Energy-Saving Potential of Extending Temperature Set-Points in a VRF Air-Conditioned Building
Abstract
:1. Introduction
2. Indoor Temperature Control Strategies
2.1. Set-Point Control
2.2. Predicted Mean Vote (PMV) Comfort Control
2.3. American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE) Comfort Range Control
3. Methods
3.1. Field Measurement
3.2. Simulation
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Capuano, L. International energy outlook 2018 (IEO2018); US Energy Information Administration (EIA): Washington, DC, USA, 2018; Volume 2018, p. 21. [Google Scholar]
- Energy Information Administration. Annual Energy Outlook 2018; Johns Hopkins University: Washington, DC, USA, 2018.
- Karami, P. Robust and Durable Vacuum Insulation Technology for Buildings; KTH Royal Institute of Technology: Stockholm, Sweden, 2015. [Google Scholar]
- Pérez-Lombard, L.; Ortiz, J.; Pout, C. A review on buildings energy consumption information. Energy Build. 2008, 40, 394–398. [Google Scholar] [CrossRef]
- Vakiloroaya, V.; Samali, B.; Fakhar, A.; Pishghadam, K. A review of different strategies for HVAC energy saving. Energy Convers. Manag. 2014, 77, 738–754. [Google Scholar] [CrossRef]
- Ghahramani, A.; Zhang, K.; Dutta, K.; Yang, Z.; Becerik-Gerber, B. Energy savings from temperature set-points and deadband: Quantifying the influence of building and system properties on savings. Appl. Energy 2016, 165, 930–942. [Google Scholar] [CrossRef] [Green Version]
- Azar, E.; Menassa, C.C. A comprehensive framework to quantify energy savings potential from improved operations of commercial building stocks. Energy Policy 2014, 67, 459–472. [Google Scholar] [CrossRef]
- Azar, E.; Menassa, C.C. A comprehensive analysis of the impact of occupancy parameters in energy simulation of office buildings. Energy Build. 2012, 55, 841–853. [Google Scholar] [CrossRef]
- Lakeridou, M.; Ucci, M.; Marmot, A. Imposing limits on summer set-points in UK air-conditioned offices: A survey of facility managers. Energy Policy 2014, 75, 354–368. [Google Scholar] [CrossRef]
- Mui, K.; Wong, L.; Fong, N. Optimization of indoor air temperature set-point for centralized air-conditioned spaces in subtropical climates. Autom. Constr. 2010, 19, 709–713. [Google Scholar] [CrossRef]
- Goetzler, W. Variable refrigerant flow systems. Ashrae J. 2007, 49, 24–31. [Google Scholar]
- Kim, D.; Cox, S.J.; Cho, H.; Im, P. Evaluation of energy savings potential of variable refrigerant flow (VRF) from variable air volume (VAV) in the US climate locations. Energy Rep. 2017, 3, 85–93. [Google Scholar] [CrossRef]
- AHRI Standard 1230. Performance Rating of Variable Refrigerant Flow (VRF) Multi-split Air-conditioning and Heat Pump Equipment; AHRI: Arlington, VA, USA, 2010; Available online: http://www.ahrinet.org/App_Content/ahri/files/standards%20pdfs/AHRI%20standards%20pdfs/AHRI%20Standard%201230%20-%202010.pdf (accessed on 2 August 2010).
- Amarnath, A.; Blatt, M. Variable refrigerant flow: Where, why, and how. Eng. Syst. 2008, 25, 54–60. [Google Scholar]
- Aynur, T.N. Variable refrigerant flow systems: A review. Energy Build. 2010, 42, 1106–1112. [Google Scholar] [CrossRef]
- Aynur, T.N.; Hwang, Y.; Radermacher, R. Simulation comparison of VAV and VRF air conditioning systems in an existing building for the cooling season. Energy Build. 2009, 41, 1143–1150. [Google Scholar] [CrossRef]
- Yu, X.; Yan, D.; Sun, K.; Hong, T.; Zhu, D. Comparative study of the cooling energy performance of variable refrigerant flow systems and variable air volume systems in office buildings. Appl. energy 2016, 183, 725–736. [Google Scholar] [CrossRef] [Green Version]
- Halawa, E.; van Hoof, J.; Soebarto, V. The impacts of the thermal radiation field on thermal comfort, energy consumption and control—A critical overview. Renew. Sustain. Energy Rev. 2014, 37, 907–918. [Google Scholar] [CrossRef]
