Hybrid Predictive Decision-Making Approach to Emission Reduction Policies for Sustainable Energy Industry
Abstract
:1. Introduction
2. Literature Review
3. Materials and Methods
3.1. Calculation Method for Net Carbon Emissions
3.2. Prediction Method
3.3. IT2 Fuzzy QUALIFLEX Method
4. Results
4.1. Trends of Net Carbon Emissions
4.2. Global Spatial Correlation
4.3. Analysis Results of Carbon Net Emissions for Trend Forecast and Reduction Potential
4.4. Analysis Results for Ranking Sustainable Energy Investment Alternatives
5. Discussion
- (1)
- Coal energy dependence reduction. It needs to rationally control domestic coal production and strengthen the overall planning and management of mining areas. It requires not only limiting the total annual production of coal enterprises, but also merging and reorganizing coal enterprises, integrate small coal enterprises, and implement coal quota management for large coal enterprises. Next, we will increase publicity and guidance, and encourage all industries and enterprises to use coal without gas, which can use oil without oil, and reduce coal consumption.
- (2)
- Stabilize the supply of petroleum energy. Chinese oil energy is half reliant on imports, and stable oil energy supply plays an important role in Chinese national energy security. Besides, it is necessary to increase the strategic reserve of domestic oil, encourage enterprises to increase the pace of oil exploration in areas such as the deep sea, and comprehensively promote the construction of national oil reserve projects. To encounter the domestic petroleum energy demand in the case of blocked international trade to increase trade cooperation between China, Russia, and Africa, we should make full use of Central Asia, China, and Russia and other pipelines to maximize the import of petroleum resources from abroad.
- (3)
- The proportion should be increased in energy supply and consumption of natural gas, wind energy, hydropower, solar energy, and nuclear energy. China should give priority to the development of hydropower. Hydropower is an economical, clean renewable energy source. The development of hydropower can also achieve comprehensive benefits such as flood control, irrigation, water supply, shipping, aquaculture, and tourism; compared with coal-fired power, hydropower per 1 kWh can reduce carbon emissions by about 1100 g. The Three Gorges Project is equivalent to seven 2.6 million kilowatts of thermal power plants, which can emit about 100 million tons of carbon per year. Thus, hydropower development is a vital choice for China to solve the problem of optimizing energy structure and reducing carbon emissions. Besides, natural gas, coal-bed methane, and shale gas should also be established; nuclear power should be energetically settled; wind energy construction should be supported; solar energy, biomass energy, and other renewable energy sources should be vigorously industrialized.
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
Nomenclature
EU | European Union |
FS | Fuzzy Sets |
IT2 | Interval type 2 |
QUALIFLEX | Qualitative Flexible Multiple Criteria Method |
References
- Minchala-Avila, L.I.; Palacio-Baus, K.; Ortiz, J.P.; Valladolid, J.D.; Ortega, J. Comparison of the performance and energy consumption index of model-based controllers. In Proceedings of the 2016 IEEE Ecuador Technical Chapters Meeting (ETCM), Guayaquil, Ecuador, 12–14 October 2016; pp. 1–6. [Google Scholar]
- Bhattacharya, M.; Paramati, S.R.; Ozturk, I.; Bhattacharya, S. The effect of renewable energy consumption on economic growth: Evidence from top 38 countries. Appl. Energy 2016, 162, 733–741. [Google Scholar] [CrossRef]
