Outdoor Wellbeing and Quality of Life: A Scientific Literature Review on Thermal Comfort
Abstract
:1. Introduction
1.1. Review Contest and Boundaries
- The growth of cities, driven by the increasing movement of people to urban areas, where half of the world’s population is already living, and a further expansion is expected in the near future [1].
- The consequent exposure of a huge number of people to the effects of extreme weather conditions due to both climate change and local phenomena, boosted by the high density of settlements, such as Urban Heat Islands (UHI) (peaks of temperature higher than that of the rural surroundings) [2]. The evidence on the average temperature increase and the related potential impacts are widely explored in authoritative reports from the Intergovernmental Panel on Climate Change (IPCC) [3] and the National Oceanic and Atmospheric Administration (NOAA) [4], particularly dealing with more relevant effects on urban areas [5].
- The change in lifestyles and particularly the increasing amount of time spent by inhabitants inside buildings pushed the need for high-quality outdoor spaces that provide healthy leisure facilities, and significantly contribute to the urban environment’s livability and vitality. Thus, encouraging more people to use outdoor spaces would bring greater benefits into the physical, environmental, economic and social spheres of the cities [6,7,8,9].
1.2. Theoretical Background
2. Methodology
- outdoor thermal comfort;
- thermal perception;
- thermal wellbeing;
- human thermal comfort;
- human thermal index;
- outdoor thermal comfort approaches;
- thermal comfort assessment.
Review Process and Outcomes
- The second group [8,14,15,17,18,22,30,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149] collects mathematical models and indexes for the definition of new approaches in outdoor comfort assessment (45% of selected items);
- The third group [6,7,9,10,25,34,35,36,37,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213] includes investigations of the physical, physiological and psychological human adaptability as a key for understanding thermal perception in outdoor environments (31% of items);
- The fourth group [214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236] deals with the use of software and forecasting tools to virtually reproduce complex environmental contexts, in particular with the aim of supporting the designer in understanding the effects of changes in the climatic factors that affect people’s external comfort (10% of articles).
3. Results
3.1. Mathematical Models and Indexes
- Indexes based on the human’s energy balance, which show the interrelation between metabolic activities, clothing and environmental parameters, and humans thermal perception. They include COMFA (COMfort FormulA), ETU (Universal Effective Temperature), ITS, MENEX, PET, PMV, PT, OUT_SET*, SET, UTCI;
- Empirical indexes, which are expressed as linear regressions based on field studies (monitoring and surveys) defining the human comfort for a specific climate or location that are set and validated for it. They consider Actual Sensation Vote (ASV), Thermal Sensation (TS), Thermal Sensation Vote (TSV);
- Indexes based on linear equations defining the comfort as function of the thermal environment, by focusing on air temperature, wind speed and relative humidity parameters, but neglecting the microclimate and human behaviour. Among these are Apparent Temperature (AT), Discomfort Index (DI), Environmental Stress Index and (ESI) and Physiological Strain Index (PSI), Effective Temperature (ET), Humidex (H), Heat Index (HI), Cooling Power Index (PE), Relative Strain Index (RSI), Wet Bulb Globe Temperature Index (WBGT), Wind Chill Index (WCI).
- Thermal indexes based on energy balance enable quantification of thermal sensation from the general climate to the urban microclimate, considering the human variables.
- Empirical indexes reliably describe the thermal perception of humans and the environmental factors affecting their thermal behavior.
- Indexes based on linear equations do not allow for more comprehensive microclimate analysis, even if they can be useful for meteorological forecasting or for mapping of thermal comfort trends over the time [86].
3.2. Human Thermal Perception and Thermal Adaptation
- Physical adaptation—namely, the changes that a person makes in order to adjust oneself to the environment (such as altering clothing layers, posture and position, or drinking) or to conform the environment to his needs;
- Physiological adaptation—also called physiological acclimatization, which implies changes in the physiological response mechanisms resulting from repeated exposure to a stimulus;
- Psychological adaptation—which involves the different ways that individual people perceive the environment, being the human response is not only direct related to the physical stimulus magnitude, but also to the information that people have regarding that situation. The familiarity with that climate, the individual expectations, experiences, time of exposure and alleged control power on the situation, significantly influence the perception of environmental stimuli. Cultural factors and personal attitudes also affect the thermal perception, thus underlining the need to connect the thermal comfort indexes to the emotional feeling individually established with the environment [175].
3.3. Software and Predictive Tools
4. Discussion
5. Conclusions
- The availability of several models and methods is on the one hand a true sign of interest in assuming outdoor thermal comfort as a relevant field of research, especially when connected to climate change effects (UHI, heat waves etc.), but each methodology has its own limitations and the differences make it harder to compare the outcomes. The development or the refinement of tools and software able to solve these gaps may certainly support the research activity in the future.
- The gap between models and real perception in experimental studies suggests that human sensation and behavior are central and crucial elements to further improving the quality of research.
- Understanding the outcomes is another relevant issue dealing with a proper communication of the possible social implications to nonexperts. Even if this is not a top priority, it will certainly contribute by increasing the attention towards quality of life in outdoor urban spaces.
Author Contributions
Funding
Conflicts of Interest
References
- Population Reference Bureau 2008 WORLD POPULATION Data Sheet. Popul. Bull. 2008, 10–11.
- Akpınar, M.; Sevin, S. Reducing Urban Heat Islands by Developing Cool Pavements; Springer Science and Business Media LLC: Cham, Germany, 2018; pp. 43–50. [Google Scholar]
- Hoegh-Guldberg, O.D.; Jacob, D.; Taylor, M.; Bindi, M.; Brown, S.; Camilloni, I.; Diedhiou, A.; Djalante, R.; Ebi, K.L.; Engelbrecht, F.; et al. Global Warming of 1.5 °C. Special Report 2014, 177–287. [Google Scholar]
- Rebecca, L.; Dahlman, L. Climate Change: Global Temperature|NOAA Climate.gov. Available online: https://www.climate.gov/news-features/understanding-climate/climate-change-global-temperature (accessed on 27 March 2020).
- For Some Urban Areas, A Warming Climate is only Half The Threat–Science Daily. Available online: https://www.sciencedaily.com/releases/2019/11/191114115946.htm (accessed on 27 March 2020).