- Lin, X.; Lee, H.; Hwang, Y.; Radermacher, R. A review of recent development in variable refrigerant flow systems. Sci. Technol.Built Environ. 2015, 21, 917–933. [Google Scholar] [CrossRef]
- Kwon, L.; Lee, H.; Hwang, Y.; Radermacher, R.; Kim, B. Experimental investigation of multifunctional VRF system in heating and shoulder seasons. Appl. Therm. Eng. 2014, 66, 355–364. [Google Scholar] [CrossRef]
- Ekren, O.; Celik, S.; Noble, B.; Krauss, R. Performance evaluation of a variable speed DC compressor. Int. J. Refrig. 2013, 36, 745–757. [Google Scholar] [CrossRef]
- Zhou, Y.; Wu, J.; Wang, R.; Shiochi, S.; Li, Y. Simulation and experimental validation of the variable-refrigerant-volume (VRV) air-conditioning system in EnergyPlus. Energy Build. 2008, 40, 1041–1047. [Google Scholar] [CrossRef]
- Zhang, D.; Zhang, X.; Liu, J. Experimental study of performance of digital variable multiple air conditioning system under part load conditions. Energy Build. 2011, 43, 1175–1178. [Google Scholar] [CrossRef]
- Park, Y.C.; Kim, Y.C.; Min, M.-K. Performance analysis on a multi-type inverter air conditioner. Energy Convers. Manag. 2001, 42, 1607–1621. [Google Scholar] [CrossRef]
- Choi, J.; Kim, Y.C. Capacity modulation of an inverter-driven multi-air conditioner using electronic expansion valves. Energy 2003, 28, 141–155. [Google Scholar] [CrossRef]
- Lin, J.-L.; Yeh, T.-J. Identification and control of multi-evaporator air-conditioning systems. Int. J. Refrig. 2007, 30, 1374–1385. [Google Scholar] [CrossRef]
- Wu, C.; Xingxi, Z.; Shiming, D. Development of control method and dynamic model for multi-evaporator air conditioners (MEAC). Energy Convers. Manag. 2005, 46, 451–465. [Google Scholar] [CrossRef]
- Tu, Q.; Dong, K.; Zou, D.; Lin, Y. Experimental study on multi-split air conditioner with digital scroll compressor. Appl. Therm. Eng. 2011, 31, 2449–2457. [Google Scholar] [CrossRef]
- Pisello, A.L.; Asdrubali, F. Human-based energy retrofits in residential buildings: A cost-effective alternative to traditional physical strategies. Appl. Energy 2014, 133, 224–235. [Google Scholar] [CrossRef]
- Papadopoulos, S.; Azar, E. Integrating building performance simulation in agent-based modeling using regression surrogate models: A novel human-in-the-loop energy modeling approach. Energy Build. 2016, 128, 214–223. [Google Scholar] [CrossRef]
- Barbosa, J.D.; Azar, E. Modeling and implementing human-based energy retrofits in a green building in desert climate. Energy Build. 2018, 173, 71–80. [Google Scholar] [CrossRef]
- Jain, R.K.; Taylor, J.E.; Culligan, P.J. Investigating the impact eco-feedback information representation has on building occupant energy consumption behavior and savings. Energy Build. 2013, 64, 408–414. [Google Scholar] [CrossRef]
- Yang, L.; Yan, H.; Lam, J.C. Thermal comfort and building energy consumption implications–a review. Appl. Energy 2014, 115, 164–173. [Google Scholar] [CrossRef]
- Park, J.Y.; Nagy, Z. Comprehensive analysis of the relationship between thermal comfort and building control research-A data-driven literature review. Renew. Sustain. Energy Rev. 2018, 82, 2664–2679. [Google Scholar] [CrossRef]
- Team Minus 6%. In Introduction of Team Minus 6%—Results of COOL BIZ and WARM BIZ Campaign; Ministry of the Environment: Tokyo, Japan, 2007.
- Ferreira, P.; Ruano, A.; Silva, S.; Conceicao, E. Neural networks based predictive control for thermal comfort and energy savings in public buildings. Energy Build. 2012, 55, 238–251. [Google Scholar] [CrossRef] [Green Version]
- Tan, C.K.; Ogawa, A.; Matsumura, T. Innovative climate change communication: Team Minus 6%; Global Environment Information Centre (GEIC): Manchester, England; United Nations University (UNU): Tokyo, Japan, 2008; pp. 53–70. [Google Scholar]
- Tan, C. Cool United Nations. United Nations University. 2008. Available online: http://ourworld.unu.edu/en/cool-united-nations (accessed on 26 August 2008).
