A Prospective Net Energy and Environmental Life-Cycle Assessment of the UK Electricity Grid
Abstract
:1. Introduction
2. Materials
2.1. Current and Future (Projected) UK Grid Mix
2.2. Electricity Generation and Storage Technologies
2.2.1. Coal
2.2.2. Natural Gas Combined Cycles
2.2.3. Natural Gas Combined Cycles Plus Carbon Capture and Storage (Future Technology)
2.2.4. Biomass
2.2.5. Biogas
2.2.6. Waste
2.2.7. Nuclear
2.2.8. Nuclear (Small Modular Reactors—Future Technology)
2.2.9. Hydroelectric
2.2.10. Marine Tidal (Future Technology)
2.2.11. On-Shore Wind
2.2.12. Off-Shore Wind
2.2.13. Solar Photovoltaic
2.2.14. Pumped Hydro Storage (PHS)
2.2.15. Compressed Air Energy Storage (CAES)
2.2.16. Lithium-Ion Battery Storage (LIB)
2.2.17. Vehicle-to-Grid Storage (V2G)
3. Methods
3.1. Life Cycle Assessment (LCA)
3.1.1. Global Warming Potential (GWP)
where:
MMCH4 = molar mass of CH4 [g/mol]
CFCH4 = GWP characterization factor for CH4 [g CO2-eq / g CH4]
3.1.2. Acidification Potential (GWP)
3.1.3. Human Toxicity Potential (HTP)
3.1.4. Abiotic Depletion Potential (ADP)
3.1.5. Non-Renewable Cumulative Energy Demand (nr-CED)
3.2. Net Energy Analysis (NEA)
4. Results and Discussion
4.1. Life Cycle Impact Assessment Results
4.1.1. Global Warming Potential
4.1.2. Acidification Potential
4.1.3. Human Toxicity Potential
4.1.4. Abiotic Depletion Potential (Elements)
4.1.5. Non-Renewable Cumulative Energy Demand
4.2. Net Energy Analysis Results
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A
Item | Quantity | Unit |
---|---|---|
Activated Carbon | 3.2·10−5 | kg |
Concrete | 2.1·10−7 | kg |
Electricity 1 (for CO2 compression) | 4.7·10−2 | kWh |
Monoethanolamine (MEA) | 1.8·10−4 | kg |
Polyethylene, high density (HDPE) | 7.1·10−7 | kg |
Sodium hydroxide (NaOH) | 5.5·10−5 | kg |
Steel (low alloyed) | 7.7·10−5 | kg |
Item | Quantity | Unit |
---|---|---|
Carbon dioxide (CO2) | 47 | g |
Nitrogen oxides (NOx) | 1.7·10−1 | g |
Sulphur dioxide (SO2) | 3.8·10−3 | g |
Particulate matter (PM) | 2.2·10−3 | g |
Formaldehyde (HCHO) | 1.1·10−1 | g |
Acetaldehyde (CH3-CHO) | 7.0·10−2 | g |
Ammonia (NH3) | 1.5·10−2 | g |
Monoethanolamine (MEA) | 2.6·10−2 | g |
Item | Quantity | Unit |
---|---|---|
Cast Iron | 1.5·10−6 | kg |
Cement | 2.5·10−5 | kg |
Copper | 3.2·10−6 | kg |
Electricity (for plant construction) | 1.9·10−2 | kWh |
Glass fibre reinforced plastics (GRP) | 9.4·10−6 | kg |
Polyethylene (PE) | 4.7·10−7 | kg |
Steel (low alloyed) | 1.6·10−4 | kg |
Item | Quantity | Unit |
---|---|---|
Aluminium | 4.4·10−1 | kg |
Cast Iron | 48 | kg |
Concrete | 5.2·102 | kg |
Copper | 4.0 | kg |
Diesel (burnt in building machines) | 9.1·102 | MJ |
Electricity (for plant construction) | 18 | kWh |
Foam Glass | 3.2 | kg |
Heavy fuel oil (burnt in industrial machines) | 9.1·102 | MJ |
Insulation (rock wool) | 19 | kg |
Limestone | 4.6 | kg |
Lubricating oil | 2.5 ⋅103 | kg |
Polypropylene (PP) | 6.3 ⋅10−1 | kg |
Sand-lime brick | 24 | kg |
Steel (high alloyed) | 91 | kg |
Steel (low alloyed) | 1.3·102 | kg |
Steel (unalloyed) | 1.1·102 | kg |
References
- Ritchie, H.; Roser, M. CO2 and Greenhouse Gas Emissions. Our World in Data. Available online: https://ourworldindata.org/co2-and-other-greenhouse-gas-emissions#global-warming-to-date (accessed on 19 March 2020).