- Lam, P.T.; Law, A.O. Crowdfunding for renewable and sustainable energy projects: An exploratory case study approach. Renew. Sustain. Energy Rev. 2016, 60, 11–20. [Google Scholar] [CrossRef] [Green Version]
- Grágeda, M.; Escudero, M.; Alavia, W.; Ushak, S.; Fthenakis, V. Review and multi-criteria assessment of solar energy projects in Chile. Renew. Sustain. Energy Rev. 2016, 59, 583–596. [Google Scholar] [CrossRef]
- Kalkbrenner, B.J.; Roosen, J. Citizens’ willingness to participate in local renewable energy projects: The role of community and trust in Germany. Energy Res. Soc. Sci. 2016, 13, 60–70. [Google Scholar] [CrossRef]
- Alshehry, A.S.; Belloumi, M. Energy consumption, carbon dioxide emissions and economic growth: The case of Saudi Arabia. Renew. Sustain. Energy Rev. 2015, 41, 237–247. [Google Scholar] [CrossRef]
- Green, F.; Stern, N. China’s changing economy: Implications for its carbon dioxide emissions. Clim. Policy 2017, 17, 423–442. [Google Scholar] [CrossRef] [Green Version]
- Liu, K.H.; Chang, S.F.; Huang, W.H.; Lu, I.C. The Framework of the Integration of Carbon Footprint and Blockchain: Using Blockchain as a Carbon Emission Management Tool. In Technologies and Eco-Innovation towards Sustainability I; Springer: Singapore, 2019; pp. 15–22. [Google Scholar]
- Chen, S.; Liu, Z.; Chen, B.; Zhu, F.; Fath, B.D.; Liang, S.; Su, M.; Yang, J. Dynamic carbon emission linkages across boundaries. Earth’s Future 2019, 7, 197–209. [Google Scholar] [CrossRef] [Green Version]
- Abagnale, C.; Cardone, M.; Iodice, P.; Strano, S.; Terzo, M.; Vorraro, G. Power requirements and environmental impact of a pedelec. A case study based on real-life applications. Environ. Impact Assess. Rev. 2015, 53, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Iodice, P.; D’Accadia, M.D.; Abagnale, C.; Cardone, M. Energy, economic and environmental performance appraisal of a trigeneration power plant for a new district: Advantages of using a renewable fuel. Appl. Therm. Eng. 2016, 95, 330–338. [Google Scholar] [CrossRef]
- Xu, B.; Lin, B. Carbon dioxide emissions reduction in China’s transport sector: A dynamic VAR (vector autoregression) approach. Energy 2015, 83, 486–495. [Google Scholar] [CrossRef]
- Zaman, K.; Abd-el Moemen, M. Energy consumption, carbon dioxide emissions and economic development: Evaluating alternative and plausible environmental hypothesis for sustainable growth. Renew. Sustain. Energy Rev. 2017, 74, 1119–1130. [Google Scholar] [CrossRef]
- Nie, Y.; Li, Q.; Wang, E.; Zhang, T. Study of the nonlinear relations between economic growth and carbon dioxide emissions in the Eastern, Central and Western regions of China. J. Clean. Prod. 2019, 219, 713–722. [Google Scholar] [CrossRef]
- Zhang, X.; Xu, Z. Hesitant fuzzy QUALIFLEX approach with a signed distance-based comparison method for multiple criteria decision analysis. Expert Syst. Appl. 2015, 42, 873–884. [Google Scholar] [CrossRef]
- Dincer, H.; Yuksel, S. IT2-based fuzzy hybrid decision making approach to soft computing. IEEE Access 2019, 7, 15932–15944. [Google Scholar] [CrossRef]
- Banerjee, D.; Guha, D.; Kouchakinejad, F. Ranking Alternatives Using QUALIFLEX Method by Computing All Spanning Trees from Pairwise Judgements. In Soft Computing for Problem Solving; Springer: Singapore, 2019. [Google Scholar]
- Dincer, H.; Yüksel, S.; Martinez, L. Balanced scorecard-based Analysis about European Energy Investment Policies: A hybrid hesitant fuzzy decision-making approach with Quality Function Deployment. Expert Syst. Appl. 2019, 115, 152–171. [Google Scholar] [CrossRef]
