Influence of Superabsorbent Polymers on Moisture Control in Building Interiors
Abstract
:1. Introduction
2. Experimental
2.1. Materials
2.2. Determination Methods
2.3. Computational Analysis
3. Results and Discussion
4. Conclusions
- The obtained results showed that even small portions of incorporated SAP admixture induced changes in the total open porosity as a result of the worsening of rheologic properties and swelling capability of SAP particles.
- The incorporation of SAP admixture resulted in a substantial increase in moisture transport properties including the water absorption coefficient and water vapor diffusion properties.
- Sorption and desorption isotherms improvement refer to significant moisture buffering potential.
- The performed computational modeling revealed a considerable reduction of relative humidity fluctuations, thus mitigation of potential health issues associated with undesired moisture content in building interiors.
Author Contributions
Funding
Conflicts of Interest
Nomenclature
MIP | Mercury Intrusion porosimetry | |
SAP | Superabsorbent polymer | |
SEM | Scanning Electron Microscopy | |
HVAC | Heat, ventilation and air-conditioning | |
δ | s | water vapor diffusion permeability |
µ | - | water vapor diffusion resistance factor |
D | m2·s−1 | water vapor diffusion coefficient |
m | kg | mass |
d | m | sample thickness |
S | m2 | sample surface |
τ | s | period of time related to the transport of mass of water vapor |
Pp | Pa | partial water vapor pressure |
R | J·K−1·mol−1 | universal gas constant |
M | kg·mol−1 | molar mass |
T | K | absolute temperature |
Da | m2·s−1 | diffusion coefficient of water vapor in the air |
RH | % | relative humidity |
w | m3·m−3 | volumetric moisture content |
A | kg·m−2·s−1/2 | water absorption coefficient |
i | kg·m−2 | cumulative water absorption |
κapp | m2·s−1 | apparent moisture diffusivity |
wsat | kg·m−3 | saturated moisture content |
w0 | kg·m−3 | initial moisture content |
pv,sat | Pa | saturation vapor pressure |
aair,init | kg·m−2 | initial mass of the water calculated per 1 m2 of the wall |
ρ | kg·m−3 | density |
φnew | - | changed relative humidity of the air |
apl | φeq | mass of the water retained in the 1 m2 of the plaster |
MBV | g·m−2·%RH−1 | moisture buffer value |
TOP | % | total open porosity |
References
- Ricciu, R.; Besalduch, L.A.; Galatioto, A.; Ciulla, G. Thermal characterization of insulating materials. Renew. Sustain. Energy Rev. 2018, 82, 1765–1773. [Google Scholar] [CrossRef]
- Shehadi, M. Review of humidity control technologies in buildings. J. Build. Eng. 2018, 19, 539–551. [Google Scholar] [CrossRef]
- Nizovtsev, M.I.; Letushko, V.N.; Borodulin, V.Y.; Sterlyagov, A.N. Experimental studies of the thermo and humidity state of a new building facade insulation system based on panels with ventilated channels. Energy Build. 2020, 206, 12. [Google Scholar] [CrossRef]
- Lee, H.; Ozaki, A.; Lee, M.; Yamamoto, T. Humidity control effect of vapor-permeable walls employing hygroscopic insulation material. Indoor Air 2020, 30, 346–360. [Google Scholar] [CrossRef]
- Yu, S.; Cui, Y.M.; Shao, Y.F.; Han, F.H. Research on the Comprehensive Performance of Hygroscopic Materials in an Office Building Based on EnergyPlus. Energies 2019, 12, 191. [Google Scholar] [CrossRef] [Green Version]
