T.; Kajitvichyanukul, P.; Wang, L.K. Advances in anaerobic systems for organic pollution removal from food processing wastewater. In Handbook of Water and Energy Management in Food Processing; Klemes, J., Smith, R., Kim, J.K., Eds.; Woodhead Publishing Ltd.: Cambridge, UK, 2008; pp. 755–775. [Google Scholar]
- Chadwick, D.; Sommer, S.; Thorman, R.; Fangueiro, D.; Cardenas, L.; Amon, B.; Misselbrook, T. Manure management: Implications for greenhouse gas emissions. Anim. Feed Sci. Technol. 2011, 166–167, 514–531. [Google Scholar] [CrossRef]
- Moral, R.; Bustamante, M.A.; Chadwick, D.R.; Camp, V.; Misselbrook, T.H. N and C transformations in stored cattle farmyard manure, including direct estimates of N2 emission. Resour. Conserv. Recycl. 2012, 63, 35–42. [Google Scholar] [CrossRef]
- Gerber, P.J.; Steinfeld, H.; Henderson, B.; Mottet, A.; Opio, C.; Dijkman, J.; Falcucci, A.; Tempio, G. Tackling Climate Change Through Livestock—A Global Assessment of Emissions and Mitigation Opportunities; Food and Agriculture Organization of the United Nations (FAO): Rome, Italy, 2013. [Google Scholar]
- Choong, Y.Y.; Norli, I.; Abdullah, A.Z.; Yhaya, M.F. Impacts of trace element supplementation on the performance of anaerobic digestion process: A critical review. Bioresour. Technol. 2016, 209, 369–379. [Google Scholar] [CrossRef] [PubMed]
- Romero-Güiza, M.S.; Vila, J.; Mata-Alvarez, J.; Chimenos, J.M.; Astals, S. The role of additives on anaerobic digestion: A review. Renew. Sustain. Energy Rev. 2016, 58, 1486–1499. [Google Scholar] [CrossRef]
- Kampman, B.; Leguijt, C.; Scholten, T.; Tallat-Kelpsaite, J.; Brückmann, R.; Maroulis, G.; Lesschen, J.P.; Meesters, K.; Sikirica, N.; Elbersen, B. Optimal Use of Biogas From Waste Streams—An Assessment of the Potential of Biogas from Digestion in the EU Beyond 2020; European Commission: Strasbourg, France, 2017. [Google Scholar]
- Jeguirim, M.; Limousy, L. Strategies for bioenergy production from agriculture and agrifood processing residues. Biofuels 2018, 9, 541–543. [Google Scholar] [CrossRef] [Green Version]
- Muradin, M.; Joachimiak-Lechman, K.; Foltynowicz, Z. Evaluation of Eco-Efficiency of Two Alternative Agricultural Biogas Plants. Appl. Sci. 2018, 8, 2083. [Google Scholar] [CrossRef] [Green Version]
- Chiumenti, A.; Pezzuolo, A.; Boscaro, D.; Borso, F.D. Exploitation of Mowed Grass from Green Areas by Means of Anaerobic Digestion: Effects of Grass Conservation Methods (Drying and Ensiling) on Biogas and Biomethane Yield. Energies 2019, 12, 3244. [Google Scholar] [CrossRef] [Green Version]
- Stambasky, J. The Potential Size of the Anaerobic Digestion Industry in Ireland by the Year 2030; Composting & Anaerobic Digestion Association of Ireland and The Irish Bioenergy Association: Meath, Ireland, 2016. [Google Scholar]
- Auer, A.; Vande Burgt, N.H.; Abram, F.; Barry, G.; Fenton, O.; Markey, B.K.; Nolan, S.; Richards, K.; Bolton, D.; De Waal, T.; et al. Agricultural anaerobic digestion power plants in Ireland and Germany: Policy and practice. J. Sci. Food Agric. 2017, 97, 719–723. [Google Scholar] [CrossRef]
- Tabassum, M.R.; Xia, A.; Murphy, J.D. Potential of seaweed as a feedstock for renewable gaseous fuel production in Ireland. Renew. Sustain. Energy Rev. 2017, 68, 136–146. [Google Scholar] [CrossRef]
- O’Connor, S.; Ehimen, E.; Black, A.; Pillai, S.C.; Bartlett, J. An overview of biogas production from small-scale anaerobic digestion plants on European farms. In Proceedings of the Energy Technology Partnership (ETP) Annual Conference, University of Strathclyde, Glasgow, UK, 29 October 2018. [Google Scholar]
- De Paor Consultancy. Review of the Irish Agri-food Industry 2017–2018; Irish Farmers Monthly: Dublin, Ireland, 2018. [Google Scholar]
- Central Statistics Office. Livestock Survey: December 2018. Available online: https://www.cso.ie/en/releasesandpublications/er/lsd/livestocksurveydecember2018/ (accessed on 10 December 2019).
