The Comparison of Solar Energy Gaining Effectiveness between Flat Plate Collectors and Evacuated Tube Collectors with Heat Pipe: Case Study
Abstract
:1. Introduction
2. Solar Installations
2.1. Descriptions of the Two Installations
- Sport swimming pool, with a capacity of about 469 m3 and a temperature of 27 °C,
- Recreational pool, with a capacity of 105 m3 and a temperature of 29 °C.
2.2. Solar Heat Gains
3. Comparison
3.1. Weather Conditions Comparison
3.2. The Comparison of Results from Both Installations
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
3V | Three-way valve |
a1 | Heat loss coefficient, W/(m2·K) |
a2 | Non-linear heat loss coefficient, W/(m2·K2) |
cc | Correction factor for density and specific heat |
cw | Specific heat of water, kJ/(kg·K) |
ETCs | Evacuated tube collectors |
FPCs | Flat plate collectors |
G | Solar radiation density, W/m2 |
HE | Heat exchanger |
HWT | Hot water tank |
Qm | Monthly solar heat gains (before correction), GJ/month |
Qs | Monthly solar heat gains, GJ/month |
SNSR | Surface net solar radiation, kWh/(m2·month) |
Ta | Outdoor temperature, °C |
TH1 | Fluid temperature measured by heat meter: outlet of collectors, K |
TH2 | Fluid temperature measured by heat meter: inlet to collectors, K |
TRY | Typical reference year |
Volumetric flow rate measured by heat meter, dm3/min | |
ρ | Density of water, kg/dm3 |
References
- Pestana, D.G.; Rodrigues, S.; Morgado-Dias, F. Environmental and economic analysis of solar systems in Madeira, Portugal. Util. Policy 2018, 55, 31–40. [Google Scholar] [CrossRef]
- Kafka, J.L.; Miller, M.A. A climatology of solar irradiance and its controls across the United States: Implications for solar panel orientation. Renew. Energy 2019, 135, 897–907. [Google Scholar] [CrossRef]
- Zhao, J.; Ji, Y.; Yuan, Y.; Zhang, Z.; Lu, J. Energy-saving analysis of solar heating system with PCM storage tank. Energies 2018, 11, 237. [Google Scholar] [CrossRef] [Green Version]
- Dhar, A.; Naeth, M.A.; Jennings, P.D.; Gamal El-Din, M. Perspectives on environmental impacts and a land reclamation strategy for solar and wind energy systems. Sci. Total Environ. 2019, 134602. [Google Scholar] [CrossRef] [PubMed]
- Pillot, B.; Muselli, M.; Poggi, P.; Haurant, P.; Hared, I. Solar energy potential atlas for planning energy system off-grid electrification in the Republic of Djibouti. Energy Convers. Manag. 2013, 69, 131–147. [Google Scholar] [CrossRef] [Green Version]
- Chwieduk, D. Recommendation on modelling of solar energy incident. Renew. Energy 2009, 736–741. [Google Scholar] [CrossRef]
- Global Horizontal Irradiation. Available online: http://solargis.info/doc/_pics/freemaps/1000px/ghi/SolarGIS-Solar-map-Europe-en.png (accessed on 15 December 2019).
- Harrison, S.; Cruickshank, C.A. A review of strategies for the control of high temperature stagnation in solar collectors and systems. Energy Procedia 2012, 30, 793–804. [Google Scholar] [CrossRef] [Green Version]
- Košičan, J.; Pardo, M.Á.; Vilčeková, S. A multicriteria methodology to select the best installation of solar thermal power in a family house. Energies 2020, 13, 1047. [Google Scholar] [CrossRef] [Green Version]
- Abolhosseini, S.; Heshmati, A. The main support mechanisms to finance renewable energy development. Renew. Sustain. Energy Rev. 2014, 40, 876–885. [Google Scholar] [CrossRef] [Green Version]
- Timilsina, G.R.; Kurdgelashvili, L.; Narbel, P.A. Solar energy: Markets, economics and policies. Renew. Sustain. Energy Rev. 2012, 16, 876–885. [Google Scholar] [CrossRef]
- Dinica, V. Support systems for the diffusion of renewable energy technologies—An investor perspective. Energy Policy 2006, 34, 461–480. [Google Scholar] [CrossRef]
- Menanteau, P.; Finon, D.; Lamy, M.L. Prices versus quantities: Choosing policies for promoting the development of renewable energy. Energy Policy 2003, 31, 799–812. [Google Scholar] [CrossRef]
- Srinivasan, S. Subsidy policy and the enlargement of choice. Renew. Sustain. Energy Rev. 2009, 13, 2728–2733. [Google Scholar] [CrossRef]
- Hosenuzzaman, M.; Rahim, N.A.; Selvaraj, J.; Hasanuzzaman, M.; Malek, A.B.M.A.; Nahar, A. Global prospects, progress, policies, and environmental impact of solar photovoltaic power generation. Renew. Sustain. Energy Rev. 2015, 41, 284–297. [Google Scholar] [CrossRef]
- European Commission. A Clean Planet for All. A European Long-Term Strategic Vision for a Prosperous, Modern, Competitive and Climate Neutral Economy; Com (2018) 773; European Commision: Brussels, Belgium, 2018; Available online: https://ec.europa.eu/clima/sites/clima/files/docs/pages/com_2018_733_analysis_in_support_en_0.pdf (accessed on 10 February 2020).