- Gehl, J. Life between Buildings: Using Public Space; Island Press: Washington, DC, USA, 2011. [Google Scholar]
- Chen, L.; Ng, E. Outdoor thermal comfort and outdoor activities: A review of research in the past decade. Cities 2012, 29, 118–125. [Google Scholar] [CrossRef]
- Maruani, T.; Amit-Cohen, I. Open space planning models: A review of approaches and methods. Landsc. Urban Plan. 2007, 81, 1–13. [Google Scholar] [CrossRef]
- Nikolopoulou, M.; Baker, N.; Steemers, K. Thermal comfort in outdoor urban spaces: Understanding the human parameter. Sol. Energy 2001, 70, 227–235. [Google Scholar] [CrossRef]
- Nikolopoulou, M. Outdoor thermal comfort. Front. Biosci. Sch. 2011, 3, 1552–1568. [Google Scholar] [CrossRef]
- Fabbri, K. Indoor Thermal Comfort Perception; Springer International Publishing: Cham, Switzerland, 2015. [Google Scholar]
- Gagge, A.P. An effective temperature scale based on a simple model of human physiological regulatory response. Ashrae Trans. 1971, 77, 247–262. [Google Scholar]
- Gagge, A.P. The linearity criterion as applied to partitional calorimetry. Am. J. Physiol. Content 1936, 116, 656–668. [Google Scholar] [CrossRef]
- Honjo, T. Thermal Comfort in Outdoor Environment. Global Environ. Res. 2009, 13, 43–47. [Google Scholar]
- Givoni, B. Estimation of the Effects of Climate on Man: Development of a New Thermal Index; Technion: Haifa, Israel, 1963. [Google Scholar]
- Fanger, P. Thermal Comfort; McGraw-Hill: New York, NY, USA, 1972. [Google Scholar]
- Gagge, A.P.; Fobelets, A.P.; Berglund, L.G. Standard Predictive Index of Human Response to The Thermal Environment. In Proceedings of the ASHRAE Transactions; ASHRAE: Portland, OR, USA, 1986; Volume 92, pp. 709–731. [Google Scholar]
- Höppe, P. The physiological equivalent temperature—A universal index for the biometeorological assessment of the thermal environment. Int. J. Biometeorol. 1999, 43, 71–75. [Google Scholar] [CrossRef]
- Mayer, H.; Höppe, P. Thermal comfort of man in different urban environments. Theor. Appl. Clim. 1987, 38, 43–49. [Google Scholar] [CrossRef]
- Steadman, R.G. Measurements of dry atmospheric cooling in subfreezing temperatures. Proc. Am. Philos. Soc. 1945, 89, 177–199. [Google Scholar]
- Steadman, R.G. Indices of windchill of clothed persons. J. Appl. Meteorol. 1971, 10, 674–683. [Google Scholar] [CrossRef]
- Steadman, R.G. A Universal Scale of Apparent Temperature. J. Clim. Appl. Meteorol. 1984, 23, 1674–1687. [Google Scholar] [CrossRef]
- Olgyay, V. Design with Climate: Bioclimatic Approach to Architectural Regionalism-New and Expanded Edition; Princeton Univerity Press: Princeton, NJ, USA, 2015. [Google Scholar]
- Penwarden, A. Acceptable wind speeds in towns. Build. Sci. 1973, 8, 259–267. [Google Scholar] [CrossRef]
- Perera, K.; Schnabel, M.A.; Donn, M.; Maddewithana, H. Addressing Human Thermal Adaptation in Outdoor Comfort Research—A Literature Review. In Proceedings of the Making built environments responsive, 8th International Conference of Faculty of Architecture Research Unit (FARU), University of Moratuwa, Sri Lanka, 11–12 December 2015; pp. 477–490. [Google Scholar]
- Parsons, K. Human Thermal Environments: The Effects of Hot, Moderate, and Cold Environments on Human Health, Comfort, and Performance, 3rd ed.; CRC Press: Boca Raton, FL, USA, 2014; ISBN 9781466595996. [Google Scholar]
- ISO 13731:2001-Ergonomics of the Thermal Environment—Vocabulary and Symbols. Available online: https://www.iso.org/standard/22450.html (accessed on 19 February 2020).
- ISO 7726:1998-Ergonomics of the Thermal Environment—Instruments for Measuring Physical Quantities. Available online: https://www.iso.org/standard/14562.html (accessed on 19 February 2020).
- ISO 7730:2005-Ergonomics of the thermal environment—Analytical Determination and Interpretation of Thermal Comfort using Calculation of the PMV and PPD Indices and Local Thermal Comfort Criteria. Available online: https://www.iso.org/standard/39155.html (accessed on 29 January 2020).
- Jendritzky, G.; Nübler, W. A model analysing the urban thermal environment in physiologically significant terms. Theor. Appl. Clim. 1981, 29, 313–326. [Google Scholar] [CrossRef]
- ISO 7243:2017-Ergonomics of the Thermal Environment—Assessment of Heat Stress Using the WBGT (Wet Bulb Globe Temperature) Index. Available online: https://www.iso.org/standard/67188.html (accessed on 19 February 2020).
- EN 15251:2007–Policies–IEA. Available online: https://www.iea.org/policies/7029-en-152512007 (accessed on 19 February 2020).
- American Society of Heating Refrigeration and Air-Conditioning Engineers ASHRAE Handbook Fundamentals; ASHRAE: Atlanta, GA, USA, 1989.
- Nikolopoulou, M.; Lykoudis, S. Thermal comfort in outdoor urban spaces: Analysis across different European countries. Build. Environ. 2006, 41, 1455–1470. [Google Scholar] [CrossRef] [Green Version]
- Heijs, W.J.M. The dependent variable in thermal comfort research some psychological considerations. In Proceedings of the Thermal Comfortpast Present and Future: Proceedings of the Conference of June 1993; Oseland, N., Humphreys, M., Eds.; Watford Building Research Establishment: Garston, UK, 1994; pp. 40–51. [Google Scholar]
- Shooshtarian, S. Theoretical dimension of outdoor thermal comfort research. Sustain. Cities Soc. 2019, 47, 101495. [Google Scholar] [CrossRef]
- RUROS Database: Field Survey Results. Available online: http://alpha.cres.gr/ruros/database.htm (accessed on 16 February 2020).
- US Department of Commerce National Oceanic and Atmospheric Administration. Available online: https://www.noaa.gov/ (accessed on 30 March 2020).
- ISO 11079:2007-Ergonomics of the Thermal Environment—Determination and Interpretation of Cold Stress When Using Required Clothing Insulation (IREQ) and Local Cooling Effects. Available online: https://www.iso.org/standard/38900.html (accessed on 29 January 2020).
- ISO 7243:1989-Hot Environments—Estimation of the Heat Stress on Working Man, Based on the WBGT-Index (Wet Bulb Globe Temperature). Available online: https://www.iso.org/standard/13895.html (accessed on 29 January 2020).
- Cheung, P.K.; Jim, C. Determination and application of outdoor thermal benchmarks. Build. Environ. 2017, 123, 333–350. [Google Scholar] [CrossRef]
- Gagge, A.P.; Stolwijk, J.A.J.; Nishi, Y. An Effective Temperature Scale Based on a Simple Model of Human Physiological Regulatiry Response. Memoirs Faculty Eng. Hokkaido Univ. 1971, 13, 21–36. [Google Scholar]
- Chun, C.; Kwok, A.; Tamura, A. Thermal comfort in transitional spaces-basic concepts: Literature review and trial measurement. Build. Environ. 2004, 39, 1187–1192. [Google Scholar] [CrossRef]
- Thom, E.C. The Discomfort Index. Weatherwise 1959, 12, 57–61. [Google Scholar] [CrossRef]
- EPA Heat Island Compendium. US Environ. Prot. Agency 2008, 2–3.