- Wall, D.M.; O’Kiely, P.; Murphy, J.D. The potential for biomethane from grass and slurry to satisfy renewable energy targets. Bioresour. Technol. 2013, 149, 425–431. [Google Scholar] [CrossRef]
- Hijazi, O.; Munro, S.; Zerhusen, B.; Effenberger, M. Review of life cycle assessment for biogas production in Europe. Renew. Sustain. Energy Rev. 2016, 54, 1291–1300. [Google Scholar] [CrossRef]
- IrBEA and Cre. Biogas Support Scheme-Mobilising an Irish biogas Industry with Policy and Action; Irish Bioenergy Association (IrBEA), Composting and Anaerobic Digestion Association of Ireland (Cre): Meath, Ireland, 2019. [Google Scholar]
- Government of Ireland, Fact Sheet on Irish Agriculture–January 2018. Available online: https://www.agriculture.gov.ie/media/migration/publications/2018/January2018Factsheet120118.pdf (accessed on 10 December 2019).
- Holdent, N.M.; Brereton, A.J. An Assessment of the Potential Impact of Climate Change on Grass Yield in Ireland over the next 100 years. Irish J. Agric. Food Res. 2002, 41, 213–226. [Google Scholar]
- Smyth, B.M.; Murphy, J.D.; O ’Brien, C.M. What is the energy balance of grass biomethane in Ireland and other temperate northern European climates? Renew. Sustain. Energy Rev. 2009, 13, 2349–2360. [Google Scholar] [CrossRef]
- Central Statistics Office. Farm Structure Survey 2016. Available online: https://www.cso.ie/en/releasesandpublications/ep/p-fss/farmstructuresurvey2016/ (accessed on 10 December 2019).
- Wickham, B. Cattle Breeding in Ireland; Irish Farmers Journal: Dublin, Ireland, 2007. [Google Scholar]
- Berry, D.; Shallooa, L.; Cromieb, A.; Olorib, V.; Veerkampc, R.; Dillon, P.; Amer, P.; Evans, R.; Kearney, F.; Wickham, B. The Economic Breeding Index: A Generation on; Technical Report to the Irish Cattle Breeding Federation; The Irish Cattle Breeding Federation: Cork, Ireland, 2007. [Google Scholar]
- O’Brien, D.; Capper, J.L.; Garnsworthy, P.C.; Grainger, C.; Shalloo, L. A case study of the carbon footprint of milk from high-performing confinement and grass-based dairy farms. J. Dairy Sci. 2014, 97, 1835–1851. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ryan, T.; Lenehan, J.J. Chapter 48-Winter accommodation for beef animals. In Teagasc Beef Manual; Teagasc: Carlow, Ireland, 2016; pp. 271–284. [Google Scholar]
- Teagasc Dairy Manual—A Best Practice Manual for Ireland’s Dairy Farms; Teagasc: Carlow, Ireland, 2016.
- Midwest Plan Service. Livestock Waste Facilities Handbook; Iowa State University: Iowa, IA, USA, 1985. [Google Scholar]
- Ryan, M. Grassland Productivity 1. Nitrogen and soil effects on yield of herbage. Irish J. Agric. Res. 1974, 13, 275–291. [Google Scholar]
- Berglund, M.; Börjesson, P. Assessment of energy performance in the life-cycle of biogas production. Biomass Bioenergy 2006, 30, 254–266. [Google Scholar] [CrossRef]
- Gerin, P.A.; Vliegen, F.; Jossart, J.M. Energy and CO2 balance of maize and grass as energy crops for anaerobic digestion. Bioresour. Technol. 2008, 99, 2620–2627. [Google Scholar] [CrossRef]
- Dillon, E.; Buckley, C.; Moran, B.; Lennon, J.; Wall, D. Teagasc National Farm Survey-Fertiliser Use Survey 2005–2015; Teagasc: Carlow, Ireland, 2018.
- Pesticide Control Division. Pesticide Usage in Ireland-Grassland & Fodder Crops Survey Report 2013; Department of Agriculture, Food and the Marine: Kildare, Ireland, 2014.