- European Commission. European Semester: Assessment of Progress on Structural Reforms, Prevention and Correction of Macroeconomic Imbalances, and Results of In-Depth Reviews under Regulation (EU); No 1176/2011; European Commision: Brussels, Belgium, 2019; Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:52019DC0150&from=GA (accessed on 10 February 2020).
- Ma, J.; Zhao, Q.; Su, Y.; Ji, J.; He, W.; Hu, Z.; Fang, T.; Wang, H. The thermal behavior of a dual-function solar collector integrated with building: An experimental and numerical study on the air heating mode. Energies 2018, 11, 2402. [Google Scholar] [CrossRef] [Green Version]
- Kalogirou, S.A. Solar thermal collectors and applications. Prog. Energ. Combust. 2004, 30, 231–295. [Google Scholar] [CrossRef]
- Wang, W.; Tian, Z.; Ding, Y. Investigation on the influencing factors of energy consumption and thermal comfort for a passive solar house with water thermal storage wall. Energy Build. 2013, 64, 218–223. [Google Scholar] [CrossRef]
- Weiss, W.; Spörk-Dür, M. Global Market Development and Trends in 2018; IEA SHC: Gleisdorf, Austria, 2018. [Google Scholar]
- Rabah, K. Development of energy-efficient passive solar building design in Nicosia Cyprus. Renew. Energy 2005, 30, 937–956. [Google Scholar] [CrossRef]
- Numan, M.Y.; Almaziad, F.A.; Al-Khaja, W.A. Architectural and urban design potentials for residential building energy saving in the Gulf region. Appl. Energy 1999, 61, 401–410. [Google Scholar] [CrossRef]
- Aksoy, U.T.; Inalli, M. Impacts of some building passive design parameters on heating demand for a cold region. Build. Environ. 2006, 41, 1742–1754. [Google Scholar] [CrossRef]
- Karki, S.; Haapala, K.R.; Fronk, B.M. Technical and economic feasibility of solar flat-plate collector thermal energy systems for small and medium manufacturers. Appl. Energy 2019, 254, 113649. [Google Scholar] [CrossRef]
- Hassine, I.B.; Helmke, A.; Heß, S.; Krummenacher, P.; Muster, B.; Schmitt, B.; Schnitzer, H. Solar Process Heat for Production and Advanced Applications; Annex 49; IEA: Paris, France, 2014; Available online: http://task49.iea-shc.org/Data/Sites/7/150218_iea-task-49_d_b2_integration_guideline-final.pdf (accessed on 24 January 2020).