- Varquez, A.C.G.; Kanda, M. Global urban climatology: A meta-analysis of air temperature trends (1960–2009). npj Clim. Atmospheric Sci. 2018, 1, 32. [Google Scholar] [CrossRef]
- Wu, H.; Wu, Y.; Sun, X.; Liu, J. Combined effects of acoustic, thermal, and illumination on human perception and performance: A review. Build. Environ. 2020, 169, 106593. [Google Scholar] [CrossRef]
- Acero, J.A.; Arrizabalaga, J.; Kupski, S.; Katzschner, L. Urban heat island in a coastal urban area in northern Spain. Theor. Appl. Clim. 2012, 113, 137–154. [Google Scholar] [CrossRef]
- Xi, T.; Li, Q.; Mochida, A.; Meng, Q. Study on the outdoor thermal environment and thermal comfort around campus clusters in subtropical urban areas. Build. Environ. 2012, 52, 162–170. [Google Scholar] [CrossRef]
- Xie, Y.; Huang, T.; Li, J.; Liu, J.; Niu, J.; Mak, C.M.; Lin, Z. Evaluation of a multi-nodal thermal regulation model for assessment of outdoor thermal comfort: Sensitivity to wind speed and solar radiation. Build. Environ. 2018, 132, 45–56. [Google Scholar] [CrossRef]
- Xie, Y.; Liu, J.; Huang, T.; Li, J.; Niu, J.; Mak, C.M.; Lee, T. cheung Outdoor thermal sensation and logistic regression analysis of comfort range of meteorological parameters in Hong Kong. Build. Environ. 2019, 155, 175–186. [Google Scholar] [CrossRef]
- Yahia, M.; Johansson, E. Evaluating the behaviour of different thermal indices by investigating various outdoor urban environments in the hot dry city of Damascus, Syria. Int. J. Biometeorol. 2012, 57, 615–630. [Google Scholar] [CrossRef]
- Yang, W.; Wong, N.H.; Jusuf, S.K. Thermal comfort in outdoor urban spaces in Singapore. Build. Environ. 2013, 59, 426–435. [Google Scholar] [CrossRef]
- Yang, W.; Wong, N.H.; Zhang, G. A comparative analysis of human thermal conditions in outdoor urban spaces in the summer season in Singapore and Changsha, China. Int. J. Biometeorol. 2012, 57, 895–907. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Gatto, E.; Gao, Z.; Buccolieri, R.; Morakinyo, T.E.; Lan, H. The “plant evaluation model” for the assessment of the impact of vegetation on outdoor microclimate in the urban environment. Build. Environ. 2019, 159, 106151. [Google Scholar] [CrossRef]
- Yang, Y.; Zhou, D.; Wang, Y.; Ma, D.; Chen, W.; Xu, D.; Zhu, Z. Economical and outdoor thermal comfort analysis of greening in multistory residential areas in Xi’an. Sustain. Cities Soc. 2019, 51, 51. [Google Scholar] [CrossRef]
- Zhao, L.; Zhou, X.; Li, L.; He, S.; Chen, R. Study on outdoor thermal comfort on a campus in a subtropical urban area in summer. Sustain. Cities Soc. 2016, 22, 164–170. [Google Scholar] [CrossRef]
- Acero, J.A.; Herranz-Pascual, K. A comparison of thermal comfort conditions in four urban spaces by means of measurements and modelling techniques. Build. Environ. 2015, 93, 245–257. [Google Scholar] [CrossRef]
- Achour-Younsi, S.; Kharrat, F. Influence of Urban Morphology on Outdoor Thermal Comfort in Summer: A Study in Tunis, Tunisia. Mod. Environ. Sci. Eng. 2016, 2, 251–256. [Google Scholar] [CrossRef]
- Alfano, F.; Palella, B.I.; Riccio, G. Thermal environment assessment reliability using temperature--humidity indices. Ind. Health 2010, 49, 10081910028. [Google Scholar]
- Ali-Toudert, F.; Djenane, M.; Bensalem, R.; Mayer, H. Outdoor thermal comfort in the old desert city of Beni-Isguen, Algeria. Clim. Res. 2005, 28, 243–256. [Google Scholar] [CrossRef] [Green Version]
- Andreou, E. Thermal comfort in outdoor spaces and urban canyon microclimate. Renew. Energy 2013, 55, 182–188. [Google Scholar] [CrossRef]
- Athamena, K.; Sini, J.-F.; Rosant, J.-M.; Guilhot, J. Numerical coupling model to compute the microclimate parameters inside a street canyon. Sol. Energy 2018, 174, 1237–1251. [Google Scholar] [CrossRef]
- Balaras, C.; Tselepidaki, I.; Santamouris, M.; Asimakopoulos, D. Calculations and statistical analysis of the environmental cooling power index for Athens, Greece. Energy Convers. Manag. 1993, 34, 139–146. [Google Scholar] [CrossRef]
- Balogun, I.A.; Daramola, M.T. The outdoor thermal comfort assessment of different urban configurations within Akure City, Nigeria. Urban Clim. 2019, 29, 100489. [Google Scholar] [CrossRef]
- Beshir, M.; Ramsey, J.D. Heat stress indices: A review paper. Int. J. Ind. Ergon. 1988, 3, 89–102. [Google Scholar] [CrossRef]
- Binarti, F.; Koerniawan, M.D.; Triyadi, S.; Utami, S.S.; Matzarakis, A. A review of outdoor thermal comfort indices and neutral ranges for hot-humid regions. Urban Clim. 2020, 31, 31. [Google Scholar] [CrossRef]
- MENEX_2005 The Updated Version of Man-Environment Heat Exchange Model. Available online: http://www.igipz.pan.pl/tl_files/igipz/ZGiK/opracowania/indywidualne/blazejczyk/ (accessed on 30 March 2020).
- Blazejczyk, K.; Bröde, P.; Fiala, D.; Havenith, G.; Holmér, I.; Jendritzky, G.; Kampmann, B.; Kunert, A. Principles of the New Universal Thermal Climate Index (UTCI) and its Application to Bioclimatic Research in European Scale. Misc. Geogr. 2010, 14, 91–102. [Google Scholar]
- Blazejczyk, K.; Epstein, Y.; Jendritzky, G.; Staiger, H.; Tinz, B. Comparison of UTCI to selected thermal indices. Int. J. Biometeorol. 2011, 56, 515–535. [Google Scholar] [CrossRef] [Green Version]
- Bouyer, J.; Vinet, J.; Delpech, P.; Carré, S. Thermal comfort assessment in semi-outdoor environments: Application to comfort study in stadia. J. Wind. Eng. Ind. Aerodyn. 2007, 95, 963–976. [Google Scholar] [CrossRef]
- Bröde, P.; Fiala, D.; Blazejczyk, K.; Holmér, I.; Jendritzky, G.; Kampmann, B.; Tinz, B.; Havenith, G. Deriving the operational procedure for the Universal Thermal Climate Index (UTCI). Int. J. Biometeorol. 2011, 56, 481–494. [Google Scholar] [CrossRef] [Green Version]
- Cheng, V.; Ng, E. Thermal Comfort in Urban Open Spaces for Hong Kong. Arch. Sci. Rev. 2006, 49, 236–242. [Google Scholar] [CrossRef]
- Cheng, V.; Ng, E.; Chan, C.; Givoni, B. Outdoor thermal comfort study in a sub-tropical climate: A longitudinal study based in Hong Kong. Int. J. Biometeorol. 2011, 56, 43–56. [Google Scholar] [CrossRef] [PubMed]
- Cheung, P.K.; Jim, C. Comparing the cooling effects of a tree and a concrete shelter using PET and UTCI. Build. Environ. 2018, 130, 49–61. [Google Scholar] [CrossRef]
- Chow, W.T.L.; Akbar, S.N.; Assyakirin, B.A.; Heng, S.L.; Roth, M. Assessment of measured and perceived microclimates within a tropical urban forest. Urban For. Urban Green. 2016, 16, 62–75. [Google Scholar] [CrossRef] [Green Version]
- Cohen, P.; Potchter, O.; Matzarakis, A.A. Human thermal perception of Coastal Mediterranean outdoor urban environments. Appl. Geogr. 2013, 37, 1–10. [Google Scholar] [CrossRef]
- De Dear, R.; Pickup, J. An Outdoor Thermal Comfort index (OUT-SET*)-Part I-The Model and its Assumptions SAMBA IEQ Monitoring System View Project Natural Ventilation in Buildings View. In Proceedings of the 15th International Congress of Biometeorology and International Conference on Urban Climatology, Sydney, Australia, 8–12 November 1999. [Google Scholar]
- De Freitas, C.R.; Grigorieva, E.A. A comprehensive catalogue and classification of human thermal climate indices. Int. J. Biometeorol. 2014, 59, 109–120. [Google Scholar] [CrossRef]
- De Freitas, C.R.; Grigorieva, E.A. A comparison and appraisal of a comprehensive range of human thermal climate indices. Int. J. Biometeorol. 2016, 61, 487–512. [Google Scholar] [CrossRef] [PubMed]
- Deb, C.; Ramachandraiah, A. A simple technique to classify urban locations with respect to human thermal comfort: Proposing the HXG scale. Build. Environ. 2011, 46, 1321–1328. [Google Scholar] [CrossRef]