- Gamel, J.; Menrad, K.; Decker, T. Is it really all about the return on investment? Exploring private wind energy investors’ preferences. Energy Res. Soc. Sci. 2016, 14, 22–32. [Google Scholar] [CrossRef]
- Tang, Z.; Dinçer, H. Selecting the House-of-Quality-Based Energy Investment Policies for the Sustainable Emerging Economies. Sustainability 2019, 11, 3514. [Google Scholar] [CrossRef] [Green Version]
- Say, K.; John, M.; Dargaville, R.; Wills, R.T. The coming disruption: The movement towards the customer renewable energy transition. Energy Policy 2018, 123, 737–748. [Google Scholar] [CrossRef]
- Zhang, D.; Cao, H.; Zou, P. Exuberance in China’s renewable energy investment: Rationality, capital structure and implications with firm level evidence. Energy Policy 2016, 95, 468–478. [Google Scholar] [CrossRef] [Green Version]
- Ervural, B.C.; Evren, R.; Delen, D. A multi-objective decision-making approach for sustainable energy investment planning. Renew. Energy 2018, 126, 387–402. [Google Scholar] [CrossRef]
- Gliedt, T.; Hoicka, C.E. Energy upgrades as financial or strategic investment? Energy Star property owners and managers improving building energy performance. Appl. Energy 2015, 147, 430–443. [Google Scholar] [CrossRef]
- MacGregor, J. Determining an optimal strategy for energy investment in Kazakhstan. Energy Policy 2017, 107, 210–224. [Google Scholar] [CrossRef]
- Werner, L.; Scholtens, B. Firm Type, Feed-in Tariff, and Wind Energy Investment in Germany: An Investigation of Decision Making Factors of Energy Producers Regarding Investing in Wind Energy Capacity. J. Ind. Ecol. 2017, 21, 402–411. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Zhang, D.; Cai, J.; Davenport, J. Legal systems, national governance and renewable energy investment: Evidence from around the world. Br. J. Manag. 2019. [Google Scholar] [CrossRef] [Green Version]
- Ragosa, G.; Warren, P. Unpacking the determinants of cross-border private investment in renewable energy in developing countries. J. Clean. Prod. 2019, 235, 854–865. [Google Scholar] [CrossRef]
- Keeley, A.R.; Ikeda, Y. Determinants of foreign direct investment in wind energy in developing countries. J. Clean. Prod. 2017, 161, 1451–1458. [Google Scholar] [CrossRef]
- Li, H.; An, H.; Fang, W.; Wang, Y.; Zhong, W.; Yan, L. Global energy investment structure from the energy stock market perspective based on a Heterogeneous Complex Network Model. Appl. Energy 2017, 194, 648–657. [Google Scholar] [CrossRef]
- Duan, F.; Ji, Q.; Liu, B.Y.; Fan, Y. Energy investment risk assessment for nations along China’s Belt & Road Initiative. J. Clean. Prod. 2018, 170, 535–547. [Google Scholar]
- Liu, X.; Zeng, M. Renewable energy investment risk evaluation model based on system dynamics. Renew. Sustain. Energy Rev. 2017, 73, 782–788. [Google Scholar] [CrossRef]
- Peng, H.G.; Shen, K.W.; He, S.S.; Zhang, H.Y.; Wang, J.Q. Investment risk evaluation for new energy resources: An integrated decision support model based on regret theory and ELECTRE III. Energy Convers. Manag. 2019, 183, 332–348. [Google Scholar] [CrossRef]
- Kim, K.; Park, H.; Kim, H. Real options analysis for renewable energy investment decisions in developing countries. Renew. Sustain. Energy Rev. 2017, 75, 918–926. [Google Scholar] [CrossRef]
- Dvořák, P.; Martinát, S.; Van der Horst, D.; Frantál, B.; Turečková, K. Renewable energy investment and job creation; a cross-sectoral assessment for the Czech Republic with reference to EU benchmarks. Renew. Sustain. Energy Rev. 2017, 69, 360–368. [Google Scholar] [CrossRef] [Green Version]