- Keay, M. Energy: The Long View; Oxford Institute for Energy Studies: Oxford, UK, 2007. [Google Scholar]
- Agbugba, G.; Okoye, G.; Giva, M.; Marlow, J. The Decoupling of Economic Growth from Carbon Emissions: UK Evidence. Office for National Statistics. Available online: https://www.ons.gov.uk/economy/nationalaccounts/uksectoraccounts/compendium/economicreview/october2019/thedecouplingofeconomicgrowthfromcarbonemissionsukevidence (accessed on 19 March 2020).
- Committee on Climate Change. UK Climate Action Following the Paris Agreement. 2016. Available online: https://www.theccc.org.uk/publication/uk-action-following-paris/ (accessed on 19 March 2020).
- Dejuán, Ó.; Lenzen, M.; Cadarso, M.Á. (Eds.) Environmental and Economic Impacts of Decarbonization: Input-Output Studies on the Consequences of the 2015 Paris Agreements; Routledge: London, UK, 2017; p. 402. ISBN 978-1-31-522593-7. [Google Scholar] [CrossRef]
- UK Climate Change Act. 2008. Available online: http://www.legislation.gov.uk/ukpga/2008/27/part/1/crossheading/the-target-for-2050 (accessed on 19 March 2020).
- Brown, T.W.; Bischof-Niemz, T.; Blok, K.; Breyer, C.; Lund, H.; Mathiesen, B.V. Response to ‘Burden of proof: A comprehensive review of the feasibility of 100% renewable-electricity systems’. Renew. Sust. Energy Rev. 2018, 92, 834–847. [Google Scholar] [CrossRef]
- Fthenakis, V.; Mason, J.E.; Zweibel, K. The technical, geographical, and economic feasibility for solar energy to supply the energy needs of the US. Energy Policy 2009, 37, 387–399. [Google Scholar] [CrossRef]
- Zweibel, K.; Mason, J.E.; Fthenakis, V. A Solar Grand Plan. Scientific American. 2008. Available online: https://www.scientificamerican.com/article/a-solar-grand-plan/ (accessed on 17 April 2020).
- Jacobson, M.Z.; Delucchi, M.A.; Cameron, M.A.; Frew, B.A. Low-cost solution to the grid reliability problem with 100% penetration of intermittent wind, water, and solar for all purposes. Proc. Natl. Acad. Sci. USA 2015, 112, 15060–15065. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bistline, J.E.; Blanford, G.J. More than one arrow in the quiver. Proc. Natl. Acad. Sci. USA 2016, 113, 3988. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jacobson, M.Z.; Delucchi, M.A.; Cameron, M.A.; Frew, B.A. Reply to Bistline and Blanford: Letter reaffirms conclusions and highlights flaws in previous research. Proc. Natl. Acad. Sci. USA 2016, 113, 3989–3990. [Google Scholar] [CrossRef] [Green Version]
- Clack, C.T.M.; Qvist, S.A.; Apt, J.; Bazilian, M.; Brandt, A.R.; Caldeira, K.; Davis, S.J.; Diakov, V.; Handschy, M.A.; Hines, P.D.H.; et al. Evaluation of a proposal for reliable low-cost grid power with 100% wind, water, and solar. Proc. Natl. Acad. Sci. USA 2017, 114, 6722–6727. [Google Scholar] [CrossRef] [Green Version]
- Jacobson, M.Z.; Delucchi, M.A.; Cameron, M.A.; Frew, B.A. The United States can keep the grid stable at low cost with 100% clean, renewable energy in all sectors despite inaccurate claims. Proc. Natl. Acad. Sci. USA 2017, 114, 5021–5023. [Google Scholar] [CrossRef] [Green Version]
- Child, M.; Kemfert, C.; Bogdanov, D.; Breyer, C. Flexible electricity generation, grid exchange and storage for the transition to a 100% renewable energy system in Europe. Renew. Energy 2019, 139, 80–101. [Google Scholar] [CrossRef]