- Dimoudi, A.; Kantzioura, A.; Zoras, S.; Pallás, C.; Kosmopoulos, P. Investigation of urban microclimate parameters in an urban center. Energy Build. 2013, 64, 1–9. [Google Scholar] [CrossRef]
- Dimoudi, A.; Zoras, S.; Kantzioura, A.; Stogiannou, X.; Kosmopoulos, P.; Pallás, C. Use of cool materials and other bioclimatic interventions in outdoor places in order to mitigate the urban heat island in a medium size city in Greece. Sustain. Cities Soc. 2014, 13, 89–96. [Google Scholar] [CrossRef]
- Du, J.; Sun, C.; Xiao, Q.; Chen, X.; Liu, J. Field assessment of winter outdoor 3-D radiant environment and its impact on thermal comfort in a severely cold region. Sci. Total. Environ. 2020, 709, 136175. [Google Scholar] [CrossRef]
- Ebrahimabadi, S. Outdoor Comfort in Cold Climates: Integrating Microclimate Factors in Urban Design. Ph.D. Thesis, Luleå Univ. Technol. 1 jan 1997, Luleå, Sweden, 2015; p. 195. [Google Scholar]
- Emmanuel, R. Thermal comfort implications of urbanization in a warm-humid city: The Colombo Metropolitan Region (CMR), Sri Lanka. Build. Environ. 2005, 40, 1591–1601. [Google Scholar] [CrossRef]
- Epstein, Y.; Moran, D.S. Thermal comfort and the heat stress indices. Ind. Heal. 2006, 44, 388–398. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Evola, G.; Gagliano, A.; Fichera, A.; Marletta, L.; Martinico, F.; Nocera, F.; Pagano, A. UHI effects and strategies to improve outdoor thermal comfort in dense and old neighbourhoods. Energy Procedia 2017, 134, 692–701. [Google Scholar] [CrossRef]
- Fang, Z.; Xu, X.; Zhou, X.; Deng, S.; Wu, H.; Liu, J.; Lin, Z. Investigation into the thermal comfort of university students conducting outdoor training. Build. Environ. 2019, 149, 26–38. [Google Scholar] [CrossRef]
- Fiala, D.; Havenith, G.; Bröde, P.; Kampmann, B.; Jendritzky, G. UTCI-Fiala multi-node model of human heat transfer and temperature regulation. Int. J. Biometeorol. 2011, 56, 429–441. [Google Scholar] [CrossRef] [Green Version]
- Foda, E.; Sirén, K. A new approach using the Pierce two-node model for different body parts. Int. J. Biometeorol. 2010, 55, 519–532. [Google Scholar] [CrossRef]
- Golasi, I.; Salata, F.; Vollaro, E.D.L.; Coppi, M. Complying with the demand of standardization in outdoor thermal comfort: A first approach to the Global Outdoor Comfort Index (GOCI). Build. Environ. 2018, 130, 104–119. [Google Scholar] [CrossRef]
- Golasi, I.; Salata, F.; Vollaro, E.D.L.; Coppi, M.; Vollaro, A.D.L. Thermal Perception in the Mediterranean Area: Comparing the Mediterranean Outdoor Comfort Index (MOCI) to Other Outdoor Thermal Comfort Indices. Energies 2016, 9, 550. [Google Scholar] [CrossRef] [Green Version]
- Gonçalves, A.; Ribeiro, A.; Maia, F.; Nunes, L.; Feliciano, M. Influence of Green Spaces on Outdoors Thermal Comfort—Structured Experiment in a Mediterranean Climate. Clim. 2019, 7, 20. [Google Scholar] [CrossRef] [Green Version]
- Gulyás, Á.; Unger, J.; Matzarakis, A. Assessment of the microclimatic and human comfort conditions in a complex urban environment: Modelling and measurements. Build. Environ. 2006, 41, 1713–1722. [Google Scholar] [CrossRef]
- Guo, H.; Aviv, D.; Loyola, M.; Teitelbaum, E.; Houchois, N.; Meggers, F. On the understanding of the mean radiant temperature within both the indoor and outdoor environment, a critical review. Renew. Sustain. Energy Rev. 2020, 117, 109207. [Google Scholar] [CrossRef]
- Hai, Y.; Feng, Q. Thermalscape of Ecological City and its Visualized Evaluation. Energy Procedia 2018, 152, 1139–1144. [Google Scholar] [CrossRef]
- Hami, A.; Abdi, B.; Zarehaghi, D.; Maulan, S. Bin Assessing the thermal comfort effects of green spaces: A systematic review of methods, parameters, and plants’ attributes. Sustain. Cities Soc. 2019, 49, 101634. [Google Scholar] [CrossRef]
- Hanipah, M.H.; Abdullah, A.H.; Sidik, N.A.C.; Yunus, R.; Yasin, M.N.A.; Yazid, M.N.A.W.M. Assessment of Outdoor Thermal Comfort and Wind Characteristics at Three Different Locations in Peninsular Malaysia. In Proceedings of the MATEC Web of Conferences; EDP Sciences: Paris, France, 2016; Volume 47, p. 4005. [Google Scholar]
- Höppe, P. Different aspects of assessing indoor and outdoor thermal comfort. Energy Build. 2002, 34, 661–665. [Google Scholar] [CrossRef]
- Huang, T.; Li, J.; Xie, Y.; Niu, J.; Mak, C.M. Simultaneous environmental parameter monitoring and human subject survey regarding outdoor thermal comfort and its modelling. Build. Environ. 2017, 125, 502–514. [Google Scholar] [CrossRef]
- ISO 7730:1994-Moderate Thermal Environments—Determination of the PMV and PPD Indices and Specification of the Conditions for Thermal Comfort. Available online: https://www.iso.org/standard/14567.html (accessed on 29 January 2020).
- Jain, S.; Garg, V. A review of open loop control strategies for shades, blinds and integrated lighting by use of real-time daylight prediction methods. Build. Environ. 2018, 135, 352–364. [Google Scholar] [CrossRef]
- The Perceived Temperature: The Method of the Deutscher Wetterdienst for the Assessment of Cold Stress and Heat Load for the Human Body. Available online: https://www.semanticscholar.org/paper/ (accessed on 29 January 2020).
- Jendritzky, G.; De Dear, R.; Havenith, G. UTCI—Why another thermal index? Int. J. Biometeorol. 2011, 56, 421–428. [Google Scholar] [CrossRef] [Green Version]
- Johansson, E. Influence of urban geometry on outdoor thermal comfort in a hot dry climate: A study in Fez, Morocco. Build. Environ. 2006, 41, 1326–1338. [Google Scholar] [CrossRef]
- Johansson, E.; Thorsson, S.; Emmanuel, R.; Krüger, E.L. Instruments and methods in outdoor thermal comfort studies – The need for standardization. Urban Clim. 2014, 10, 346–366. [Google Scholar] [CrossRef] [Green Version]
- Jones, B.W. Capabilities and limitations of thermal models for use in thermal comfort standards. Energy Build. 2002, 34, 653–659. [Google Scholar] [CrossRef]
- Karakounos, I.; Dimoudi, A.; Zoras, S. The influence of bioclimatic urban redevelopment on outdoor thermal comfort. Energy Build. 2018, 158, 1266–1274. [Google Scholar] [CrossRef]
- Lai, D.; Guo, D.; Hou, Y.; Lin, C.; Chen, Q. Studies of outdoor thermal comfort in northern China. Build. Environ. 2014, 77, 110–118. [Google Scholar] [CrossRef]
- Lai, D.; Liu, W.; Gan, T.; Liu, K.; Chen, Q. A review of mitigating strategies to improve the thermal environment and thermal comfort in urban outdoor spaces. Sci. Total. Environ. 2019, 661, 337–353. [Google Scholar] [CrossRef]
- Lai, D.; Zhou, C.; Huang, J.; Jiang, Y.; Long, Z.; Chen, Q. Outdoor space quality: A field study in an urban residential community in central China. Energy Build. 2014, 68, 713–720. [Google Scholar] [CrossRef]
- Li, J.; Niu, J.; Mak, C.M.; Huang, T.; Xie, Y. Assessment of outdoor thermal comfort in Hong Kong based on the individual desirability and acceptability of sun and wind conditions. Build. Environ. 2018, 145, 50–61. [Google Scholar] [CrossRef]
- Li, L.; Zhou, X.; Yang, L. The Analysis of Outdoor Thermal Comfort in Guangzhou during Summer. Procedia Eng. 2017, 205, 1996–2002. [Google Scholar] [CrossRef]
- Lin, P.; Gou, Z.; Lau, S.S.Y.; Qin, H. The Impact of Urban Design Descriptors on Outdoor Thermal Environment: A Literature Review. Energies 2017, 10, 2151. [Google Scholar] [CrossRef] [Green Version]
- Liu, L.; Lin, Y.; Wang, L.; Cao, J.; Wang, D.; Xue, P.; Liu, J. An integrated local climatic evaluation system for green sustainable eco-city construction: A case study in Shenzhen, China. Build. Environ. 2017, 114, 82–95. [Google Scholar] [CrossRef]
- UTCI Calculator. Available online: http://www.utci.org/utcineu/utcineu.php (accessed on 29 January 2020).