- Dinçer, H.; Yüksel, S. Multidimensional evaluation of global investments on the renewable energy with the integrated fuzzy decision-making model under the hesitancy. Int. J. Energy Res. 2019, 43, 1775–1784. [Google Scholar] [CrossRef]
- Dincer, H.; Yuksel, S. Balanced scorecard-based analysis of investment decisions for the renewable energy alternatives: A comparative analysis based on the hybrid fuzzy decision-making approach. Energy 2019, 175, 1259–1270. [Google Scholar] [CrossRef]
- Ahmad, N.; Du, L. Effects of energy production and CO2 emissions on economic growth in Iran: ARDL approach. Energy 2017, 123, 521–537. [Google Scholar] [CrossRef]
- Jiang, S.; Yang, C.; Guo, J.; Ding, Z.; Tian, L.; Zhang, J. Uncovering the Driving Factors of Carbon Emissions in an Investment Allocation Model of China’s High-Carbon and Low-Carbon Energy. Sustainability 2017, 9, 1021. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Wu, M.; Li, Z. A real options analysis for renewable energy investment decisions under China carbon trading market. Energies 2018, 11, 1817. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.J.; Sun, Y.F.; Huang, J. Energy efficiency, carbon emission performance, and technology gaps: Evidence from CDM project investment. Energy Policy 2018, 115, 119–130. [Google Scholar] [CrossRef]
- Famoso, F.; Wilson, J.; Monforte, P.; Brusca, S.; Lulla, V. Measurement and modeling of ground-level ozone concentration in Catania, Italy using biophysical remote sensing and GIS. Int. J. Appl. Eng. Res. 2017, 12, 10551–10562. [Google Scholar]
- Amini, H.; Taghavi-Shahri, S.M.; Henderson, S.B.; Naddafi, K.; Nabizadeh, R.; Yunesian, M. Land use regression models to estimate the annual and seasonal spatial variability of sulfur dioxide and particulate matter in Tehran, Iran. Sci. Total Environ. 2014, 488, 343–353. [Google Scholar] [CrossRef]
- Ma, X.; Longley, I.; Gao, J.; Kachhara, A.; Salmond, J. A site-optimised multi-scale GIS based land use regression model for simulating local scale patterns in air pollution. Sci. Total Environ. 2019, 685, 134–149. [Google Scholar] [CrossRef] [PubMed]
- Ju, Y.; Fujikawa, K. Modeling the cost transmission mechanism of the emission trading scheme in China. Appl. Energy 2019, 236, 172–182. [Google Scholar] [CrossRef]
- Chang, Y.F.; Lin, S.J. Structural decomposition of industrial CO2 emission in Taiwan: An input-output approach. Energy Policy 1998, 26, 5–12. [Google Scholar] [CrossRef]
- Bhattacharyya, S.C.; Ussanarassamee, A. Decomposition of energy and CO2 intensities of Thai industry between 1981 and 2000. Energy Econ. 2004, 26, 765–781. [Google Scholar] [CrossRef]
- Rhee, H.C.; Chung, H.S. Change in CO2 emission and its transmissions between Korea and Japan using international input–output analysis. Ecol. Econ. 2006, 58, 788–800. [Google Scholar] [CrossRef]
- Greening, L.A. Effects of human behavior on aggregate carbon intensity of personal transportation: Comparison of 10 OECD countries for the period 1970–1993. Energy Econ. 2004, 26, 1–30. [Google Scholar] [CrossRef]
- Hu, L. Would Urban–Rural Income Gap Affect Carbon Dioxide Emissions? Empirical Research Based on the Extended IPAT Model. Chin. J. Urban Environ. Stud. 2016, 4, 1650014. [Google Scholar] [CrossRef]
- Selden, T.M.; Song, D. Environmental quality and development: Is there a Kuznets curve for air pollution emissions? J. Environ. Econ. Manag. 1994, 27, 147–162. [Google Scholar] [CrossRef]
- Park, S.; Lee, Y. Regional model of EKC for air pollution: Evidence from the Republic of Korea. Energy Policy 2011, 39, 5840–5849. [Google Scholar] [CrossRef]
- Agras, J.; Chapman, D. A dynamic approach to the Environmental Kuznets Curve hypothesis. Ecol. Econ. 1999, 28, 267–277. [Google Scholar] [CrossRef]