- Manchala, K.R.; Sun, Y.; Zhang, D.; Wang, Z.W. Anaerobic digestion modelling. Adv. Bioenergy 2017, 2, 69–141. [Google Scholar]
- Nijaguna, B.T. Biogas Technology; New Age International: Delhi, India, 2002. [Google Scholar]
- Boyle, W.C. Energy recovery from sanitary landfills. In Microbial Energy Conversion; Schlegel, H.G., Barnea, J., Eds.; Pergamon Press: Oxford, UK, 1977; pp. 119–138. [Google Scholar]
- Oreggioni, G.D.; Gowreesunker, B.L.; Tassou, S.A.; Bianchi, G.; Reilly, M.; Kirby, M.E.; Toop, T.A.; Theodorou, M.K. Potential for energy production from farm wastes using anaerobic digestion in the UK: An economic comparison of different size plants. Energies 2017, 10, 1396. [Google Scholar] [CrossRef] [Green Version]
- Jain, S. Cost of Abating Greenhouse Gas Emissions from UK Dairy Farms by Anaerobic Digestion of Slurry. Ph.D. Thesis, University of Southampton, Southampton, UK, 2013. [Google Scholar]
- Theofanous, E.; Kythreotou, N.; Panayiotou, G.; Florides, G.; Vyrides, I. Energy production from piggery waste using anaerobic digestion: Current status and potential in Cyprus. Renew. Energy 2014, 71, 263–270. [Google Scholar] [CrossRef]
- Miller, S.F.; Miller, B.G. The Occurrence of Inorganic Elements in Various Biofuels and Its Effect on the Formation of Melt Phases During Combustion. In Proceedings of the International Joint Power Generation Conference, Scottsdale, AZ, USA, 24–26 June 2002; pp. 873–880. [Google Scholar]
- Handreichung-Biogasgewinnung Und-Nutzung; Fachagentur Nachwachsende Rohstoffe e.V.: Gulzow, Germany, 2006.
- Akbulut, A. Techno-economic analysis of electricity and heat generation from farm-scale biogas plant: Cicekdagi case study. Energy 2012, 44, 381–390. [Google Scholar] [CrossRef]
- Lantz, M. The economic performance of combined heat and power from biogas produced from manure in Sweden—A comparison of different CHP technologies. Appl. Energy 2012, 98, 502–511. [Google Scholar] [CrossRef]
- Bioenergy Training Center. Introduction to Anaerobic Digestion Course-Types of Anaerobic Digesters. Available online: https://farm-energy.extension.org/types-of-anaerobic-digesters/ (accessed on 28 January 2020).
- The German Solar Energy Society; Ecofys. Planning and Installing Bioenergy Systems: A Guide for Installers, Architects and Engineers; Taylor & Francis: Lindon, UK, 2005. [Google Scholar]
- Murphy, J.D.; McKeogh, E.; Kiely, G. Technical/economic/environmental analysis of biogas utilisation. Appl. Energy 2004, 77, 407–427. [Google Scholar] [CrossRef]
- Enerblu Cogeneration. Combined Heat and Power (CHP) Specifications. Available online: http://www.enerblu-cogeneration.com/products/80-impianti-biogas.html (accessed on 12 May 2019).
- Walsh, S. A Summary of Climate Averages for Ireland 1981–2010; Met Éireann: Dublin, Ireland, 2012. [Google Scholar]
- Upton, J.; Humphreys, J.; Groot Koerkamp, P.W.G.; French, P.; Dillon, P.; De Boer, I.J.M. Energy demand on dairy farms in Ireland. J. Dairy Sci. 2013, 96, 6489–6498. [Google Scholar] [CrossRef] [Green Version]
- Irish Farming Association. Factsheet on Irish Dairying 2017. Available online: https://www.ifa.ie/sectors/dairy/dairy-fact-sheet/ (accessed on 19 April 2019).
- Crane, M. Energy efficient district heating in practice-the importance of achieving low return temperatures. In Proceedings of the CIBSE Technical Symposium Edinburgh, Heriot Watt University, Edinburgh, UK, 14–15 April 2016. [Google Scholar]
- The Engineering Toolbox. Combustion from Fuels-Carbon Dioxide Emission. Available online: https://www.engineeringtoolbox.com/co2-emission-fuels-d_1085.html (accessed on 26 June 2019).
- Commission for Regulation of Utilities. Fuel Mix Disclosure 2016; Commission for Regulation of Utilities: Dublin, Ireland, 2017.