- Mahmoud, A. An analysis of bioclimatic zones and implications for design of outdoor built environments in Egypt. Build. Environ. 2011, 46, 605–620. [Google Scholar] [CrossRef]
- Manavvi, S.; Rajasekar, E. Estimating outdoor mean radiant temperature in a humid subtropical climate. Build. Environ. 2020, 171, 106658. [Google Scholar] [CrossRef]
- Masterton, J.; Richardson, F. Humidex: A Method of Quantifying Human Discomfort due to Excessive Heat and Humidity; Environment Canada: Downsview, ON, Canada, 1979. [Google Scholar]
- Memon, R.A.; Chirarattananon, S.; Vangtook, P. Thermal comfort assessment and application of radiant cooling: A case study. Build. Environ. 2008, 43, 1185–1196. [Google Scholar] [CrossRef]
- Miao, C.; Yu, S.; Hu, Y.; Zhang, H.; He, X.; Chen, W. Review of methods used to estimate the sky view factor in urban street canyons. Build. Environ. 2020, 168, 106497. [Google Scholar] [CrossRef]
- Middel, A.; Selover, N.; Hagen, B.; Chhetri, N. Impact of shade on outdoor thermal comfort-a seasonal field study in Tempe, Arizona. Int. J. Biometeorol. 2016, 60, 1849–1861. [Google Scholar] [CrossRef] [Green Version]
- Mijorski, S.; Cammelli, S.; Green, J. A hybrid approach for the assessment of outdoor thermal comfort. J. Build. Eng. 2019, 22, 147–153. [Google Scholar] [CrossRef]
- Mittal, H.; Sharma, A.; Gairola, A. A review on the study of urban wind at the pedestrian level around buildings. J. Build. Eng. 2018, 18, 154–163. [Google Scholar] [CrossRef]
- Moran, D.; Health, Y.E.-I. Undefined Evaluation of the environmental stress index (ESI) for hot/dry and hot/wet climates. Ind. Health 2006, 43, 399–403. [Google Scholar] [CrossRef] [Green Version]
- Gonzalez, C.M.; Leon-Rodriguez, A.L.; Navarro-Casas, J. Air conditioning and passive environmental techniques in historic churches in Mediterranean climate. A proposed method to assess damage risk and thermal comfort pre-intervention, simulation-based. Energy Build. 2016, 130, 567–577. [Google Scholar] [CrossRef]
- Abdel-Ghany, A.M.; Al-Helal, I.M.; Shady, M. Human Thermal Comfort and Heat Stress in an Outdoor Urban Arid Environment: A Case Study. Adv. Meteorol. 2013, 2013, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Nagano, K.; Horikoshi, T. New index indicating the universal and separate effects on human comfort under outdoor and non-uniform thermal conditions. Energy Build. 2011, 43, 1694–1701. [Google Scholar] [CrossRef]
- Oh, H.-J.; Jeong, N.-N.; Sohn, J.-R.; Kim, J. Personal exposure to indoor aerosols as actual concern: Perceived indoor and outdoor air quality, and health performances. Build. Environ. 2019, 165, 106403. [Google Scholar] [CrossRef]
- Oliveira, S.; Andrade, H. An initial assessment of the bioclimatic comfort in an outdoor public space in Lisbon. Int. J. Biometeorol. 2007, 52, 69–84. [Google Scholar] [CrossRef] [PubMed]
- Ouali, K.; El Harrouni, K.; Abidi, M.L.; Diab, Y. Analysis of Open Urban Design as a tool for pedestrian thermal comfort enhancement in Moroccan climate. J. Build. Eng. 2020, 28, 101042. [Google Scholar] [CrossRef]
- Pantavou, K.; Santamouris, M.; Asimakopoulos, D.; Theoharatos, G.; Santamouris, M. Empirical calibration of thermal indices in an urban outdoor Mediterranean environment. Build. Environ. 2014, 80, 283–292. [Google Scholar] [CrossRef]
- Pearlmutter, D.; Berliner, P.; Shaviv, E. Integrated modeling of pedestrian energy exchange and thermal comfort in urban street canyons. Build. Environ. 2007, 42, 2396–2409. [Google Scholar] [CrossRef]
- Pearlmutter, D.; Berliner, P.; Shaviv, E. Urban climatology in arid regions: Current research in the Negev desert. Int. J. Clim. 2007, 27, 1875–1885. [Google Scholar] [CrossRef]
- Pickup, J.; Dear, R.D. An Outdoor Thermal Comfort Index (OUT-SET*); 15th ICB ICUC; Macquarie University: Sydney, Australia, 1999. [Google Scholar]
- The Heat Index Equation. Available online: https://www.wpc.ncep.noaa.gov/html/heatindex_equation.shtml (accessed on 29 January 2020).
- Ruiz, M.A.; Correa, E.N. Adaptive model for outdoor thermal comfort assessment in an Oasis city of arid climate. Build. Environ. 2015, 85, 40–51. [Google Scholar] [CrossRef]
- Abu Bakar, A.; Gadi, M.B. Urban Outdoor Thermal Comfort of The Hot-Humid Region. In Proceedings of the MATEC Web of Conferences; EDP Sciences: Paris, France, 2016; Volume 66, p. 84. [Google Scholar]
- Salata, F.; Golasi, I.; Treiani, N.; Plos, R.; Vollaro, A.D.L. On the outdoor thermal perception and comfort of a Mediterranean subject across other Koppen-Geiger’s climate zones. Environ. Res. 2018, 167, 115–128. [Google Scholar] [CrossRef]
- Sharmin, T.; Steemers, K.; Humphreys, M. Outdoor thermal comfort and summer PET range: A field study in tropical city Dhaka. Energy Build. 2019, 198, 149–159. [Google Scholar] [CrossRef]
- Spagnolo, J.; De Dear, R. A field study of thermal comfort in outdoor and semi-outdoor environments in subtropical Sydney Australia. Build. Environ. 2003, 38, 721–738. [Google Scholar] [CrossRef] [Green Version]
- Staiger, H.; Laschewski, G.; Grätz, A. The perceived temperature —A versatile index for the assessment of the human thermal environment. Part A: Scientific basics. Int. J. Biometeorol. 2012, 56, 165–176. [Google Scholar] [CrossRef]
- Sulaiman, H.; Olsina, F. Comfort reliability evaluation of building designs by stochastic hygrothermal simulation. Renew. Sustain. Energy Rev. 2014, 40, 171–184. [Google Scholar] [CrossRef]
- Taleghani, M. Outdoor thermal comfort by different heat mitigation strategies- A review. Renew. Sustain. Energy Rev. 2018, 81, 2011–2018. [Google Scholar] [CrossRef]
- González, A.T.; Chicote, M.A.; García-Ibáñez, P.; Velasco, E.; Rey-Martínez, F.J. Assessing the applicability of passive cooling and heating techniques through climate factors: An overview. Renew. Sustain. Energy Rev. 2016, 65, 727–742. [Google Scholar] [CrossRef] [Green Version]
- Thorsson, S.; Lindqvist, M.; Lindqvist, S. Thermal bioclimatic conditions and patterns of behaviour in an urban park in Göteborg, Sweden. Int. J. Biometeorol. 2004, 48, 149–156. [Google Scholar] [CrossRef] [PubMed]
- Tsitoura, M.; Tsoutsos, T.; Daras, T. Evaluation of comfort conditions in urban open spaces. Application in the island of Crete. Energy Convers. Manag. 2014, 86, 250–258. [Google Scholar] [CrossRef]
- Wan, J.; Yang, K.; Zhang, W.; Zhang, J. A new method of determination of indoor temperature and relative humidity with consideration of human thermal comfort. Build. Environ. 2009, 44, 411–417. [Google Scholar] [CrossRef]
- Ahmed, K.S. Comfort in urban spaces: Defining the boundaries of outdoor thermal comfort for the tropical urban environments. Energy Build. 2003, 35, 103–110. [Google Scholar] [CrossRef]