- Jacobson, M.Z.; Cameron, M.A.; Hennessy, E.M.; Petkov, I.; Meyer, C.B.; Gambhir, T.K.; Maki, A.T.; Pfleeger, K.; Clonts, H.; McEvoy, A.L.; et al. 100% clean and renewable Wind, Water, and Sunlight (WWS) all-sector energy roadmaps for 53 towns and cities in North America. Sustain. Cities Soc. 2018, 42, 22–37. [Google Scholar] [CrossRef]
- Jacobson, M.Z.; Delucchi, M.A.; Cameron, M.A.; Hennessy, E.M. Matching demand with supply at low cost in 139 countries among 20 world regions with 100% intermittent wind, water, and sunlight (WWS) for all purposes. Renew. Energy 2018, 123, 236–248. [Google Scholar] [CrossRef]
- Bogdanov, D.; Farfan, J.; Sadovskaia, K.; Aghahosseini, A.; Child, M.; Gulagi, A.; Oyewo, A.S.; de Souza Noel Simas Barbosa, L.; Breyer, C. Radical transformation pathway towards sustainable electricity via evolutionary steps. Nat. Commun. 2019, 10, 1077. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hertwich, E.G.; Gibon, T.; Bouman, E.A.; Arvesen, A.; Suh, S.; Heath, G.A.; Bergesen, J.D.; Ramirez, A.; Vega, M.I.; Shi, L. Integrated life-cycle assessment of electricity-supply scenarios confirms global environmental benefit of low-carbon technologies. Proc. Natl. Acad. Sci. USA 2015, 112, 6277–6282. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luderer, G.; Pehl, M.; Arvesen, A.; Gibon, T.; Bodirsky, B.L.; de Boer, H.S.; Fricko, O.; Hejazi, M.; Humpenöder, F.; Iyer, G.; et al. Environmental co-benefits and adverse side-effects of alternative power sector decarbonization strategies. Nat. Commun. 2019, 10, 5229. [Google Scholar] [CrossRef] [Green Version]
- Pehl, M.; Arvesen, A.; Humpenöder, F.; Popp, A.; Hertwich, E.G.; Luderer, G. Understanding future emissions from low-carbon power systems by integration of life-cycle assessment and integrated energy modelling. Nat. Energy 2017, 2, 939–945. [Google Scholar] [CrossRef]
- Stamford, L.; Azapagic, A. Life cycle sustainability assessment of UK electricity scenarios to 2070. Energy Sustain. Dev. 2014, 23, 194–211. [Google Scholar] [CrossRef]
- Raugei, M.; Leccisi, E.; Azzopardi, B.; Jones, C.; Gilbert, P.; Zhang, L.; Zhou, Y.; Mander, S.; Mancarella, P. A multi-disciplinary analysis of UK grid mix scenarios with large-scale PV deployment. Energy Policy 2018, 114, 51–62. [Google Scholar] [CrossRef]
- Odum, H.T. Energy, ecology, and economics. Ambio 1973, 2, 220–227. Available online: https://www.jstor.org/stable/4312030 (accessed on 19 March 2020).
- Hall, C.; Lavine, M.; Sloane, J. Efficiency of Energy Delivery Systems: I. An Economic and Energy Analysis. Environ. Manag. 1979, 3, 493–504. [Google Scholar] [CrossRef]
- Carbajales-Dale, M.; Barnhart, C.; Brandt, A.; Benson, S. A better currency for investing in a sustainable future. Nat. Clim. Chang. 2014, 4, 524–527. [Google Scholar] [CrossRef]
- Trainer, T. Estimating the EROI of whole systems for 100% renewable electricity supply capable of dealing with intermittency. Energy Policy 2018, 119, 648–653. [Google Scholar] [CrossRef]
- Murphy, D.J.; Raugei, M. The Energy Transition in New York: A Greenhouse Gas, Net Energy and Life-Cycle Energy Analysis. Energy Technol. 2020. [Google Scholar] [CrossRef]
- Raugei, M.; Leccisi, E.; Fthenakis, V.; Moragas, R.E.; Simsek, Y. Net energy analysis and life cycle energy assessment of electricity supply in Chile: Present status and future scenarios. Energy 2018, 162, 659–668. [Google Scholar] [CrossRef] [Green Version]
- National Grid ESO. Future Energy Scenarios. 2019. Available online: http://fes.nationalgrid.com/media/1409/fes-2019.pdf (accessed on 19 March 2020).