- Nielsen, M.; Nielsen, O.K.; Plejdrup, M. Danish Emission Inventories for Stationary Combustion Plants. Inventories until 2011; Scientific Report from DCE–Danish Centre for Environment and Energy; Aarhus University, Danish Centre for Environment and Energy: Aarhus, Denmark, 2014. [Google Scholar]
- Organisation of Economic Community and Development (OECD). Estimation of Greenhouse-Gas Emissions and Sinks Final Report from ODED Expererts Meeting, 18–21, February 1991; OECD: Paris, France, 1991. [Google Scholar]
- Myhre, G.; Shindell, D.; Bréon, F.M.; Collins, W.; Fuglestvedt, J.; Huang, J.; Koch, D.; Lamarque, J.F.; Lee, D.; Mendoza, B.; et al. 2013: Anthropogenic and Natural Radiative Forcing. In Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Stocker, T.F., Qin, D., Plattner, G.K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M., Eds.; Cambridge University Press: Cambridge, UK, 2013. [Google Scholar]
- Redman, G. A Detailed Economic Assessment of Anaerobic Digestion Technology and its Suitability to UK Farming and Waste Systems; The Andersons Centre: Leicestershire, UK, 2010. [Google Scholar]
- Bywater, A. A Review of Anaerobic Digestion Plants on UK Farms—Barriers, Benefits and Case Studies; Royal Agricultural Society of England: Stoneleigh Park, Warwickshire, UK, 2011. [Google Scholar]
- Heinsoo, K. Implementation Plan for BioEnergy Farm; BioEnergy Farm Publication: Tartu, Estonia, 2011; Available online: https://ec.europa.eu/energy/intelligent/projects/sites/iee-projects/files/projects/documents/bioenergy_farm_description_of_best_case_examples_en.pdf (accessed on 28 January 2019).
- The Wales Centre Of Excellence For Anaerobic Digestion; Landes Energie Verein Steiermark; Vienna University of Technology. European Case Studies of Anaerobic Digestion Plants Showcasing their Monitoring Practices; Bio-methane Regions: Brussels, Belgium, 2012; Available online: https://www.severnwye.org.uk/fileadmin/Resources/SevernWye/Projects/Biomethane_Regions/Downloads/BMR_D_5_1_Best_Practice_Monitoring_FINAL_a_Resubmission_Final7.pdf (accessed on 28 January 2020).
- De Dobbelaere, A.; De Keulenaere, B.; De Mey, J.; Lebuf, V.; Meers, E.; Ryckaert, B.; Schollier, C.; Van Driessche, J. Small-scale Anaerobic Digestion: Case Studies in Western Europe; Mia Demeulmeester: Rumbeke, Belgium, 2015. [Google Scholar]
- Hjort-Gregersen, K. Market Overview Micro Scale Digesters; AgroTEch A/S: Aarhus, Denmark, 2015; Available online: http://www.bioenergyfarm.eu/wp-content/uploads/2015/05/WP2_report_revised_version-FINAL-ENGLISH.pdf (accessed on 19 April 2019).
- Lukehurst, C.; Bywater, A. Exploring the Viability of Small Scale Anaerobic Digesters in Livestock Farming; IEA Bioenergy: Paris, France, 2015; Available online: https://www.iea-biogas.net/files/daten-redaktion/download/Technical%20Brochures/Small_Scale_RZ_web2.pdf (accessed on 28 January 2020).
- Li, Y.; Samir, K.K. Bioenergy: Principles and Applications; John Wiley & Sons: Hoboken, NZ, USA, 2016. [Google Scholar]
- Jones, P. Missing Integrated Systems for Farm Diversification into Energy Production by Anaerobic Digestion: Implications for Rural Development, Land Use and the Environment-Modelling the Commercial Profitability of AD Energy Production at the Farm Level within Arable and Dairy Systems; University of Reading: Reading, UK, 2010. [Google Scholar]
- Jones, P.; Salter, A. Modelling the economics of farm-based anaerobic digestion in a UK whole-farm context. Energy Policy 2013, 62, 215–225. [Google Scholar] [CrossRef]
- Department of Communications Energy and Natural and Resources. Renewable Energy Feed in Tariff: A Competition For Electricity Generation—From Biomass Technologies 2010–2015; Department of Communications Energy and Natural and Resources: Dublin, Ireland, 2013.
- Howley, M.; Barriscale, A. Electricity & Gas Prices in Ireland—2nd Semester (July–December) 2016; Sustainable Energy Authority of Ireland: Dublin, Ireland, 2017.