- TUC. Hot Workers Urged to Adopt Cool Japanese Summer Dress Code; TUC: London, UK, 2006. [Google Scholar]
- Uchida, S.; Tanabe, S.-I.; Nishihara, N.; Haneda, M.; Nakamura, S.; Kawaguchi, G. The evaluation of productivity in COOL BIZ office by field measurement of thermal environment and questionnaire survey. In Proceedings of the 9th International Healthy Buildings Conference and Exhibition, Syracuse, NY, USA, 13–17 September 2019. [Google Scholar]
- Fanger, P.O. Thermal Comfort. Analysis and Applications in Environmental Engineering; Danish Technical Press: Copenhagen, Denmark, 1970. [Google Scholar]
- Donaisky, E.; Oliveira, G.H.; Freire, R.Z.; Mendes, N. PMV-based predictive algorithms for controlling thermal comfort in building plants. In Proceedings of the 2007 IEEE International Conference on Control Applications, Singapore, 1–3 October 2007; pp. 182–187. [Google Scholar]
- Klaučo, M.; Kvasnica, M. Explicit MPC approach to PMV-based thermal comfort control. In Proceedings of the 53rd IEEE Conference on Decision and Control, Los Angeles, CA, USA, 15–17 December 2014; pp. 4856–4861. [Google Scholar]
- Liang, J.; Du, R. Design of intelligent comfort control system with human learning and minimum power control strategies. Energy Convers. Manag. 2008, 49, 517–528. [Google Scholar] [CrossRef]
- Ku, K.; Liaw, J.; Tsai, M.; Liu, T. Automatic control system for thermal comfort based on predicted mean vote and energy saving. IEEE Trans. Autom. Sci. Eng. 2014, 12, 378–383. [Google Scholar] [CrossRef]
- Xu, Z.; Hu, G.; Spanos, C.J.; Schiavon, S. PMV-based event-triggered mechanism for building energy management under uncertainties. Energy Build. 2017, 152, 73–85. [Google Scholar] [CrossRef] [Green Version]
- Stavrakakis, G.; Karadimou, D.; Zervas, P.; Sarimveis, H.; Markatos, N. Selection of window sizes for optimizing occupational comfort and hygiene based on computational fluid dynamics and neural networks. Build. Environ. 2011, 46, 298–314. [Google Scholar] [CrossRef]
- Stavrakakis, G.; Zervas, P.; Sarimveis, H.; Markatos, N. Optimization of window-openings design for thermal comfort in naturally ventilated buildings. Appl. Math. Model. 2012, 36, 193–211. [Google Scholar] [CrossRef]
- Xue, Y.; Zhai, Z.J.; Chen, Q. Inverse prediction and optimization of flow control conditions for confined spaces using a CFD-based genetic algorithm. Build. Environ. 2013, 64, 77–84. [Google Scholar] [CrossRef]
- Freire, R.Z.; Oliveira, G.H.; Mendes, N. Predictive controllers for thermal comfort optimization and energy savings. Energy Build. 2008, 40, 1353–1365. [Google Scholar] [CrossRef]
- Halawa, E.; Marquand, C. Improving thermal comfort conditions by accounting for the mean radiant temperature. Int. J. Ambient. Energy 1994, 15, 87–90. [Google Scholar] [CrossRef]
- ASHRAE Standard. Standard 55–2017 Thermal Environmental Conditions for Human Occupancy; American Society of Heating, Refrigerating and Air Conditioning Engineers: Atlanta, GA, USA, 2017. [Google Scholar]
- Brager, G.; Paliaga, G.; De Dear, R. Operable windows, personal control and occupant comfort. ASHRAE Trans. 2004, 110, 17–35. [Google Scholar]
- Haldi, F.; Robinson, D. On the unification of thermal perception and adaptive actions. Build. Environ. 2010, 45, 2440–2457. [Google Scholar] [CrossRef]
- ISO 7730:2005 Ergonomics of the Thermal Environment-Analytical Determination and Interpretation of Thermal Comfort Using Calculation of the PMV and PPD indices and Local Thermal Comfort Criteria; ISO: Geneva, Switzerland, 2005.
- Wolkoff, P. Indoor air humidity, air quality, and health–An overview. Int. J. Hyg. Environ. Health 2018, 221, 376–390. [Google Scholar] [CrossRef] [PubMed]
- Noti, J.D.; Blachere, F.M.; McMillen, C.M.; Lindsley, W.G.; Kashon, M.L.; Slaughter, D.R.; Beezhold, D.H. High humidity leads to loss of infectious influenza virus from simulated coughs. PLoS ONE 2013, 8, e57485. [Google Scholar] [CrossRef] [PubMed]
- Nevins, R. Effect of floor surface temperature on comfort Part IV: Cold floors. ASHRAE Trans. 1967, 73, III2–III8. [Google Scholar]
- Zhang, H. Human Thermal Sensation and Comfort in Transient and Non-Uniform Thermal Environments; University of Califonia: Berkeley, CA, USA, 2003. [Google Scholar]
- Beckman, W. TRNSYS Reference Manual; Solar Energy Laboratory: Madison, WI, USA, 2001. [Google Scholar]
- Zhu, Y.; Jin, X.; Du, Z.; Fang, X.; Fan, B. Control and energy simulation of variable refrigerant flow air conditioning system combined with outdoor air processing unit. Appl. Therm. Eng. 2014, 64, 385–395. [Google Scholar] [CrossRef]
- Korean Educational Development Institute. Brief statistics on Korean education; Korean Educational Development: Seoul, Korea, 2011. [Google Scholar]
- Ministry of Land, I.a.T. Building Design Criteria for Energy Saving. Available online: https://www.energy.or.kr/renew_eng/energy/buildings/worksheet.aspx (accessed on 2 April 2020).