- Sokhansefat, T.; Kasaeian, A.; Rahmani, K.; Heidari, A.H.; Aghakhani, F.; Mahian, O. Thermoeconomic and environmental analysis of solar flat plate and evacuated tube collectors in cold climatic conditions. Renew. Energy 2018, 115, 501–508. [Google Scholar] [CrossRef]
- Milani, D.; Abbas, A. Multiscale modeling and performance analysis of evacuated tube collectors for solar water heaters using diffuse flat reflector. Renew. Energy 2016, 86, 360–374. [Google Scholar] [CrossRef]
- Colangelo, G.; Favale, E.; Miglietta, P.; De Risi, A. Innovation in flat solar thermal collectors: A review of the last ten years experimental results. Renew. Sustain. Energy Rev. 2016, 57, 1141–1159. [Google Scholar] [CrossRef]
- Baccoli, R.; Frattolillo, A.; Mastino, C.; Curreli, S.; Ghiani, E. A comprehensive optimization model for flat solar collector coupled with a flat booster bottom reflector based on an exact finite length simulation model. Energy Convers. Manag. 2018, 164, 482–507. [Google Scholar] [CrossRef]
- Baccoli, R.; Mastino, C.C.; Innamorati, R.; Serra, L.; Curreli, S.; Ghiani, E.; Ricciu, R.; Marini, M. A mathematical model of a solar collector augmented by a flat plate above reflector: Optimum inclination of collector and reflector. In Proceedings of the Energy Procedia. Energy Procedia 2015, 81, 205–214. [Google Scholar] [CrossRef] [Green Version]
- Diego-Ayala, U.; Carrillo, J.G. Evaluation of temperature and efficiency in relation to mass flow on a solar flat plate collector in Mexico. Renew. Energy 2016, 96, 756–764. [Google Scholar] [CrossRef]
- Figaj, R.; Szubel, M.; Przenzak, E.; Filipowicz, M. Feasibility of a small-scale hybrid dish/flat-plate solar collector system as a heat source for an absorption cooling unit. Appl. Therm. Eng. 2019, 163, 114399. [Google Scholar] [CrossRef]
- Amoabeng, K.O. Assessing the Feasibility of a Solar Water Heating System Based on Performance and Economic Analysis; Kwame Nkrumah University of Science and Technology: Kumasi, Ghana, 2012. [Google Scholar]
- Ayompe, L.M.; Duffy, A.; Mc Keever, M.; Conlon, M.; McCormack, S.J. Comparative field performance study of flat plate and heat pipe evacuated tube collectors (ETCs) for domestic water heating systems in a temperate climate. Energy 2011, 36, 3370–3378. [Google Scholar] [CrossRef] [Green Version]
- Perers, B. Comparison of Thermal Performance for Flat Plate and Evacuated Tubular Collectors. In Advances in Solar Energy Technology; Pergamon Press: Hamburg, Germany, 1988; pp. 615–619. [Google Scholar]
- Morrison, G.L.; Budihardjo, I.; Behnia, M. Water-in-glass evacuated tube solar water heaters. Sol. Energy 2004, 76, 135–140. [Google Scholar] [CrossRef]
- Kryzia, D.; Gawlik, L.; Pepłowska, M. Conditions for development of clean technologies of energy generation from fossil fuels. Energy Policy J. 2016, 19, 63–74. [Google Scholar]
- Pluta, Z. Evacuated tubular or classical flat plate solar collectors? J. Power Technol. 2011, 91, 158–164. [Google Scholar]
- Rovira, A.; Sánchez, C.; Valdés, M.; Abbas, R.; Barbero, R.; Montes, M.J.; Muñoz, M.; Muñoz-Antón, J.; Ortega, G.; Varela, F. Comparison of different technologies for integrated solar combined cycles: Analysis of concentrating technology and solar integration. Energies 2018, 11, 1064. [Google Scholar] [CrossRef] [Green Version]
- Sheng, H.; Li, C.; Wang, H.; Yan, Z.; Xiong, Y.; Cao, Z.; Kuang, Q. Parameters extraction of photovoltaic models using an improved moth-flame optimization. Energies 2019, 12, 3527. [Google Scholar] [CrossRef] [Green Version]
- Rogada, J.R.; Barcia, L.A.; Martinez, J.A.; Menendez, M.; De Cos Juez, F.J. Comparative modeling of a parabolic trough collectors solar power plant with MARS models. Energies 2018, 11, 37. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Boulic, M.; Phipps, R.; Plagmann, M.; Cunningham, C. Experimental Performance of a Solar Air Collector with a Perforated Back Plate in New Zealand. Energies 2020, 13, 1415. [Google Scholar] [CrossRef] [Green Version]
- Energosol Installation Project, Energosol Company. Available online: http://www.energosol.pl/oferta_kolektory_sloneczne_kolektory_prozniowe.html (accessed on 24 January 2020).
- Skorut Installation Project, Skorut Company. Available online: http://www.skorut-solar.pl/nasz-program/kolektory-soneczne/83 (accessed on 24 January 2020).
- Olczak, P.; Zabagło, J. The Efficiency of the Solar System with Heat Pipe Collectors in Apartment Building. Dist. Heat. Heat. Vent. 2015, 11, 427. [Google Scholar]
- European Centre for Medium-Range Weather Forecasts (ECMWF) ERA5. Available online: https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-land-monthly-means?tab=form (accessed on 24 March 2020).