- U.S. Grid Energy Storage Factsheet. University Of Michigan—Center for Sustainable Systems, 2018. Available online: http://css.umich.edu/factsheets/us-grid-energy-storage-factsheet (accessed on 19 March 2020).
- Kaldmeyer, C.; Boysen, C.; Tuschy, I. Compressed Air Energy Storage in the German Energy System—Status Quo & Perspectives. Energy Procedia 2016, 99, 298–313. [Google Scholar] [CrossRef] [Green Version]
- Ecoinvent Life Cycle Inventory Database. Available online: https://www.ecoinvent.org/database/database.html (accessed on 19 March 2020).
- Transmission Losses. National Grid ESO, 2019. Available online: https://www.nationalgrideso.com/document/144711/download (accessed on 19 March 2020).
- Coal Countdown. Power Stations of the UK. Available online: http://www.powerstations.uk/coal-countdown/ (accessed on 26 March 2020).
- Digest of UK Energy Statistics. National Statistics, 2019. Available online: https://www.gov.uk/government/statistics/renewable-sources-of-energy-chapter-6-digest-of-united-kingdom-energy-statistics-dukes (accessed on 25 March 2020).
- Fadeyi, S.; Arafat, H.A.; Abu-Zahra, M.R.M. Life Cycle Assessment of Natural Gas Combined Cycle Integrated with CO2 Post Combustion Capture Using Chemical Solvent. Int. J. Greenh. Gas Control 2013, 19, 441–452. [Google Scholar] [CrossRef]
- Singh, B.; Strømman, A.H.; Hertwich, E. Life Cycle Assessment of Natural Gas Combined Cycle Power Plant with Post-Combustion Carbon Capture, Transport And Storage. Int. J. Greenh. Gas Control 2011, 5, 457–466. [Google Scholar] [CrossRef]
- Life Cycle Impacts of Biomass Electricity in 2020. Department Of Energy and Climate Change, 2014. Available online: https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/349024/BEAC_Report_290814.pdf (accessed on 25 March 2020).
- A Burning Issue: Biomass Is the Biggest Source of Renewable Energy Consumed in the UK. Office for National Statistics, 2019. Available online: https://www.ons.gov.uk/economy/environmentalaccounts/articles/aburningissuebiomassisthebiggestsourceofrenewableenergyconsumedintheuk/2019-08-30 (accessed on 25 March 2020).
- International Container Shipping—Online Freight Marketplace. Sea Rates. Available online: https://www.searates.com/ (accessed on 25 March 2020).
- Woody Biomass. University of Strathclyde Glasgow. Available online: http://www.esru.strath.ac.uk/EandE/Web_sites/07-08/Biomass_feasibility/overview/woody.html (accessed on 25 March 2020).
- Biogas. Planet-Biogas. Available online: http://www.planet-biogas.co.uk/info/ (accessed on 25 March 2020).
- Environmental Management. Life Cycle Assessment. Principles and Framework; Standard ISO 14044; International Organization for Standardization: Geneva, Switzerland, 2006; Available online: https://www.iso.org/standard/38498.html (accessed on 27 March 2020).
- Nuclear Power in the United Kingdom. World Nuclear Association, 2020. Available online: https://www.world-nuclear.org/information-library/country-profiles/countries-t-z/united-kingdom.aspx (accessed on 25 March 2020).
