Development and Verification of Hybrid Power Controller Using Indoor HIL Test for the Solar UAV
Abstract
:1. Introduction
1.1. PV-Based HPS
1.2. HIL-Based AFTB
2. System Overview
3. HPS
3.1. HPC
Algorithm 1 [CLIENT] PowerManager.py |
|
3.2. PV Module
3.3. Battery Pack
4. UAV
5. GCS
Algorithm 2 [SERVER] HoverSOC.py |
|
6. Test Method
7. Test Result
8. Improvements and Comparisons
9. Conclusions
Funding
Conflicts of Interest
References
- Gong, A.; MacNeill, R.; Verstraete, D.; Palmer, J.L. Analysis of a Fuel-Cell/Battery/Supercapacitor Hybrid Propulsion System for a UAV using a Hardware-in-the-Loop Flight Simulator. In Proceedings of the AIAA/IEEE Electric Aircraft Technologies Symposium, Cincinnati, OH, USA, 9–11 July 2018; pp. 1–17. [Google Scholar]
- Gong, A.; Verstraete, D. Evaluation of a Hybrid Fuel-Cell based Propulsion System with a Hardware-in-the-Loop Flight Simulator. In Proceedings of the 23rd International Society for Air Breathing Engines, Petersfield, UK, 3–8 September 2017; pp. 1–17. [Google Scholar]
- Gong, A.; Palmer, J.L.; Verstraete, D. Flight Test of a Fuel-Cell/Battery/Supercapacitor Triple Hybrid UAV Propulsion System. In Proceedings of the 31st Congress of the International Council of the Aeronautical Sciences, Belo Horizonte, Brazil, 9–14 September 2018; pp. 1–10. [Google Scholar]
- Lee, B.; Kwon, S.; Park, P.; Kim, K. Active Power Management System for an Unmanned Aerial Vehicle Powered by Solar Cells, a Fuel Cell, and Batteries. IEEE Trans. Aerosp. Electron. Syst. 2014, 50, 3167–3177. [Google Scholar] [CrossRef]
- Harmon, F.G.; Frank, A.A.; Chattot, J. Conceptual Design and Simulation of a Small Hybrid-Electric Unmanned Aerial Vehicle. J. Aircr. 2006, 43, 1490–1498. [Google Scholar] [CrossRef]
- Malaver, A.; Motta, N.; Corke, P.; Gonzalez, F. Development and Integration of a Solar Powered Unmanned Aerial Vehicle and a Wireless Sensor Network to Monitor Greenhouse Gases. Sensors 2015, 15, 4072–4096. [Google Scholar] [CrossRef] [PubMed]
- Bq2403x Single-Chip Charge and System Power-Path Management IC (bqTINYTM). Available online: https://goo.gl/Tr6A74 (accessed on 9 March 2020).
- Smith, N. Dynamic Power Path Management Simplifies Battery Charging from Solar Panels; Texas Instruments: Dallas, TX, USA, 2006; pp. 1–5. [Google Scholar]
- Malaver, A.; Matteocci, F.; Carlo, A.D.; Corke, P.; Motta, N. Remote Monitoring of Outdoor Performance of Low Scale Dye Sensitized Solar Cells for Nanosensors Nodes. In Proceedings of the International Conference on Remote Sensing and Data, Harbour Plaza Resort City, Hong Kong, China, 2–3 July 2011; pp. 1–5. [Google Scholar]
- Meyer, J.; Plessis, J.; Ellis, P.; Clark, W. Design Considerations for a Low Altitude Long Endurance Solar Powered Unmanned Aerial Vehicle. In Proceedings of the IEEE AFRICON, Windhoek, South Africa, 26–28 February 2007; pp. 1–7. [Google Scholar]
- Edwards, D.J. Integrating Hydrogen Fuel Cell Propulsion and Autonomous Soaring Techniques. In Proceedings of the AIAA SciTech Forum, Kissimme, FL, USA, 8–12 January 2018; pp. 1–16. [Google Scholar]
- Swider-Lyons, K.E.; Stroman, R.O.; Gould, B.D.; Rodgers, J.A.; MacKrell, J.; Schuette, M.; Page, G. Hydrogen Fuel Cells for Small Unmanned Air Vehicles. In Proceedings of the ECS Transactions, Los Angeles, CA, USA, 10–13 November 2014; pp. 963–972. [Google Scholar]
- MAVROS. Available online: http://wiki.ros.org/mavros (accessed on 9 March 2020).
- MAVLink Developer Guide. Available online: https://mavlink.io/en/ (accessed on 9 March 2020).