- Maděra, J.; Jerman, M.; Čáchová, M.; Doleželová, M.; Kočí, J. Computational Modelling of Degradation Processes in Exterior Renders. In Proceedings of the International Conference of Numerical Analysis and Applied Mathematics, Rhodes, Greece, 13–18 September 2018. [Google Scholar]
- Yu, M.; Zhang, X.J.; Zhao, Y.; Zhang, X.B. A Novel Passive Method for Regulating Both Air Temperature and Relative Humidity of the Microenvironment in Museum Display Cases. Energies 2019, 12, 3768. [Google Scholar] [CrossRef] [Green Version]
- Kreiger, B.K.; Srubar, W.V. Moisture buffering in buildings: A review of experimental and numerical methods. Energy Build. 2019, 202, 17. [Google Scholar] [CrossRef]
- Nguyen, C.K.; Teodosiu, C.; Kuznik, F.; David, D.; Teodosiu, R.; Rusaouen, G. A full-scale experimental study concerning the moisture condensation on building glazing surface. Build. Environ. 2019, 156, 215–224. [Google Scholar] [CrossRef] [Green Version]
- Govaerts, Y.; Hayen, R.; de Bouw, M.; Verdonck, A.; Meulebroeck, W.; Mertens, S.; Gregoire, Y. Performance of a lime-based insulating render for heritage buildings. Constr. Build. Mater. 2018, 159, 376–389. [Google Scholar] [CrossRef]
- Mazhoud, B.; Collet, F.; Pretot, S.; Chamoin, J. Hygric and thermal properties of hemp-lime plasters. Build. Environ. 2016, 96, 206–216. [Google Scholar] [CrossRef]
- Xu, C.C.; Li, S.H.; Zou, K.K. Study of heat and moisture transfer in internal and external wall insulation configurations. J. Build. Eng. 2019, 24, 14. [Google Scholar] [CrossRef]
- Pavlik, Z.; Jerman, M.; Fort, J.; Cerny, R. Monitoring Thermal Performance of Hollow Bricks with Different Cavity Fillers in Difference Climate Conditions. Int. J. Thermophys. 2015, 36, 557–568. [Google Scholar] [CrossRef]
- Mendell, M.J.; Macher, J.M.; Kumagai, K. Measured moisture in buildings and adverse health effects: A review. Indoor Air 2018, 28, 488–499. [Google Scholar] [CrossRef] [PubMed]
- Nakayama, Y.; Nakaoka, H.; Suzuki, N.; Tsumura, K.; Hanazato, M.; Todaka, E.; Mori, C. Prevalence and risk factors of pre-sick building syndrome: Characteristics of indoor environmental and individual factors. Environ. Health Prev. Med. 2019, 24, 10. [Google Scholar] [CrossRef]
- Hegarty, B.; Haverinen-Shaughnessy, U.; Shaughnessy, R.J.; Peccia, J. Spatial Gradients of Fungal Abundance and Ecology throughout a Damp Building. Environ. Sci. Technol. Lett. 2019, 6, 329–333. [Google Scholar] [CrossRef]
- Nezis, I.; Biskos, G.; Eleftheriadis, K.; Kalantzi, O.I. Particulate matter and health effects in offices―A review. Build. Environ. 2019, 156, 62–73. [Google Scholar] [CrossRef]
- Esty, B.; Permaul, P.; DeLoreto, K.; Baxi, S.N.; Phipatanakul, W. Asthma and Allergies in the School Environment. Clin. Rev. Allergy Immunol. 2019, 57, 415–426. [Google Scholar] [CrossRef]
- Wan, H.; Sun, Z.W.; Huang, G.S.; Xu, X.H.; Yu, J.H. Calculation of the maximum moisture buffering thickness of building wall layer of hygroscopic material. Build. Environ. 2019, 160, 11. [Google Scholar] [CrossRef]
- Busser, T.; Pailha, M.; Piot, A.; Woloszyn, M. Simultaneous hygrothermal performance assessment of an air volume and surrounding highly hygroscopic walls. Build. Environ. 2019, 148, 677–688. [Google Scholar] [CrossRef]
- Arrigoni, A.; Beckett, C.T.S.; Ciancio, D.; Pelosato, R.; Dotelli, G.; Grillet, A.C. Rammed Earth incorporating Recycled Concrete Aggregate: A sustainable, resistant and breathable construction solution. Resour. Conserv. Recycl. 2018, 137, 11–20. [Google Scholar] [CrossRef]