- SEAI. Domestic Fuels Comparison of Energy Costs; Sustainable Energy Authority of Ireland: Dublin, Ireland, 2018. Available online: https://www.seai.ie/resources/publications/Domestic-Fuel-Cost-Comparison.pdf (accessed on 17 November 2019).
- Department of Communications Climate Action & Environment. Support Scheme for Renewable Heat Scheme Overview; Department of Communications Climate Action & Environment: Dublin, Ireland, 2018.
- Bishop, C.P.; Shumway, C.R. The Economics of Dairy Anaerobic Digestion with Coproduct Marketing. Rev. Agric. Econ. 2009, 31, 394–41016. [Google Scholar] [CrossRef]
- Abu-Orf, M.; Bowden, G.; Pfrang, W. Wastewater Engineering: Treatment and Resource Recovery; Tchobanoglous, G., Stensel, H.D., Tsuchihashi, R., Burton, F., Eds.; McGraw Hill Higher Education: New York, NY, USA, 2014. [Google Scholar]
- Redican, J.H. Federal Discount Rate for Fiscal Year 2019: Economic Guidance Memorandum 19-01; Army Crops of Engineers: Washington, DC, USA, 2018.
- Commission for Energy Regulation. Review of Typical Domestic Consumption Values for Electricity and Gas Customers; Commission for Energy Regulation: Dublin, Ireland, 2017.
- Central Statistics Office. Fuel Consumption by Sector, Fuel Type and Year. Available online: https://statbank.cso.ie/px/pxeirestat/Statire/SelectVarVal/Define.asp?maintable=SEI06&PLanguage=0 (accessed on 13 December 2019).
- Ricardo Energy & Environment. Assessment of Cost and Benefits of Biogas and Biomethane in Ireland; Sustainable Energy Authority of Ireland: Dublin, Ireland, 2017.
- Earthlee, Onsite Organic Waste Management & Energy Solution. Available online: https://www.earthlee.com/ (accessed on 29 December 2018).
- Alchemy Utilities. Creating a Circular Economy. Available online: https://alchemyutilities.ie/ (accessed on 29 December 2019).
- Demetra. AD Bag-biogas Made Easy. Available online: https://www.demetra.ie/wp-content/uploads/2016/12/ADbag.pdf (accessed on 29 December 2019).
- Bio Ferm Energy Systems. Range of Anaerobic Digestion Systems. Available online: https://www.biofermenergy.com/ (accessed on 29 December 2019).
- SEaB Energy. Products. Available online: https://seabenergy.com/ (accessed on 29 December 2019).
- QUBE Renewables. Innovative Small Scale Anaerobic Digestion. Available online: https://www.quberenewables.co.uk/ (accessed on 29 December 2019).
- Environmental Protection Agency. Ireland’s Greenhouse Gas Emission Projections 2016–2035; Environmental Protection Agency: Dublin, Ireland, 2017.
- Scheer, J.; Clancy, M.; Gaffney, F. Ireland’s Energy Targets—Progress, Ambition & Impacts; Sustainable Energy Authority of Ireland: Dublin, Ireland, 2016.
- Wilkinson, K.G. Development of on-farm anaerobic digestion. In Integrated Waste Management; Kumar, S., Ed.; InTech.: Rijeka, Croatia, 2011; Volume 1, pp. 179–194. [Google Scholar]
- Walker, M.; Theaker, H.; Yaman, R.; Poggio, D.; Nimmo, W.; Bywater, A.; Blanch, G.; Pourkashanian, M. Assessment of micro-scale anaerobic digestion for management of urban organic waste: A case study in London, UK. Waste Manag. 2017, 122, 221–236. [Google Scholar] [CrossRef]
- Department for Business Energy & Industrial Strategy. Review of Support for Anaerobic Digestion and Micro-combined Heat and Power Under the Feed-in Tariff Scheme; Department for Business Energy & Industrial Strategy: Dublin, Ireland, 2017.