- Richmond, A.K.; Kaufmann, R.K. Is there a turning point in the relationship between income and energy use and/or carbon emissions? Ecol. Econ. 2006, 56, 176–189. [Google Scholar] [CrossRef]
- He, J.; Richard, P. Environmental Kuznets curve for CO2 in Canada. Ecol. Econ. 2010, 69, 1083–1093. [Google Scholar] [CrossRef] [Green Version]
- De Wolf, C.; Pomponi, F.; Moncaster, A. Measuring embodied carbon dioxide equivalent of buildings: A review and critique of current industry practice. Energy Build. 2017, 140, 68–80. [Google Scholar] [CrossRef]
- Gao, T.; Shen, L.; Shen, M.; Chen, F.; Liu, L.; Gao, L. Analysis on differences of carbon dioxide emission from cement production and their major determinants. J. Clean. Prod. 2015, 103, 160–170. [Google Scholar] [CrossRef]
- Song, M.; Guo, X.; Wu, K.; Wang, G. Driving effect analysis of energy-consumption carbon emissions in the Yangtze River Delta region. J. Clean. Prod. 2015, 103, 620–628. [Google Scholar] [CrossRef]
- Esso, L.J.; Keho, Y. Energy consumption, economic growth and carbon emissions: Cointegration and causality evidence from selected African countries. Energy 2016, 114, 492–497. [Google Scholar] [CrossRef]
- Samimi, M.K.; Sun, S.; Rappaport, T.S. MIMO channel modeling and capacity analysis for 5G millimeter-wave wireless systems. In Proceedings of the 2016 10th European Conference on Antennas and Propagation (EuCAP), Davos, Switzerland, 10–15 April 2016; pp. 1–5. [Google Scholar]
- Islam, A.R.M.T.; Ahmed, N.; Bodrud-Doza, M.; Chu, R. Characterizing groundwater quality ranks for drinking purposes in Sylhet district, Bangladesh, using entropy method, spatial autocorrelation index, and geostatistics. Environ. Sci. Pollut. Res. 2017, 24, 26350–26374. [Google Scholar] [CrossRef]
- GHaedrahmati, S.; Khademalhoosini, A.; Tahmasebi, F. Spatial analysis of social justice in city of Isfahan, Iran. Ann. GIS 2018, 24, 59–69. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.Y.; Ji, Q.; Fan, Y. What drives the formation of global oil trade patterns? Energy Econ. 2015, 49, 639–648. [Google Scholar] [CrossRef]
- Gutiérrez, A.; Domènech, A. The mortgage crisis and evictions in Barcelona: Identifying the determinants of the spatial clustering of foreclosures. Eur. Plan. Stud. 2018, 26, 1939–1960. [Google Scholar] [CrossRef]
- Zadeh, L.A. Fuzzy sets. Inf. Control. 1965, 8, 338–353. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Y.; Wang, Z.; Pang, L.; Wang, L.; Zou, X. Simulation on China’s economy and prediction on energy consumption and carbon emission under optimal growth path. Acta Geogr. Sin. 2009, 64, 935–944. [Google Scholar]
- Zhang, X. Multicriteria Pythagorean fuzzy decision analysis: A hierarchical QUALIFLEX approach with the closeness index-based ranking methods. Inf. Sci. 2016, 330, 104–124. [Google Scholar] [CrossRef]
- Li, J.; Wang, J.Q. An extended QUALIFLEX method under probability hesitant fuzzy environment for selecting green suppliers. Int. J. Fuzzy Syst. 2017, 19, 1866–1879. [Google Scholar] [CrossRef]
- Ji, P.; Zhang, H.Y.; Wang, J.Q. Fuzzy decision-making framework for treatment selection based on the combined QUALIFLEX–TODIM method. Int. J. Syst. Sci. 2017, 48, 3072–3086. [Google Scholar] [CrossRef]
- Liang, W.; Dai, B.; Zhao, G.; Wu, H. Assessing the Performance of Green Mines via a Hesitant Fuzzy ORESTE–QUALIFLEX Method. Mathematics 2019, 7, 788. [Google Scholar] [CrossRef] [Green Version]
- Herbohn, K.; Gao, R.; Clarkson, P. Evidence on whether banks consider carbon risk in their lending decisions. J. Bus. Ethics 2019, 158, 155–175. [Google Scholar] [CrossRef]