- Ali, S.B.; Patnaik, S. Thermal comfort in urban open spaces: Objective assessment and subjective perception study in tropical city of Bhopal, India. Urban Clim. 2018, 24, 954–967. [Google Scholar] [CrossRef]
- Aljawabra, F.; Nikolopoulou, M. Influence of hot arid climate on the use of outdoor urban spaces and thermal comfort: Do cultural and social backgrounds matter? Intell. Build. Int. 2010, 2, 198–217. [Google Scholar]
- Amindeldar, S.; Heidari, S.; Khalili, M. The effect of personal and microclimatic variables on outdoor thermal comfort: A field study in Tehran in cold season. Sustain. Cities Soc. 2017, 32, 153–159. [Google Scholar] [CrossRef]
- Baruti, M.; Johansson, E.; Åstrand, J. Review of studies on outdoor thermal comfort in warm humid climates: Challenges of informal urban fabric. Int. J. Biometeorol. 2019, 63, 1449–1462. [Google Scholar] [CrossRef] [Green Version]
- Brager, G.S.; De Dear, R. Thermal adaptation in the built environment: A literature review. Energy Build. 1998, 27, 83–96. [Google Scholar] [CrossRef] [Green Version]
- Brychkov, D.; Garb, Y.; Pearlmutter, D. The influence of climatocultural background on outdoor thermal perception. Int. J. Biometeorol. 2018, 62, 1873–1886. [Google Scholar] [CrossRef] [PubMed]
- Coccolo, S.; Kämpf, J.; Scartezzini, J.-L.; Pearlmutter, D. Outdoor human comfort and thermal stress: A comprehensive review on models and standards. Urban Clim. 2016, 18, 33–57. [Google Scholar] [CrossRef]
- Cohen, P.; Shashua-Bar, L.; Keller, R.; Gil-Ad, R.; Yaakov, Y.; Lukyanov, V.; Bar (Kutiel), P.; Tanny, J.; Cohen, S.; Potchter, O.; et al. Urban outdoor thermal perception in hot arid Beer Sheva, Israel: Methodological and gender aspects. Build. Environ. 2019, 160, 106169. [Google Scholar] [CrossRef]
- Eberhard, J.P. Applying Neuroscience to Architecture. Neuron 2009, 62, 753–756. [Google Scholar] [CrossRef] [Green Version]
- Eberhard, J. Brain Landscape the Coexistence of Neuroscience and Architecture; Oxford University Press: New York, NY, USA, 2009. [Google Scholar]
- Eliasson, I. The use of climate knowledge in urban planning. Landsc. Urban Plan. 2000, 48, 31–44. [Google Scholar] [CrossRef]
- Fong, C.S.; Aghamohammadi, N.; Ramakreshnan, L.; Sulaiman, N.M.; Mohammadi, P. Holistic recommendations for future outdoor thermal comfort assessment in tropical Southeast Asia: A critical appraisal. Sustain. Cities Soc. 2019, 46, 101428. [Google Scholar] [CrossRef]
- Jabbari, S.G.; Maleki, A.; Kaynezhad, M.A.; Olesen, B.W. Inter-personal factors affecting building occupants’ thermal tolerance at cold outdoor condition during an autumn–winter period. Indoor Built Environ. 2019, 1420326X1986799. [Google Scholar] [CrossRef]
- Givoni, B.; Noguchi, M.; Saaroni, H.; Pochter, O.; Yaacov, Y.; Feller, N.; Becker, S. Outdoor comfort research issues. Energy Build. 2003, 35, 77–86. [Google Scholar] [CrossRef]
- Groh, J. Making Space: How the Brain Knows Where Things Are; Harvard University Press: London, UK, 2014. [Google Scholar]
- Haddad, S.; Osmond, P.; King, S. Application of adaptive thermal comfort methods for Iranian schoolchildren. Build. Res. Inf. 2016, 47, 173–189. [Google Scholar] [CrossRef]
- Halawa, E.; Van Hoof, J. The adaptive approach to thermal comfort: A critical overview. Energy Build. 2012, 51, 101–110. [Google Scholar] [CrossRef]
- Hanzl, M.; Ledwoń, S. Analyses of human behaviour in public spaces. Smart Communities. In Proceedings of the ISOCARP/OAPA Congr., Portland, OR, USA, 24–27 October 2017; pp. 653–666. [Google Scholar]
- Humphreys, M.; Hancock, M. Do people like to feel ‘neutral’? Energy Build. 2007, 39, 867–874. [Google Scholar] [CrossRef]
- Inavonna, I.; Hardiman, G.; Purnomo, A.B. Outdoor thermal comfort and behaviour in urban area. IOP Conf. Series: Earth Environ. Sci. 2018, 106, 12061. [Google Scholar] [CrossRef]
- Jamei, E.; Rajagopalan, P.; Seyedmahmoudian, M.; Jamei, Y. Review on the impact of urban geometry and pedestrian level greening on outdoor thermal comfort. Renew. Sustain. Energy Rev. 2016, 54, 1002–1017. [Google Scholar] [CrossRef]
- Ji, W.; Zhu, Y.; Cao, B. Development of the Predicted Thermal Sensation (PTS) model using the ASHRAE Global Thermal Comfort Database. Energy Build. 2020, 211, 109780. [Google Scholar] [CrossRef]
- Ji, Y.; Wang, Z. Thermal adaptations and logistic regression analysis of thermal comfort in severe cold area based on two case studies. Energy Build. 2019, 205, 109560. [Google Scholar] [CrossRef]
- Ketterer, C.; Matzarakis, A.A. Human-biometeorological assessment of heat stress reduction by replanning measures in Stuttgart, Germany. Landsc. Urban Plan. 2014, 122, 78–88. [Google Scholar] [CrossRef]
- Knez, I.; Thorsson, S. Thermal, emotional and perceptual evaluations of a park: Cross-cultural and environmental attitude comparisons. Build. Environ. 2008, 43, 1483–1490. [Google Scholar] [CrossRef]
- Krüger, E.L.; Kr?ger, E. Impact of site-specific morphology on outdoor thermal perception: A case-study in a subtropical location. Urban Clim. 2017, 21, 123–135. [Google Scholar] [CrossRef]
- Krüger, E.L.; Rossi, F.A. Effect of personal and microclimatic variables on observed thermal sensation from a field study in southern Brazil. Build. Environ. 2011, 46, 690–697. [Google Scholar] [CrossRef]
- Lam, C.K.C.; Lau, K.K.-L. Effect of long-term acclimatization on summer thermal comfort in outdoor spaces: A comparative study between Melbourne and Hong Kong. Int. J. Biometeorol. 2018, 62, 1311–1324. [Google Scholar] [CrossRef] [PubMed]
- Lau, K.K.-L.; Chung, S.C.; Ren, C. Outdoor thermal comfort in different urban settings of sub-tropical high-density cities: An approach of adopting local climate zone (LCZ) classification. Build. Environ. 2019, 154, 227–238. [Google Scholar] [CrossRef]
- Lenzholzer, S.; Klemm, W.; Vasilikou, C. Qualitative methods to explore thermo-spatial perception in outdoor urban spaces. Urban Clim. 2018, 23, 231–249. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Liu, N. The perception, optimization strategies and prospects of outdoor thermal comfort in China: A review. Build. Environ. 2020, 170, 106614. [Google Scholar] [CrossRef]
- Li, K.; Zhang, Y.; Zhao, L. Outdoor thermal comfort and activities in the urban residential community in a humid subtropical area of China. Energy Build. 2016, 133, 498–511. [Google Scholar] [CrossRef]
- Lin, T.-P. Thermal perception, adaptation and attendance in a public square in hot and humid regions. Build. Environ. 2009, 44, 2017–2026. [Google Scholar] [CrossRef]
- Liu, Z.; Zhao, X.; Jin, Y.; Jin, H.; Xu, X. Prediction of Outdoor Human Thermal Sensation at the Pedestrian Level in High-rise Residential Areas in Severe Cold Regions of China. Energy Procedia 2019, 157, 51–58. [Google Scholar] [CrossRef]