- Nguyen, D.; Gadhamshetty, V.; Nitayavardhana, S.; Khanal, S.K. Automatic process control in anaerobic digestion technology: A critical review. Bioresour. Technol. 2015, 193, 513–522. [Google Scholar] [CrossRef]
- Kougias, P.G.; Angelidaki, I. Biogas and its opportunities–A review. Front. Environ. Sci. Eng. 2018, 12, 14. [Google Scholar] [CrossRef]
- Wiese, J.; Haeck, M. Instrumentation, control and automation for full-scale manure-based biogas systems. Water Sci. Technol. 2006, 54, 1–8. [Google Scholar] [CrossRef]
- Carlsson, M.; Lagerkvist, A.; Morgan-Sagastume, F. The effects of substrate pre-treatment on anaerobic digestion systems: A review. Waste Manag. 2012, 32, 1634–1650. [Google Scholar] [CrossRef] [PubMed]
- Ehimen, E.A.; Connaughton, S.; Sun, Z.; Carrington, G.C. Energy recovery from lipid extracted, transesterified and glycerol codigested microalgae biomass. GCB Bioenergy 2009, 1, 371–381. [Google Scholar] [CrossRef]
- Papurello, D.; Tomasi, L.; Silvestri, S.; Santarelli, M. Evaluation of the Wheeler-Jonas parameters for biogas trace compounds removal with activated carbons. Fuel Process. Technol. 2016, 152, 93–101. [Google Scholar] [CrossRef]
- Rasi, S.; Läntelä, J.; Rintala, J. Trace compounds affecting biogas energy utilisation-A review. Energy Convers. Manag. 2011, 52, 3369–3375. [Google Scholar] [CrossRef]
- Papurello, D.; Boschetti, A.; Silvestri, S.; Khomenko, I.; Biasioli, F. Real-time monitoring of removal of trace compounds with PTR-MS: Biochar experimental investigation. Renew. Energy 2018, 125, 344–355. [Google Scholar] [CrossRef]
- Kupeckia, J.; Papurelloc, D.; Lanzinic, A.; Naumovicha, Y.; Motylinskia, K.; Blesznowskia, M.; Santarelli, M. Numerical model of planar anode supported solid oxide fuel cell fed with fuel containing H2S operated in direct internal reforming mode (DIR-SOFC). Appl. Energy 2018, 230, 1573–1584. [Google Scholar] [CrossRef]
- Wasajja, H.; Lindeboom, R.E.F.; Van Lier, J.B.; Aravind, P.V. Techno-economic review of biogas cleaning technologies for small scale off-grid solid oxide fuel cell applications. Fuel Process. Technol. 2020, 197, 106215. [Google Scholar] [CrossRef]
- Papurello, D.; Lanzini, A. SOFC single cells fed by biogas: Experimental tests with trace contaminants. Waste Manag. 2018, 72, 306–312. [Google Scholar] [CrossRef]
- Central Statistics Office. Livestock Survey: December 2013. Available online: https://www.cso.ie/en/releasesandpublications/er/lsd/livestocksurveydecember2013/ (accessed on 13 December 2019).
- Food Harvest 2020: A Vision for Irish Agri-food and Fisheries; Department of Agriculture Fisheries and Food: Dublin, Ireland, 2010.
- Teagasc. Sectoral Road Map: Dairying; Teagasc: Carlow, Ireland, 2016.
Livestock | Livestock Weight Target | Total Manure Production (FW day−1) |
---|---|---|
Adult cows (<24 months) | 550 kg a | 52.2 kg b |
Heifers (12 to 24 months) | 406 kg a | 37.2 kg b |
Calves (>12 months) | 175 kg a | 18.6 kg b |
Operation | Average Diesel Fuel Consumption (l ha−1 y−1) |
---|---|
Crop production | |
Soil ploughing and crumbling | 4.67 |
Sowing and maintenance | 6.9 |
Weed control | 0.24 |
Transport and spreading of fertiliser | 18 |
Crop collection and transport | |
Harvest | 47.20 |
Harvest transport | 25.49 |
Silo compaction | 8.80 |
Digester feeding (grass) | 23.57 |
Application Rate (kg ha−1 yr−1) | Energy Consumed (MJ kg−1) | CO2 Emitted (kg CO2 kg−1) | |