- Png, E.; Srinivasan, S.; Bekiroglu, K.; Chaoyang, J.; Su, R.; Poolla, K. An internet of things upgrade for smart and scalable heating, ventilation and air-conditioning control in commercial buildings. Appl. Energy 2019, 239, 408–424. [Google Scholar] [CrossRef]
Cases | Case 1: | Case 2: | Case 3: | |
---|---|---|---|---|
Set-Point Control | PMV Comfort Range Control | ASHRAE Comfort Range Control | ||
Cooling Control Mode | Variable | Dry-Bulb Temperature (DBT) | PMV | Operative Temperature (OT) Wet-Bulb Temperature (WBT) |
Range/Value | 26 °C | between −0.5 and +0.5 | OT: 24–27 ° CWBT: 16–20 °C | |
Ventilation | Energy Recovery Ventilator (ERV) |
Weather Data | TMY2 (Seoul, Korea) | |
---|---|---|
Location | Gimpo, Korea | |
Period | July | |
Analysis space | J high school classroom (Figure 7)—red rectangle area (67.24 m2) | |
Cooling set point | Case 1: 26 °C (DBT) Case 2: between -0.5 and 0.5 (PMV) Case 3: 26–27 °C (OT) and 16–20 °C (WBT) | |
Heat gain | Person (seated, light writing) | Sensible heat: 65 W, Latent heat: 55 W |
Lighting | 10 W/m2 | |
Equipment | 140 W | |
System operation Schedule | 09:00–17:20 (on), Another hour (off) |
VRF system | Total cooling capacity | 8.3 kW |
Rated cooling coefficient of performance (COP) | 3.8 | |
Air flow rate/Power consumption | 1260 CMH/35 W | |
ERV system | Power consumption | 290 W |
Heat exchange rate | 71% (sensible), 44% (latent) | |
Air flow rate | 800 CMH |
Control Mode | VRF System | ERV System | Total Energy and Percentage of Energy Saving | |||
---|---|---|---|---|---|---|
Compressor | Indoor Unit Fan | Outdoor Unit Fan | Sum | Sum | ||
(kWh/m2·month) | (kWh/m2·month, %) | |||||
Set-point control | 3.03 | 0.06 | 0.09 | 3.18 | 1.18 | 4.36 (-) |
PMV comfort range control | 2.25 | 0.05 | 0.07 | 2.37 | 1.18 | 3.55 (25.4%) |
ASHRAE Comfort range control | 2.16 | 0.10 | 0.07 | 2.32 | 1.18 | 3.50 (27.0%) |
Distribution | Set-Point Control | PMV Comfort Range Control | ASHRAE Comfort Range Control |
---|---|---|---|
(°C) | |||
Maximum | 26.8 | 27.2 | 27.2 |
75th percentile | 26.3 | 26.0 | 25.9 |
Median | 25.7 | 24.7 | 24.6 |
25th percentile | 25.4 | 23.4 | 23.1 |
Minimum | 25.0 | 22.2 | 22.0 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, J.; Song, D.; Kim, S.; Park, S.; Choi, Y.; Lim, H. Energy-Saving Potential of Extending Temperature Set-Points in a VRF Air-Conditioned Building. Energies 2020, 13, 2160. https://doi.org/10.3390/en13092160
Kim J, Song D, Kim S, Park S, Choi Y, Lim H. Energy-Saving Potential of Extending Temperature Set-Points in a VRF Air-Conditioned Building. Energies. 2020; 13(9):2160. https://doi.org/10.3390/en13092160
Chicago/Turabian StyleKim, Joowook, Doosam Song, Suyeon Kim, Sohyun Park, Youngjin Choi, and Hyunwoo Lim. 2020. "Energy-Saving Potential of Extending Temperature Set-Points in a VRF Air-Conditioned Building" Energies 13, no. 9: 2160. https://doi.org/10.3390/en13092160
APA StyleKim, J., Song, D., Kim, S., Park, S., Choi, Y., & Lim, H. (2020). Energy-Saving Potential of Extending Temperature Set-Points in a VRF Air-Conditioned Building. Energies, 13(9), 2160. https://doi.org/10.3390/en13092160