- Pannier, C.; Skoda, R. Comparison of Small Modular Reactor and Large Nuclear Reactor Fuel Cost. EPE 2014, 6, 82–94. [Google Scholar] [CrossRef] [Green Version]
- Advanced Nuclear Technologies. Department for Business, Energy & Industrial Strategy, 2019. Available online: https://www.gov.uk/government/publications/advanced-nuclear-technologies/advanced-nuclear-technologies (accessed on 25 March 2020).
- Carless, T.S.; Griffin, W.M.; Fishbeck, P.S. The Environmental Competitiveness of Small Modular Reactors: A Life Cycle Study. Energy 2016, 114, 84–99. [Google Scholar] [CrossRef] [Green Version]
- Godsey, K. Life Cycle Assessment of Small Modular Reactors Using U.S. Nuclear Fuel Cycle. Clemson University, 2019. Available online: https://tigerprints.clemson.edu/all_theses/3235 (accessed on 25 March 2020).
- Hammons, T.J. Tidal power. Proc. IEEE 1993, 81, 419–433. [Google Scholar] [CrossRef]
- Bid to Resurrect Swansea Bay Tidal Lagoon. BBC News, 2019. Available online: https://www.bbc.co.uk/news/uk-wales-50656253 (accessed on 25 March 2020).
- Noonan, M. Tidal Stream: Opportunities for Collaborative Action. Offshore Renewable Energy Catapult, 2019. Available online: https://s3-eu-west-1.amazonaws.com/media.newore.catapult/app/uploads/2019/05/14111713/Tidal-Stream-Opportunities-for-Collaborative-Action-ORE-Catapult.pdf (accessed on 25 March 2020).
- Walker, S.; Howell, R.; Hodgson, P.; Griffin, A. Tidal energy machines: A comparative life cycle assessment study. Proc. Inst. Mech. Eng. Part M J. Eng. Marit. Environ. 2013, 229, 124–140. [Google Scholar] [CrossRef] [Green Version]
- Photovoltaics Report. Fraunhofer Institute for Solar Energy Systems, 2019. Available online: https://www.ise.fraunhofer.de/en/publications/studies/photovoltaics-report.html (accessed on 20 March 2020).
- Frischknecht, R.; Itten, R.; Wyss, F.; Blanc, I.; Heath, G.; Raugei, M.; Sinha, P.; Wade, A. Life Cycle Assessment of Future Photovoltaic Electricity Production from Residential-Scale Systems Operated in Europe. Report T12-05:2015. International Energy Agency. 2015. Available online: http://www.iea-pvps.org (accessed on 20 March 2020).
- Global Solar Atlas. Available online: https://globalsolaratlas.info/ (accessed on 20 March 2020).
- Frischknecht, R.; Heath, G.; Raugei, M.; Sinha, P.; de Wild-Scholten, M.; Fthenakis, V.; Kim, H.C.; Alsema, E.; Held, M. Methodology Guidelines on Life Cycle Assessment of Photovoltaic Electricity, 3rd ed.; Report T12-08:2016; International Energy Agency: Paris, France, 2016; Available online: http://www.iea-pvps.org (accessed on 20 March 2020).
- Budt, M.; Wolf, D.; Span, R.; Yan, J. A review on compressed air energy storage: Basic principles, past milestones and recent developments. Appl. Energy 2016, 170, 250–268. [Google Scholar] [CrossRef]
- ADELE—Adiabatic Compressed-Air Energy Storage for Electricity Supply. RWE Power, 2010. Available online: http://www.rwe.com/web/cms/mediablob/en/391748/data/235554/1/rwe-power-ag/press/company/Brochure-ADELE.pdf (accessed on 20 March 2020).
- A De-Carbonised and Cost-Effective Energy System. Storelectric, 2018. Available online: https://www.storelectric.com/wp-content/uploads/2018/03/A-De-Carbonised-and-Cost-Effective-Energy-System.pdf (accessed on 20 March 2020).
- Hydrostor and NRStor Announce Completion of World’s First Commercial Advanced-CAES Facility. Available online: https://www.globenewswire.com/news-release/2019/11/25/1952039/0/en/Hydrostor-and-NRStor-Announce-Completion-of-World-s-First-Commercial-Advanced-CAES-Facility.html (accessed on 20 March 2020).