- De Rossi, A.; Carvalheiras, J.; Novais, R.M.; Ribeiro, M.J.; Labrincha, J.A.; Hotza, D.; Moreira, R. Waste-based geopolymeric mortars with very high moisture buffering capacity. Constr. Build. Mater. 2018, 191, 39–46. [Google Scholar] [CrossRef]
- Nguyen, D.M.; Grillet, A.C.; Diep, T.M.H.; Thuc, C.N.H.; Woloszyn, M. Hygrothermal properties of bio-insulation building materials based on bamboo fibers and bio-glues. Constr. Build. Mater. 2017, 155, 852–866. [Google Scholar] [CrossRef]
- Cerolini, S.; D’Orazio, M.; Di Perna, C.; Stazi, A. Moisture buffering capacity of highly absorbing materials. Energy Build. 2009, 41, 164–168. [Google Scholar] [CrossRef]
- Zhang, H.B.; Yoshino, H.; Iwamae, A.; Hasegawa, K. Investigating simultaneous transport of heat and moisture in hygroscopic materials by a semi-conjugate CFD-coupled approach. Build. Environ. 2015, 90, 125–135. [Google Scholar] [CrossRef]
- Palumbo, M.; Lacasta, A.M.; Holcroft, N.; Shea, A.; Walker, P. Determination of hygrothermal parameters of experimental and commercial bio-based insulation materials. Constr. Build. Mater. 2016, 124, 269–275. [Google Scholar] [CrossRef] [Green Version]
- Koci, J.; Koci, V.; Cerny, R. A Method for Rapid Evaluation of Thermal Performance of Wall Assemblies Based on Geographical Location. Energies 2019, 12, 1353. [Google Scholar] [CrossRef] [Green Version]
- Senff, L.; Ascensao, G.; Hotza, D.; Ferreira, V.M.; Labrincha, J.A. Assessment of the single and combined effect of superabsorbent particles and porogenic agents in nanotitania-containing mortars. Energy Build. 2016, 127, 980–990. [Google Scholar] [CrossRef]
- Zohuriaan-Mehr, M.J.; Kabiri, K. Superabsorbent polymer materials: A review. Iran. Polym. J. 2008, 17, 451–477. [Google Scholar]
- Liu, J.H.; Farzadnia, N.; Shi, C.J.; Ma, X.W. Effects of superabsorbent polymer on shrinkage properties of ultra-high strength concrete under drying condition. Constr. Build. Mater. 2019, 215, 799–811. [Google Scholar] [CrossRef]
- Ma, X.W.; Yuan, Q.; Liu, J.H.; Shi, C.J. Effect of water absorption of SAP on the rheological properties of cement-based materials with ultra-low w/b ratio. Constr. Build. Mater. 2019, 195, 66–74. [Google Scholar] [CrossRef]
- Senff, L.; Modolo, R.C.E.; Ascensao, G.; Hotza, D.; Ferreira, V.M.; Labrincha, J.A. Development of mortars containing superabsorbent polymer. Constr. Build. Mater. 2015, 95, 575–584. [Google Scholar] [CrossRef]
- Goncalves, H.; Goncalves, B.; Silva, L.; Vieira, N.; Raupp-Pereira, F.; Senff, L.; Labrincha, J.A. The influence of porogene additives on the properties of mortars used to control the ambient moisture. Energy Build. 2014, 74, 61–68. [Google Scholar] [CrossRef]
- Fort, J.; Novotny, R.; Trnik, A.; Cerny, R. Preparation and Characterization of Novel Plaster with Improved Thermal Energy Storage Performance. Energies 2019, 12, 3318. [Google Scholar] [CrossRef] [Green Version]
- Pavlik, Z.; Fiala, L.; Jerman, M.; Vejmelkova, E.; Pavlikova, M.; Keppert, M.; Cerny, R. Theoretical and Experimental Analysis of Moisture-Dependent Thermal Conductivity of Lightweight Ceramic Bricks. Int. J. Thermophys. 2014, 35, 1912–1921. [Google Scholar] [CrossRef]
- Kumaran, M.K.; Lackey, J.C.; Normandin, N.; Tariku, F.; van Reenen, D. Heat, air, and moisture transport properties of several North American bricks and mortar mixes. J. Test. Eval. 2004, 32, 383–389. [Google Scholar] [CrossRef]