- Akcakoca, M.; Atici, B.M.; Gever, B.; Oguz, S. A Simulation-Based Development and Verification Architecture for Micro UAV Teams and Swarms. In Proceedings of the AIAA SciTech Forum, Sam Diego, CA, USA, 7–11 January 2019; pp. 1–15. [Google Scholar]
- Lepej, P.; Santamaria-Navarro, A.; Sola, J. A Flexible Hardware-in-the-Loop Architecture for UAVs. In Proceedings of the International Conference on Unmanned Aircraft Systems, Miami, FL, USA, 13–16 June 2017; pp. 1751–1756. [Google Scholar]
- Odelga, M.; Stegagno, P.; Bulthoff, H.H.; Ahmad, A. A Setup for Multi-UAV Hardware-in-the-Loop Simulations. In Proceedings of the Workshop on Research, Education and Development of Unmanned Aerial Systems, Cancun, Maxico, 23–25 November 2015; pp. 204–210. [Google Scholar]
- Ebeid, E.; Skriver, M.; Terkildsen, K.H.; Jensen, K.; Schultz, U.P. A Survey of Open-Source UAV Flight Controllers and Flight Simulators. Microprocess. Microsyst. 2018, 61, 11–20. [Google Scholar] [CrossRef]
- Gang, B.G.; Kwon, S. Design of an Energy Management Technique for High Endurance Unmanned Aerial Vehicles Powered by Fuel and Solar Cell Systems. Int. J. Hydrogen Energy 2018, 43, 9787–9796. [Google Scholar] [CrossRef]
- Stroman, R.; Edwards, D. The Hybrid Tiger: A Long Endurance Solar/Fuel Cell/Soaring Unmanned Aerial Vehicle. In Proceedings of the 2018 U.S. Department of Energy (DOE) Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting, Washington, DC, USA, 13–15 June 2018; pp. 1–14. [Google Scholar]
Component | Specification |
---|---|
Micro Controller Unit (MCU) | Raspberry Pi 3 Model B (RPi 3B) |
Storage | 16GB Micro SD Card |
Current Sensor | Blkbox 100 A |
Voltage Sensor | In-House Development |
Temperature Sensor | TI LM35 |
A/D Converter | MCP3008 |
Metal-Oxide-Semiconductor Field-Effect Transistor (MOSFET) | IRF4905 |
Weight () | 1.373 |
Parameter | Specification |
---|---|
Max voltage () | 0.55 |
Max current () | 5.8 |
Max power () | 3.19 |
Efficiency () | 20.8 |
Size () | 125 × 125 |
Weight () | 0.006 |
Parameter | Specification |
---|---|
Manufacturer | Enrichpower |
Capacity (Ah) | 3.3 |
Max discharge rate (C) | 35 |
Max charging rate (C) | 5 |
Voltage (V) | 14.8 |
Configuration | 4S 1P |
Weight (kg) | 0.346 |
Component | Specification |
---|---|
FC | Pixhawk 2.1 (PX4) |
Frame | Tarot Ironman 1000 |
Motor | RCtimer 5010–360 KV |
ESC | Simonk 40 A |
Blade | 17 × 55 Carbon |
GPS | Here2 GNSS |
Telemetry1 | RFD 900+ |
Telemetry2 | GR-24L Receiver |
Weight () | 2.35 (w/o battery pack) |
Component | Specification |
---|---|
Processor | Intel® CoreTM i7-7500U |
Memory | 15 GB |
OS | Ubuntu 16.04 LTS |
SW | QGroundControl v3.4.4, Python 2.7.12 |
Presented Work | Reference [19] | Reference [4] | Reference [20] | Reference [3] | |
---|---|---|---|---|---|
Research Institute | Chosun Univ. | KARI and KAIST | KAIST and KARI | NRL | University of Sydney |
Nominal Battery Voltage (V) | 14.8 (4S) | 25.9 (7S) | 25.9 (7S) | 25.9 (7S) | 14.8 (4S) |
Power (W) | 770 | 500 | 200 | Undefined | 170 |
Max. Flight Time (h) | 0.3 (Multirotor) | 1.5 (Fixed-Wing) | 3.8 (Fixed-Wing) | 4.5 (Fixed-Wing) | 0.3 (Fixed-Wing) |
Appearance | |||||
ROS Capability | O | X | X | O | X |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jung, S. Development and Verification of Hybrid Power Controller Using Indoor HIL Test for the Solar UAV. Energies 2020, 13, 2110. https://doi.org/10.3390/en13082110
Jung S. Development and Verification of Hybrid Power Controller Using Indoor HIL Test for the Solar UAV. Energies. 2020; 13(8):2110. https://doi.org/10.3390/en13082110
Chicago/Turabian StyleJung, Sunghun. 2020. "Development and Verification of Hybrid Power Controller Using Indoor HIL Test for the Solar UAV" Energies 13, no. 8: 2110. https://doi.org/10.3390/en13082110
APA StyleJung, S. (2020). Development and Verification of Hybrid Power Controller Using Indoor HIL Test for the Solar UAV. Energies, 13(8), 2110. https://doi.org/10.3390/en13082110