- Zhou, Z.; Zhang, T.; Wen, K.; Zeng, H.; Chen, X. Carbon risk, cost of debt financing and the moderation effect of media attention: Evidence from Chinese companies operating in high-carbon industries. Bus. Strategy Environ. 2018, 27, 1131–1144. [Google Scholar] [CrossRef]
- Shamsi, H.; Haghi, E.; Raahemifar, K.; Fowler, M. Five-year technology selection optimization to achieve specific CO2 emission reduction targets. Int. J. Hydrog. Energy 2019, 44, 3966–3984. [Google Scholar] [CrossRef]
- Kuriyama, A.; Tamura, K.; Kuramochi, T. Can Japan enhance its 2030 greenhouse gas emission reduction targets? Assessment of economic and energy-related assumptions in Japan’s NDC. Energy Policy 2019, 130, 328–340. [Google Scholar] [CrossRef]
- Qin, C.; Wang, J.; Ge, C.; Su, J. Simulating the cost-effectiveness of China’s green transition based on emission reduction targets during the 12th five-year plan period. J. Clean. Prod. 2019, 208, 19–34. [Google Scholar] [CrossRef]
- Pollitt, H.; Chewpreecha, U.; Lee, S.; Lee, T.Y.; Mercure, J.F. Policy 5 emission mixes reduction to meet targets CO2 in all sectors of the economy in East Asia. In Energy, Environmental and Economic Sustainability in East Asia: Policies and Institutional Reforms; Routledge: Abingdon-on-Thames, UK, 2019. [Google Scholar]
- Wang, Z.; Chen, H.; Huo, R.; Wang, B.; Zhang, B. Marginal abatement cost under the constraint of carbon emission reduction targets: An empirical analysis for different regions in China. J. Clean. Prod. 2020, 249, 119362. [Google Scholar] [CrossRef]
- Inglesi-Lotz, R. The impact of renewable energy consumption to economic growth: A panel data application. Energy Econ. 2016, 53, 58–63. [Google Scholar] [CrossRef]
- Kahia, M.; Aïssa, M.S.B.; Lanouar, C. Renewable and non-renewable energy use-economic growth nexus: The case of MENA Net Oil Importing Countries. Renew. Sustain. Energy Rev. 2017, 71, 127–140. [Google Scholar] [CrossRef]
Emission Reduction Level/Provinces | High (A1) | Moderate (A2) | Low (A3) | Emission Reduction Level/Provinces | High (A1) | Moderate (A2) | Low (A3) |
---|---|---|---|---|---|---|---|
Beijing | AP | AP | AP | Jiangxi | F | MP | P |
Tianjin | F | F | F | Henan | MG | MG | F |
Hebei | VG | VG | VG | Hubei | MG | MG | F |
Liaoning | G | MP | VP | Hunan | MG | F | MP |
Shanghai | F | MP | P | Neimenggu | AG | AG | AG |
Jiangsu | MP | P | AP | Guangxi | F | MP | P |
Zhejiang | P | VP | AP | Sichuan | MG | P | AP |
Fujian | P | VP | AP | Chongqing | F | P | AP |
Shandong | MG | F | F | Guizhou | VG | G | MG |
Guangdong | P | VP | AP | Yunnan | G | MG | F |
Hainan | P | VP | AP | Shaanxi | MG | P | AP |
Shanxi | AG | AG | AG | Gansu | G | F | P |
Jiling | MG | P | AP | Qinghai | G | F | P |
Heilongjiang | G | MP | AP |
Permutations/Provinces | |||||||||
---|---|---|---|---|---|---|---|---|---|
Beijing | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
Tianjin | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
Hebei | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
Liaoning | 1.114 | 1.661 | 0.548 | 1.661 | 1.114 | −0.548 | −1.114 | 0.548 | 1.661 |
Shanghai | 0.400 | 0.707 | 0.307 | 0.707 | 0.400 | −0.307 | −0.400 | 0.307 | 0.707 |
Jiangsu | 0.307 | 0.583 | 0.277 | 0.583 | 0.307 | −0.277 | −0.307 | 0.277 | 0.583 |
Zhejiang | 0.244 | 0.277 | 0.033 | 0.277 | 0.244 | −0.033 | −0.244 | 0.033 | 0.277 |
Fujian | 0.244 | 0.277 | 0.033 | 0.277 | 0.244 | −0.033 | −0.244 | 0.033 | 0.277 |
Shandong | 0.448 | 0.448 | 0.000 | 0.448 | 0.448 | 0.000 | −0.448 | 0.000 | 0.448 |
Guangdong | 0.245 | 0.277 | 0.032 | 0.277 | 0.245 | −0.032 | −0.245 | 0.032 | 0.277 |