- Venkataramani, G.; Parankusam, P.; Ramalingam, V.; Wang, J. A review on compressed air energy storage—A pathway for smart grid and polygeneration. Renew. Sustain. Energy Rev. 2016, 62, 895–907. [Google Scholar] [CrossRef]
- Bouman, E.A.; Øberg, M.M.; Hertwich, E.G. Environmental impacts of balancing offshore wind power with compressed air energy storage (CAES). Energy 2016, 95, 91–98. [Google Scholar] [CrossRef] [Green Version]
- Zubi, G.; Dufo-López, R.; Carvalho, M.; Pasaoglu, G. The lithium-ion battery: State of the art and future perspectives. Renew. Sustain. Energy Rev. 2018, 89, 292. [Google Scholar] [CrossRef]
- Placke, T.; Kloepsch, R.; Dühnen, S.; Winter, M. Lithium ion, lithium metal, and alternative rechargeable battery technologies: The odyssey for high energy density. J. Solid State Electrochem. 2017, 21, 1939–1964. [Google Scholar] [CrossRef]
- Xu, B.; Oudalov, A.; Ulbig, A.; Andersson, G.; Kirschen, D.S. Modeling of Lithium-Ion Battery Degradation for Cell Life Assessment. IEEE Trans. Smart Grid 2016, 9, 1131–1140. [Google Scholar] [CrossRef]
- Environmental Management. Life Cycle Assessment. Principles and Framework; Standard ISO 14040. International Organization for Standardization: Geneva, Switzerland, 2006. Available online: https://www.iso.org/standard/37456.html (accessed on 27 March 2020).
- CML-IA Characterisation Factors. Institute of Environmental Sciences (CML), University of Leiden. Available online: https://www.universiteitleiden.nl/en/research/research-output/science/cml-ia-characterisation-factors (accessed on 12 March 2020).
- GaBi LCA Software. ThinkStep. Available online: https://www.thinkstep.com/software/gabi-software (accessed on 19 March 2020).
- Declaration of Apeldoorn on LCIA of Non-Ferrous Metals. Available online: https://www.lifecycleinitiative.org/wp-content/uploads/2013/01/Declaration_Apeldoorn_final.pdf (accessed on 17 March 2020).
- Guinée, J.B.; Gorrée, M.; Heijungs, R.; Huppes, G.; Kleijn, R.; de Koning, A.; van Oers, L.; Wegener Sleeswijk, A.; Suh, S.; Udo de Haes, H.A.; et al. Handbook on Life Cycle Assessment. Operational Guide to the ISO Standards; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2002; p. 692. ISBN 1-4020-0228-9. [Google Scholar]
- Schulze, R.; Guinée, J.; van Oersa, L.; Alvarenga, R.; Dewulf, J.; Drielsma, J. Abiotic resource use in life cycle impact assessment—Part I—Towards a common perspective. Resour. Conserv. Recycl. 2020, 154, 104596. [Google Scholar] [CrossRef]
- Schulze, R.; Guinée, J.; van Oersa, L.; Alvarenga, R.; Dewulf, J.; Drielsma, J. Abiotic resource use in life cycle impact assessment—Part II—Linking perspectives and modelling concepts. Resour. Conserv. Recycl. 2020, 154, 104595. [Google Scholar] [CrossRef]
- van Oers, L.; Guinée, J.; Heijungs, R. Abiotic resource depletion potentials (ADPs) for elements revisited—Updating ultimate reserve estimates and introducing time series for production data. Int. J. Life Cycle Assess. 2019, 25, 294–308. [Google Scholar] [CrossRef] [Green Version]
- Frischknecht, R.; Wyss, F.; Büsser Knöpfel, S.; Lützkendorf, T.; Balouktsi, M. Cumulative energy demand in LCA: The energy harvested approach. Int. J. Life Cycle Assess. 2015, 20, 957–969. [Google Scholar] [CrossRef]
- Murphy, D.J.; Carbajales-Dale, M.; Moeller, D. Comparing Apples to Apples: Why the Net Energy Analysis Community Needs to Adopt the Life-Cycle Analysis Framework. Energies 2016, 9, 917. [Google Scholar] [CrossRef]
- Hall, C.A.S.; Cleveland, C.J. Petroleum Drilling and Production in the United States: Yield per Effort and Net Energy Analysis. Science 1981, 211, 576–579. [Google Scholar] [CrossRef] [PubMed]