- Monteith, J.L.; Unsworth, M.H. Principles of Environmental Physics, 3rd ed.; Academic Press: Amsterdam, The Netherlads, 2008. [Google Scholar]
- Murray, F.W. On the computation of saturation vapour pressure. J. Appl. Meteorol. 1967, 6, 203–204. [Google Scholar] [CrossRef]
- Maia, J.; Ramos, N.M.M.; Veiga, R. Evaluation of the hygrothermal properties of thermal rendering systems. Build. Environ. 2018, 144, 437–449. [Google Scholar] [CrossRef]
- Liu, J.M.; Ou, Z.W.; Mo, J.C.; Wang, Y.H.; Wu, H. The effect of SCMs and SAP on the autogenous shrinkage and hydration process of RPC. Constr. Build. Mater. 2017, 155, 239–249. [Google Scholar] [CrossRef]
- Vieira, J.; Senff, L.; Goncalves, H.; Silva, L.; Ferreira, V.M.; Labrincha, J.A. Functionalization of mortars for controlling the indoor ambient of buildings. Energy Build. 2014, 70, 224–236. [Google Scholar] [CrossRef]
- Johansson, P.; Bok, G.; Ekstrand-Tobin, A. The effect of cyclic moisture and temperature on mould growth on wood compared to steady state conditions. Build. Environ. 2013, 65, 178–184. [Google Scholar] [CrossRef]
- Winkler, J.; Munk, J.; Woods, J. Sensitivity of occupant comfort models to humidity and their effect on cooling energy use. Build. Environ. 2019, 162, 14. [Google Scholar] [CrossRef]
- Lu, X.S. Estimation of indoor moisture generation rate from measurement in buildings. Build. Environ. 2003, 38, 665–675. [Google Scholar] [CrossRef]
- Mlakar, J.; Strancar, J. Temperature and humidity profiles in passive-house building blocks. Build. Environ. 2013, 60, 185–193. [Google Scholar] [CrossRef]
- McGregor, F.; Heath, A.; Shea, A.; Lawrence, M. The moisture buffering capacity of unfired clay masonry. Build. Environ. 2014, 82, 599–607. [Google Scholar] [CrossRef] [Green Version]
Mixture | Dry Plaster | SAP | Water | Flow Diameter |
---|---|---|---|---|
(kg) | (g) | (kg) | (mm) | |
REFP | 6.3 | - | 1.5 | 180 |
PLSAP-0.5 | 6.3 | 31.5 | 1.8 | 177 |
PLSAP-1 | 6.3 | 63 | 2.1 | 181 |
PLSAP-1.5 | 6.3 | 94.5 | 2.3 | 183 |
Mixture | Matrix Density (kg·m−3) | Bulk Density (kg·m−3) | TOP (%) |
---|---|---|---|
REFP | 2574 | 1597 | 38.0 |
PLSAP-0.5 | 2557 | 1482 | 42.0 |
PLSAP-1 | 2541 | 1420 | 44.1 |
PLSAP-1.5 | 2550 | 1284 | 49.6 |
Mixture | A (kg·m−2·s−1/2) | Ƙ (m2·s−1) |
---|---|---|
REFP | 0.0798 | 1.61 × 10−8 |
PLSAP-0.5 | 0.1369 | 2.91 × 10−8 |
PLSAP-1 | 0.1875 | 2.87 × 10−7 |
PLSAP-1.5 | 0.2547 | 5.70 × 10−7 |
Mixture | µ (-) | D (m2·s−1) | δ (s) |
---|---|---|---|
REFP | 15.8 | 1.563 × 10−6 | 1.15 × 10−11 |
PLSAP-0.5 | 14.3 | 1.727 × 10−6 | 1.28 × 10−11 |
PLSAP-1 | 12.3 | 2.008 × 10−6 | 1.48 × 10−11 |
PLSAP-1.5 | 9.4 | 2.628 × 10−6 | 1.94 × 10−11 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fořt, J.; Kočí, J.; Pokorný, J.; Černý, R. Influence of Superabsorbent Polymers on Moisture Control in Building Interiors. Energies 2020, 13, 2009. https://doi.org/10.3390/en13082009
Fořt J, Kočí J, Pokorný J, Černý R. Influence of Superabsorbent Polymers on Moisture Control in Building Interiors. Energies. 2020; 13(8):2009. https://doi.org/10.3390/en13082009
Chicago/Turabian StyleFořt, Jan, Jan Kočí, Jaroslav Pokorný, and Robert Černý. 2020. "Influence of Superabsorbent Polymers on Moisture Control in Building Interiors" Energies 13, no. 8: 2009. https://doi.org/10.3390/en13082009
APA StyleFořt, J., Kočí, J., Pokorný, J., & Černý, R. (2020). Influence of Superabsorbent Polymers on Moisture Control in Building Interiors. Energies, 13(8), 2009. https://doi.org/10.3390/en13082009