---|---|---|---|
Mineral fertiliser | |||
Nitrogen | 82 a | 70 ± 34 | 2.5 ± 0.1 |
Phosphorus pentoxide | 11 a | 12 ± 4 | 1.1 ± 0.4 |
Potassium oxide | 29 a | 7.5 ± 2.5 | 0.67 ± 0.19 |
Other raw materials | |||
Diesel | N/A | 56.3 ± 5.6 | 3.64 ± 3.6 |
Weed control | 0.11 b | 200 ± 20 | 15.45 ± 1.5 |
Physical Properties | Dairy Cow Manure | Grass Silage |
---|---|---|
DS (g kg−1) a | 87.5 ± 2.1 c | 292.7 ± 3.4 c |
VS (g kg−1) b | 66.9 ± 1.8 c | 87.5 ± 2.1 c |
VS DS−1 (%) a b | 76.5 c | 91.7 c |
Carbon (%) | 58.62 d | 43.3 e |
Hydrogen (%) | 7.69 d | 6.43 e |
Oxygen (%) | 30.50 d | 44.72 e |
Nitrogen (%) | 2.92 d | 2.36 e |
Sulphur (%) | 0.27 d | 0.06 e |
Scenario 1 | Scenario 2 | Scenario 3 | Scenario 4 | Scenario 5 | ||
---|---|---|---|---|---|---|
Herd Characteristics | ||||||
Herd size (adult cows) | 50 | 100 | 150 | 200 | 250 | |
Cow manure yield (t FW yr−1) | 505 | 1010 | 1515 | 2020 | 2525 | |
Crop Characteristics | ||||||
Land available for energy crops (ha) | 21.19 | 24.10 | 27.00 | 29.90 | 32.81 | |
Grass silage yield (t FW yr−1) | 941 | 1070 | 1199 | 1328 | 1457 | |
CHP Specifications | ||||||
CHP engine power (kWe) | 17 | 26 | 39 | 46 | 55 | |
Methane Yield | ||||||
Methane yield a (m3 yr−1) | 42,316 | 66,718 | 91,120 | 115,521 | 139,923 | |
Energy Consumption of AD Plant | ||||||
Electricity consumption (kWh yr−1) | 10,414 | 14,979 | 19,544 | 24,109 | 28,674 | |
Heat consumption (kWh yr−1) | 48,225 | 69,212 | 90,173 | 111,117 | 132,048 | |
Farm Energy Demand | ||||||
Electricity demand (kWh yr−1) | 8125 | 16,250 | 24,375 | 32,500 | 40,625 | |
Heat demand (kWh yr−1) | 2458 | 4915 | 7373 | 9830 | 12,288 | |
Final Use of Excess Energy | ||||||
Exported electricity to grid (kWh yr−1) | 102,697 | 159,917 | 217,137 | 274,357 | 331,577 | |
Equivalent electricity consumption in residential homes (Irish homes year−1) b | 24.5 | 38.1 | 51.7 | 65.3 | 78.9 | |
Exported heat to district heating system (kWh yr−1) | 148,193 | 252,918 | 357,667 | 462,434 | 567,215 | |
Equivalent heat consumption in residential homes (homes year−1) c | 13.5 | 23.0 | 32.5 | 42.0 | 51.6 |
Scenario 1 | Scenario 2 | Scenario 3 | Scenario 4 | Scenario 5 | |
---|---|---|---|---|---|
Herd size (adult cows) | 50 | 100 | 150 | 200 | 250 |
CO2 Produced (kg CO2-eq. yr−1) | |||||
Crop Production | |||||
Soil ploughing and crumbling | 264 | 300 | 336 | 372 | 408 |
Sowing and maintenance | 300 | 341 | 382 | 423 | 464 |
Sowing | 90 | 102 | 114 | 126 | 139 |
Weed control (fuel) | 13 | 15 | 17 | 19 | 21 |
Weed control (mineral production) | 36 | 41 | 46 | 51 | 56 |
Fertiliser spreading (fuel) | 381 | 434 | 486 | 538 | 591 |
Fertiliser (mineral production) | 5013 | 5699 | 6386 | 7073 | 7760 |
Feedstock Collection and Transport | |||||
Harvest | 2665 | 3030 | 3395 | 3760 | 4125 |
Harvest transport | 1439 | 1636 | 1833 | 2030 | 2227 |
Silo compaction | 497 | 565 | 633 | 701 | 769 |
Digester feeding (Crops) | 1331 | 1513 | 1695 | 1878 | 2060 |
Collection and digester feeding (Manure) | 92 | 185 | 277 | 370 | 462 |
Biogas Production Process | |||||
CO2 Content | 133,652 | 210,722 | 287,722 | 364,863 | 441,933 |
Digestate Disposal | |||||
Transport and spreading of digestate | 2355 | 3387 | 4419 | 5451 | 6484 |
Total CO2 produced | 148,127 | 227,970 | 307,813 | 387,656 | 467,499 |
CO2 reduction (kg CO2-eq. yr−1) | |||||
Do nothing scenario | |||||