- Arvesen, A.; Hertwich, E.G. More caution is needed when using life cycle assessment to determine energy return on investment (EROI). Energy Policy 2015, 76, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Murphy, D.J.; Hall, C.A.S. Year in review—EROI or energy return on (energy) invested. Ann. N. Y. Acad. Sci. 2010, 1185, 102–118. [Google Scholar] [CrossRef]
- Murphy, D.J. The implications of the declining energy return on investment of oil production. Philos. Trans. R. Soc. A 2014, 372. [Google Scholar] [CrossRef]
- Raugei, M.; Leccisi, E. A comprehensive assessment of the energy performance of the full range of electricity generation technologies deployed in the United Kingdom. Energy Policy 2016, 90, 46–59. [Google Scholar] [CrossRef] [Green Version]
- Nielsen, M.; Nielsen, O.-K.; Plejdrup, M. Danish Emission Inventories for Stationary Combustion Plants; Danish Centre for Environment and Energy: Aarhus, Denmark, 2014; p. 188. ISBN 978-87-7156-073-2. [Google Scholar]
- Paolini, V.; Petracchini, F.; Segreto, M.; Tomassetti, L.; Naja, N.; Cecinato, A. Environmental impact of biogas: A short review of current knowledge. J. Environ. Sci. Health A 2018, 53, 899–906. [Google Scholar] [CrossRef] [Green Version]
- Outlook for Biogas and Biomethane—Prospects for Organic Growth. World Energy Outlook Special Report. International Energy Agency, 2020. Available online: https://www.iea.org/reports/outlook-for-biogas-and-biomethane-prospects-for-organic-growth (accessed on 23 March 2020).
- Kleijn, R.; van der Voet, E.; Jan Kramer, G.; van Oers, L.; van der Giesen, C. Metal requirements of low-carbon power generation. Energy 2011, 36, 5640–5648. [Google Scholar] [CrossRef]
- Beylot, A.; Villeneuve, J. Accounting for the environmental impacts of sulfidic tailings storage in the Life Cycle Assessment of copper production: A case study. J. Clean. Prod. 2017, 153, 139–145. [Google Scholar] [CrossRef]
- Jones, C.; Gilbert, P.; Raugei, M.; Leccisi, E.; Mander, S. An Approach to Prospective Consequential LCA and Net Energy Analysis of Distributed Electricity Generation. Energy Policy 2017, 100, 350–358. [Google Scholar] [CrossRef]
- Carbajales-Dale, M.; Barnhart, C.; Benson, S.M. Can we afford storage? A dynamic net energy analysis of renewable electricity generation supported by energy storage. Energy Environ. Sci. 2014, 7, 1538–1544. [Google Scholar] [CrossRef] [Green Version]
- Sgouridis, S.; Csala, D.; Bardi, U. The sower’s way: Quantifying the narrowing net-energy pathways to a global energy transition. Environ. Res. Lett. 2016, 11, 094009. [Google Scholar] [CrossRef] [Green Version]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Raugei, M.; Kamran, M.; Hutchinson, A. A Prospective Net Energy and Environmental Life-Cycle Assessment of the UK Electricity Grid. Energies 2020, 13, 2207. https://doi.org/10.3390/en13092207
Raugei M, Kamran M, Hutchinson A. A Prospective Net Energy and Environmental Life-Cycle Assessment of the UK Electricity Grid. Energies. 2020; 13(9):2207. https://doi.org/10.3390/en13092207
Chicago/Turabian StyleRaugei, Marco, Mashael Kamran, and Allan Hutchinson. 2020. "A Prospective Net Energy and Environmental Life-Cycle Assessment of the UK Electricity Grid" Energies 13, no. 9: 2207. https://doi.org/10.3390/en13092207
APA StyleRaugei, M., Kamran, M., & Hutchinson, A. (2020). A Prospective Net Energy and Environmental Life-Cycle Assessment of the UK Electricity Grid. Energies, 13(9), 2207. https://doi.org/10.3390/en13092207