- Copernicus Climate Change Service (C3S). ERA5: Fifth Generation of ECMWF Atmospheric Reanalyses of the Global Climate. Copernicus Climate Change Service Climate Data Store (CDS). Available online: https://climate.copernicus.eu/climate-data-store (accessed on 24 March 2020).
- Ogimet Synop Based Summary by States form 2019. Available online: http://ogimet.com/resynops.phtml.en (accessed on 24 January 2020).
- Roberto, B.; Ubaldo, C.; Stefano, M.; Roberto, I.; Elisa, S.; Paolo, M. Graybox and adaptative dynamic neural network identification models to infer the steady state efficiency of solar thermal collectors starting from the transient condition. Sol. Energy 2010, 84, 1027–1046. [Google Scholar] [CrossRef]
- Ministry of Development Typical Reference Year. Available online: https://www.gov.pl/web/fundusze-regiony/dane-do-obliczen-energetycznych-budynkow (accessed on 18 December 2019).
Parameter | Unit | Brzesko (FPC) | Krosno (ETC) |
---|---|---|---|
Gross collector area | m2 | 2.31 | 2.42 |
Absorber area | m2 | 2.13 | 1.21 |
Structure (type of collector) | meander | with heat pipe | |
Intercept efficiency (for absorber area) | % | 81.7 | 85 |
Heat loss coefficient (a1) | W/(m2·K) | 2.741 | 1.771 |
Non-linear heat loss coefficient (a2) | W/(m2·K2) | 0.0147 | 0.192 |
Parameter | Unit | Brzesko (FPCs) | Krosno (ETCs) |
---|---|---|---|
Total gross collector area | 277.2 | 77.44 | |
Total absorber area | m2 | 255.6 | 38.72 |
Heat meter | Echo CF 51 | CF Echo II | |
Heat meter producer | Itron | Itron | |
Inlet flow rate per absorber area | kg/(h·m2) | 23 | 39 |
Collector slope | Degrees | 45 | 45 |
Reference Area | Unit | Brzesko (FPCs) | Krosno (ETCs) |
---|---|---|---|
Absorber | kWh/m2 | 685.0 | 1357.7 |
Gross | kWh/m2 | 628.9 | 678.3 |
Reference Area | Unit | Brzesko (FPCs) | Krosno (ETCs) | Effectiveness Brzesko | Effectiveness Krosno |
---|---|---|---|---|---|
Absorber | kWh/m2 | 411.4 | 820.3 | 33.7% | 67.3% |
Gross | kWh/m2 | 377.8 | 410.3 | 31.0% | 33.6% |
Parameter | Unit | December 2014 | January 2015 |
---|---|---|---|
The actual monthly average outdoor temperature (Ta) in Tarnów | °C | 1.6 | 1.7 |
The monthly average outdoor temperature from TRY in Tarnów | °C | −0.3 | −0.8 |
Actual insolation in Łęki (Brzesko) | kWh/(m2·month) | 12.0 | 14.4 |
Corrected insolation from TRY in Tarnów | kWh/(m2·month) | 18.6 | 24.2 |
Surface net solar radiation (Brzesko) | kWh/(m2·month) | 18.2 | 18 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Olczak, P.; Matuszewska, D.; Zabagło, J. The Comparison of Solar Energy Gaining Effectiveness between Flat Plate Collectors and Evacuated Tube Collectors with Heat Pipe: Case Study. Energies 2020, 13, 1829. https://doi.org/10.3390/en13071829
Olczak P, Matuszewska D, Zabagło J. The Comparison of Solar Energy Gaining Effectiveness between Flat Plate Collectors and Evacuated Tube Collectors with Heat Pipe: Case Study. Energies. 2020; 13(7):1829. https://doi.org/10.3390/en13071829
Chicago/Turabian StyleOlczak, Piotr, Dominika Matuszewska, and Jadwiga Zabagło. 2020. "The Comparison of Solar Energy Gaining Effectiveness between Flat Plate Collectors and Evacuated Tube Collectors with Heat Pipe: Case Study" Energies 13, no. 7: 1829. https://doi.org/10.3390/en13071829
APA StyleOlczak, P., Matuszewska, D., & Zabagło, J. (2020). The Comparison of Solar Energy Gaining Effectiveness between Flat Plate Collectors and Evacuated Tube Collectors with Heat Pipe: Case Study. Energies, 13(7), 1829. https://doi.org/10.3390/en13071829