Manure storage | 51,323 | 102,646 | 153,970 | 205,293 | 256,616 |
Manure land application | 20,529 | 41,059 | 61,588 | 82,117 | 102,646 |
Farm Energy Demand | |||||
On-farm electricity | 2982 | 5964 | 8946 | 11,928 | 14,909 |
On-farm heating | 614 | 1229 | 1843 | 2458 | 3072 |
Final Use of Excess Energy | |||||
Electricity exported | 37,690 | 58,689 | 79,689 | 100,689 | 121,689 |
Heat exported to district heating | 37,048 | 63,229 | 89,417 | 115,609 | 141,804 |
Total CO2 reduction | 150,187 | 272,816 | 395,452 | 518,093 | 640,736 |
Net CO2 savings (kg CO2-eq. yr−1) | 2059 | 44,846 | 87,639 | 130,437 | 173,237 |
Equivalent savings in cars displaced (cars per year) a | 4.36 | 94.90 | 185.45 | 276.01 | 366.57 |
Scenario 1 | Scenario 2 | Scenario 3 | Scenario 4 | Scenario 5 | |
---|---|---|---|---|---|
Herd size (adult cows) | 50 | 100 | 150 | 200 | 250 |
Project Revenues (€) | |||||
On-site electricity savings | €32,338 | €64,675 | €73,613 | €98,150 | €122,688 |
On-site heating savings | €3932 | €7864 | €11,796 | €15,728 | €19,660 |
Sale of exported electricity | €323,727 | €504,099 | €684,472 | €864,844 | €1,045,216 |
Sale of exported heat to district heating | €88,916 | €151,751 | €214,600 | €277,461 | €340,329 |
Support Scheme for Renewable Heat | €66,663 | €114,091 | €161,530 | €208,977 | €256,430 |
Total Revenues | €515,576 | €842,480 | €1,146,000 | €1,465,159 | €1,784,322 |
Project Expenditures (€) | |||||
Investment Costs | |||||
Capital Costs Inc. CHP | €290,099 | €345,479 | €400,860 | €456,241 | €511,622 |
Operating Costs | |||||
Maintenance and Repair Costs incl. CHP | €145,049 | €172,740 | €200,430 | €228,121 | €255,811 |
Insurance | €87,030 | €103,644 | €120,258 | €136,872 | €153,487 |
Labour | €42,625 | €67,204 | €91,784 | €116,363 | €140,943 |
Total Operating Costs | €274,704 | €343,588 | €412,472 | €481,356 | €550,241 |
Financial Indicators | |||||
Profit before tax (€) | €240,872 | €498,892 | €733,538 | €983,803 | €1,234,082 |
NPV at 5% (€) | -€135,418 | -€26,758 | €67,339 | €171,168 | €275,006 |
IRR (%) | -2% | 4% | 7% | 9% | 11% |
Payback period (Years) | 25.65 | 12.87 | 10.18 | 8.66 | 7.75 |
Discounted payback period (Years) | N/A | 24.02 | 14.56 | 11.64 | 10.05 |
Payback period Incl. capital grant (Years) | 11.03 | 6.43 | 5.09 | 4.33 | 3.88 |
Discounted payback period Incl. capital grant (Years) | 16.34 | 7.96 | 6.02 | 5.00 | 4.42 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
O’Connor, S.; Ehimen, E.; Pillai, S.C.; Lyons, G.; Bartlett, J. Economic and Environmental Analysis of Small-Scale Anaerobic Digestion Plants on Irish Dairy Farms. Energies 2020, 13, 637. https://doi.org/10.3390/en13030637
O’Connor S, Ehimen E, Pillai SC, Lyons G, Bartlett J. Economic and Environmental Analysis of Small-Scale Anaerobic Digestion Plants on Irish Dairy Farms. Energies. 2020; 13(3):637. https://doi.org/10.3390/en13030637
Chicago/Turabian StyleO’Connor, Sean, Ehiaze Ehimen, Suresh C. Pillai, Gary Lyons, and John Bartlett. 2020. "Economic and Environmental Analysis of Small-Scale Anaerobic Digestion Plants on Irish Dairy Farms" Energies 13, no. 3: 637. https://doi.org/10.3390/en13030637
APA StyleO’Connor, S., Ehimen, E., Pillai, S. C., Lyons, G., & Bartlett, J. (2020). Economic and Environmental Analysis of Small-Scale Anaerobic Digestion Plants on Irish Dairy Farms. Energies, 13(3), 637. https://doi.org/10.3390/en13030637