- Malgoyre, A.; Tardo-Dino, P.-E.; Koulmann, N.; Lepetit, B.; Jousseaume, L.; Charlot, K. Uncoupling psychological from physiological markers of heat acclimatization in a military context. J. Therm. Boil. 2018, 77, 145–156. [Google Scholar] [CrossRef]
- Mauree, D.; Naboni, E.; Coccolo, S.; Perera, A.T.D.; Nik, V.M.; Scartezzini, J.-L. A review of assessment methods for the urban environment and its energy sustainability to guarantee climate adaptation of future cities. Renew. Sustain. Energy Rev. 2019, 112, 733–746. [Google Scholar] [CrossRef]
- Metje, N.; Sterling, M.; Baker, C. Pedestrian comfort using clothing values and body temperatures. J. Wind. Eng. Ind. Aerodyn. 2008, 96, 412–435. [Google Scholar] [CrossRef]
- Mi, J.; Hong, B.; Zhang, T.; Huang, B.; Niu, J. Outdoor thermal benchmarks and their application to climate‒responsive designs of residential open spaces in a cold region of China. Build. Environ. 2020, 169, 106592. [Google Scholar] [CrossRef]
- Mishra, A.K.; Derks, M.; Kooi, L.; Loomans, M.; Kort, H. Analysing thermal comfort perception of students through the class hour, during heating season, in a university classroom. Build. Environ. 2017, 125, 464–474. [Google Scholar] [CrossRef]
- Mishra, A.K.; Ramgopal, M. Field studies on human thermal comfort—An overview. Build. Environ. 2013, 64, 94–106. [Google Scholar] [CrossRef]
- Nakayoshi, M.; Kanda, M.; Shi, R.; De Dear, R. Outdoor thermal physiology along human pathways: A study using a wearable measurement system. Int. J. Biometeorol. 2014, 59, 503–515. [Google Scholar] [CrossRef]
- Nasir, R.A.; Ahmad, S.; Ahmed, A.Z. Physical Activity and Human Comfort Correlation in an Urban Park in Hot and Humid Conditions. Procedia Soc. Behav. Sci. 2013, 105, 598–609. [Google Scholar] [CrossRef] [Green Version]
- Nikolopoulou, M.; Lykoudis, S. Use of outdoor spaces and microclimate in a Mediterranean urban area. Build. Environ. 2007, 42, 3691–3707. [Google Scholar] [CrossRef] [Green Version]
- Nikolopoulou, M.; Steemers, K. Thermal comfort and psychological adaptation as a guide for designing urban spaces. Energy Build. 2003, 35, 95–101. [Google Scholar] [CrossRef]
- Parkinson, T.; De Dear, R. Thermal pleasure in built environments: Physiology of alliesthesia. Build. Res. Inf. 2014, 43, 288–301. [Google Scholar] [CrossRef]
- Pearlmutter, D.; Jiao, D.; Garb, Y. The relationship between bioclimatic thermal stress and subjective thermal sensation in pedestrian spaces. Int. J. Biometeorol. 2014, 58, 2111–2127. [Google Scholar] [CrossRef]
- Peng, Y.; Feng, T.; Timmermans, H.J.; Nuaa, A. Path analysis of outdoor comfort in urban public spaces. Build. Environ. 2019, 148, 459–467. [Google Scholar] [CrossRef]
- Piselli, C.; Castaldo, V.; Pigliautile, I.; Cabeza, L.F.; Cotana, F. Outdoor comfort conditions in urban areas: On citizens’ perspective about microclimate mitigation of urban transit areas. Sustain. Cities Soc. 2018, 39, 16–36. [Google Scholar] [CrossRef]
- Potchter, O.; Cohen, P.; Lin, T.-P.; Matzarakis, A.A. Outdoor human thermal perception in various climates: A comprehensive review of approaches, methods and quantification. Sci. Total. Environ. 2018, 390–406. [Google Scholar] [CrossRef] [PubMed]
- Saaroni, H.; Pearlmutter, D.; Hatuka, T. Human-biometeorological conditions and thermal perception in a Mediterranean coastal park. Int. J. Biometeorol. 2014, 59, 1347–1362. [Google Scholar] [CrossRef] [PubMed]
- Salata, F.; Golasi, I.; Proietti, R.; Vollaro, A.D.L. Implications of climate and outdoor thermal comfort on tourism: The case of Italy. Int. J. Biometeorol. 2017, 61, 2229–2244. [Google Scholar] [CrossRef]
- Coburn, A.; Vartanian, O.; Chatterjee, A. Buildings, Beauty, and the Brain: A Neuroscience of Architectural Experience. J. Cogn. Neurosci. 2017, 29, 1521–1531. [Google Scholar] [CrossRef] [Green Version]
- Schweiker, M.; Rissetto, R.; Wagner, A. Thermal expectation: Influencing factors and its effect on thermal perception. Energy Build. 2020, 210, 109729. [Google Scholar] [CrossRef]
- Sharifi, E.; Boland, J. Limits of thermal adaptation in cities: Outdoor heat-activity dynamics in Sydney, Melbourne and Adelaide. Arch. Sci. Rev. 2018, 61, 191–201. [Google Scholar] [CrossRef]
- Sharifi, E.; Boland, J. Passive activity observation (PAO) method to estimate outdoor thermal adaptation in public space: Case studies in Australian cities. Int. J. Biometeorol. 2018, 64, 231–242. [Google Scholar] [CrossRef]
- Shooshtarian, S.; Ridley, I. The effect of physical and psychological environments on the users thermal perceptions of educational urban precincts. Build. Environ. 2017, 115, 182–198. [Google Scholar] [CrossRef]
- Stathopoulos, T.; Wu, H.; Zacharias, J. Outdoor human comfort in an urban climate. Build. Environ. 2004, 39, 297–305. [Google Scholar] [CrossRef]
- Walton, D.; Dravitzki, V.; Donn, M. The relative influence of wind, sunlight and temperature on user comfort in urban outdoor spaces. Build. Environ. 2007, 42, 3166–3175. [Google Scholar] [CrossRef]
- Wilson, E.; Nicol, F.; Nanayakkara, L.; Ueberjahn-Tritta, A. Public Urban Open Space and Human Thermal Comfort: The Implications of Alternative Climate Change and Socio-economic Scenarios. J. Environ. Policy Plan. 2008, 10, 31–45. [Google Scholar] [CrossRef]
- Xi, T.; Wang, Q.; Qin, H.; Jin, H. Influence of outdoor thermal environment on clothing and activity of tourists and local people in a severely cold climate city. Build. Environ. 2020, 173, 106757. [Google Scholar] [CrossRef]
- Xi, T.; Wang, Q.; Wang, S.; Lv, X. Adaptation to outdoor thermal environment of tourists and local people in winter in Harbin. In Proceedings of the AIP Conference Proceedings; American Institute of Physics Inc.: College Park, MD, USA, 2019; Volume 2123, p. 020021. [Google Scholar]
- Xi, T.; Wang, S.; Wang, Q.; Lv, X. College students’ subjective response to outdoor thermal environment in a severely cold climate city. In Proceedings of the AIP Conference Proceedings; American Institute of Physics Inc.: College Park, MD, USA, 2019; Volume 2123, p. 020023. [Google Scholar]
- Yau, Y.H.; Chew, B.T.; Saifullah, A.Z.A. A Field Study on Thermal Comfort of Occupants and Acceptable Neutral Temperature at the National Museum in Malaysia. Indoor Built Environ. 2011, 22, 433–444. [Google Scholar] [CrossRef]
- Battista, G.; Vollaro, R.D.L.; Zinzi, M. Assessment of urban overheating mitigation strategies in a square in Rome, Italy. Sol. Energy 2019, 180, 608–621. [Google Scholar] [CrossRef]
- Using ENVI-met met BioMet. Available online: http://www.envi-met.info/doku.php. (accessed on 13 April 2020).
- Imbert, C.; Bhattacharjee, S.; Tencar, J. Simulation of urban microclimate with SOLENE-microclimat —An outdoor comfort case study. Simul. Ser. 2018, 50, 198–205. [Google Scholar]
- Liang, X.; Tian, W.; Li, R.; Niu, Z.; Yang, X.; Meng, X.; Jin, L.; Yan, J. Numerical investigations on outdoor thermal comfort for built environment: Case study of a Northwest campus in China. In Proceedings of the Energy Procedia; Elsevier Ltd.: Amsterdam, The Netherlands, 2019; Volume 158, pp. 6557–6563. [Google Scholar]
- Lindberg, F.; Holmer, B.; Thorsson, S. SOLWEIG 1.0 – Modelling spatial variations of 3D radiant fluxes and mean radiant temperature in complex urban settings. Int. J. Biometeorol. 2008, 52, 697–713. [Google Scholar] [CrossRef]
- Mackey, C.; Galanos, T.; Norford, L.; Roudsari, M.S.; Bhd, N.S. Wind, Sun, Surface Temperature, and Heat Island: Critical Variables for High-Resolution Outdoor Thermal Comfort Payette Architects. Proc. 15th IBPSA Conf. 2017, 985–993. [Google Scholar]
- Matzarakis, A.; Fröhlich, D.; Gangwisch, M.; Ketterer, C.; Peer, A.; Freiburg, A.; Freiburg, D. Developments and applications of thermal indices in urban structures by RayMan and SkyHelios model. In Proceedings of the 9th International Conference on Urban Climate, Toulouse, France, 20–24 July 2015. [Google Scholar]
- Matzarakis, A.A.; Rutz, F.; Mayer, H. Modelling radiation fluxes in simple and complex environments: Basics of the RayMan model. Int. J. Biometeorol. 2009, 54, 131–139. [Google Scholar] [CrossRef] [Green Version]
- Matzarakis, A.A.; Rutz, F.; Mayer, H. Modelling radiation fluxes in simple and complex environments—application of the RayMan model. Int. J. Biometeorol. 2006, 51, 323–334. [Google Scholar] [CrossRef] [PubMed]
- Naboni, E.; Coccolo, S.; Meloni, M.; Scartezzini, J.-L. Outdoor Comfort Simulation of Complex Architectural Designs a Review of Simulation Tools from the Designer Perspective. Build. Perform. Anal. Conf. SimBuild 2018, 659–666. [Google Scholar]
- Perini, K.; Chokhachian, A.; Dong, S.; Auer, T. Modeling and simulating urban outdoor comfort: Coupling ENVI-Met and TRNSYS by grasshopper. Energy Build. 2017, 152, 373–384. [Google Scholar] [CrossRef]
- Salata, F.; Golasi, I.; Vollaro, R.D.L.; Vollaro, A.D.L. Urban microclimate and outdoor thermal comfort. A proper procedure to fit ENVI-met simulation outputs to experimental data. Sustain. Cities Soc. 2016, 26, 318–343. [Google Scholar] [CrossRef]
- Coccolo, S.; Mauree, D.; Naboni, E.; Kaempf, J.; Scartezzini, J.-L. On the impact of the wind speed on the outdoor human comfort: A sensitivity analysis. Energy Procedia 2017, 122, 481–486. [Google Scholar] [CrossRef]
- Taleb, H.; Taleb, D. Enhancing the thermal comfort on urban level in a desert area: Case study of Dubai, United Arab Emirates. Urban For. Urban Green. 2014, 13, 253–260. [Google Scholar] [CrossRef]
- Tsitoura, M.; Michailidou, M.; Tsoutsos, T. A bioclimatic outdoor design tool in urban open space design. Energy Build. 2017, 153, 368–381. [Google Scholar] [CrossRef]
- Tsoka, S.; Tsikaloudaki, K.; Theodosiou, T. Analyzing the ENVI-met microclimate model’s performance and assessing cool materials and urban vegetation applications–A review. Sustain. Cities Soc. 2018, 43, 55–76. [Google Scholar] [CrossRef]
- Fabbri, K.; Di Nunzio, A.; Gaspari, J.; Antonini, E.; Boeri, A. Outdoor Comfort: The ENVI-BUG tool to Evaluate PMV Values Output Comfort Point by Point. Energy Procedia 2017, 111, 510–519. [Google Scholar] [CrossRef]
- Fabbri, K.; Gaspari, J.; Bartoletti, S.; Antonini, E. Effect of facade reflectance on outdoor microclimate: An Italian case study. Sustain. Cities Soc. 2020, 54, 101984. [Google Scholar] [CrossRef]
- Gaspari, J.; Fabbri, K.; Lucchi, M. The use of outdoor microclimate analysis to support decision making process: Case study of Bufalini square in Cesena. Sustain. Cities Soc. 2018, 42, 206–215. [Google Scholar] [CrossRef]
- GhaffarianHoseini, A.; Berardi, U.; GhaffarianHoseini, A.; Al-Obaidi, K. Analyzing the thermal comfort conditions of outdoor spaces in a university campus in Kuala Lumpur, Malaysia. Sci. Total. Environ. 2019, 666, 1327–1345. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guan, L.; Bennett, M.; Bell, J. Development of a climate assessment tool for hybrid air conditioner. Build. Environ. 2014, 82, 371–380. [Google Scholar] [CrossRef]
- Huang, K.-T.; Yang, S.-R.; Matzarakis, A.A.; Lin, T.-P. Identifying outdoor thermal risk areas and evaluation of future thermal comfort concerning shading orientation in a traditional settlement. Sci. Total. Environ. 2018, 626, 567–580. [Google Scholar] [CrossRef]
- Huttner, S.; Bruse, M.; Dostal, P. Using ENVI-met to simulate the impact of global warming on the microclimate in central European cities. In Proceedings of the 5th Japanese-German Meeting on Urban Climatology, Freiburg, Germany, 6–8 October 2008. [Google Scholar]
Abbreviation | Definition |
---|---|
UHI | Urban Heat Island |
IPCC | Intergovernmental Panel on Climate Change |
NOAA | National Oceanic and Atmospheric Administration |
Abbreviation | Index | Unit |
---|---|---|
ASV | Actual Sensation Vote | - |
AT | Apparent Temperature | °C |
COMFA | COMfort FormulA | W·m−2 |
DI | Discomfort Index | °C |
ESI | Environmental Stress Index and | °C |
ET | Effective Temperature | °C |
ETU | Universal Effective Temperature | °C |
H | Humidex | °C |
HI | Heat Index | °C |
ITS | Index of Thermal Stress | W |
MENEX | Man ENvironmental Heat EXchange model | W·m−2 |
OUT_SET* | Outdoor Effective Temperature | °C |
PE | Cooling Power Index | kcal·m−2·h |
PET | Physiologically Equivalent Temperature | °C |
PMV | Predicted Mean Vote | - |
PSI | Physiological Strain Index | °C |
PT | Perceived Temperature | °C |
RSI | Relative Strain Index | - |
SET | New Standard Effective Temperature | °C |
TS | Thermal Sensation | - |
TSV | Thermal Sensation Vote | - |
UTCI | Universal Thermal Climate Index | °C |
WBGT | Wet Bulb Globe Temperature Index | °C |
WCI | Wind Chill Index | °C |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Antonini, E.; Vodola, V.; Gaspari, J.; De Giglio, M. Outdoor Wellbeing and Quality of Life: A Scientific Literature Review on Thermal Comfort. Energies 2020, 13, 2079. https://doi.org/10.3390/en13082079
Antonini E, Vodola V, Gaspari J, De Giglio M. Outdoor Wellbeing and Quality of Life: A Scientific Literature Review on Thermal Comfort. Energies. 2020; 13(8):2079. https://doi.org/10.3390/en13082079
Chicago/Turabian StyleAntonini, Ernesto, Vincenzo Vodola, Jacopo Gaspari, and Michaela De Giglio. 2020. "Outdoor Wellbeing and Quality of Life: A Scientific Literature Review on Thermal Comfort" Energies 13, no. 8: 2079. https://doi.org/10.3390/en13082079
APA StyleAntonini, E., Vodola, V., Gaspari, J., & De Giglio, M. (2020). Outdoor Wellbeing and Quality of Life: A Scientific Literature Review on Thermal Comfort. Energies, 13(8), 2079. https://doi.org/10.3390/en13082079