Hainan | 0.245 | 0.277 | 0.032 | 0.277 | 0.245 | −0.032 | −0.245 | 0.032 | 0.277 |
Shanxi | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
Jiling | 1.155 | 1.433 | 0.277 | 1.433 | 1.155 | −0.277 | −1.155 | 0.277 | 1.433 |
Heilongjiang | 1.115 | 1.697 | 0.583 | 1.697 | 1.115 | −0.583 | −1.115 | 0.583 | 1.697 |
Anhui | 0.448 | 0.850 | 0.402 | 0.850 | 0.448 | −0.402 | −0.448 | 0.402 | 0.850 |
Jiangxi | 0.402 | 0.707 | 0.305 | 0.707 | 0.402 | −0.305 | −0.402 | 0.305 | 0.707 |
Henan | 0.000 | 0.448 | 0.448 | 0.448 | 0.000 | −0.448 | 0.000 | 0.448 | 0.448 |
Hubei | 0.000 | 0.448 | 0.448 | 0.448 | 0.000 | −0.448 | 0.000 | 0.448 | 0.448 |
Hunan | 0.448 | 0.850 | 0.402 | 0.850 | 0.448 | −0.402 | −0.448 | 0.402 | 0.850 |
Neimenggu | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
Guangxi | 0.402 | 0.707 | 0.305 | 0.707 | 0.402 | −0.305 | −0.402 | 0.305 | 0.707 |
Sichuan | 1.155 | 1.433 | 0.277 | 1.433 | 1.155 | −0.277 | −1.155 | 0.277 | 1.433 |
Chongqing | 0.707 | 0.985 | 0.277 | 0.985 | 0.707 | −0.277 | −0.707 | 0.277 | 0.985 |
Guizhou | 0.271 | 0.536 | 0.265 | 0.536 | 0.271 | −0.265 | −0.271 | 0.265 | 0.536 |
Yunnan | 0.265 | 0.713 | 0.448 | 0.713 | 0.265 | −0.448 | −0.265 | 0.448 | 0.713 |
Shaanxi | 1.155 | 1.433 | 0.277 | 1.433 | 1.155 | −0.277 | −1.155 | 0.277 | 1.433 |
Gansu | 0.713 | 1.420 | 0.707 | 1.420 | 0.713 | −0.707 | −0.713 | 0.707 | 1.420 |
Qinghai | 0.713 | 1.420 | 0.707 | 1.420 | 0.713 | −0.707 | −0.713 | 0.707 | 1.420 |
Ningxia | 0.032 | 0.303 | 0.271 | 0.303 | 0.032 | −0.271 | −0.032 | 0.271 | 0.303 |
Permutations/Provinces | |||||||||
Beijing | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
Tianjin | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
Hebei | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
Liaoning | 0.548 | −1.114 | −1.661 | −1.661 | −0.548 | 1.114 | −0.548 | −1.661 | −1.114 |
Shanghai | 0.307 | −0.400 | −0.707 | −0.707 | −0.307 | 0.400 | −0.307 | −0.707 | −0.400 |
Jiangsu | 0.277 | −0.307 | −0.583 | −0.583 | −0.277 | 0.307 | −0.277 | −0.583 | −0.307 |
Zhejiang | 0.033 | −0.244 | −0.277 | −0.277 | −0.033 | 0.244 | −0.033 | −0.277 | −0.244 |
Fujian | 0.033 | −0.244 | −0.277 | −0.277 | −0.033 | 0.244 | −0.033 | −0.277 | −0.244 |
Shandong | 0.000 | −0.448 | −0.448 | −0.448 | 0.000 | 0.448 | 0.000 | −0.448 | −0.448 |
Guangdong | 0.032 | −0.245 | −0.277 | −0.277 | −0.032 | 0.245 | −0.032 | −0.277 | −0.245 |
Hainan | 0.032 | −0.245 | −0.277 | −0.277 | −0.032 | 0.245 | −0.032 | −0.277 | −0.245 |
Shanxi | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
Jiling | 0.277 | −1.155 | −1.433 | −1.433 | −0.277 | 1.155 | −0.277 | −1.433 | −1.155 |
Heilongjiang | 0.583 | −1.115 | −1.697 | −1.697 | −0.583 | 1.115 | −0.583 | −1.697 | −1.115 |
Anhui | 0.402 | −0.448 | −0.850 | −0.850 | −0.402 | 0.448 | −0.402 | −0.850 | −0.448 |
Jiangxi | 0.305 | −0.402 | −0.707 | −0.707 | −0.305 | 0.402 | −0.305 | −0.707 | −0.402 |
Henan | 0.448 | 0.000 | −0.448 | −0.448 | −0.448 | 0.000 | −0.448 | −0.448 | 0.000 |
Hubei | 0.448 | 0.000 | −0.448 | −0.448 | −0.448 | 0.000 | −0.448 | −0.448 | 0.000 |
Hunan | 0.402 | −0.448 | −0.850 | −0.850 | −0.402 | 0.448 | −0.402 | −0.850 | −0.448 |
Neimenggu | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
Guangxi | 0.305 | −0.402 | −0.707 | −0.707 | −0.305 | 0.402 | −0.305 | −0.707 | −0.402 |
Sichuan | 0.277 | −1.155 | −1.433 | −1.433 | −0.277 | 1.155 | −0.277 | −1.433 | −1.155 |
Chongqing | 0.277 | −0.707 | −0.985 | −0.985 | −0.277 | 0.707 | −0.277 | −0.985 | −0.707 |
Guizhou | 0.265 | −0.271 | −0.536 | −0.536 | −0.265 | 0.271 | −0.265 | −0.536 | −0.271 |
Yunnan | 0.448 | −0.265 | −0.713 | −0.713 | −0.448 | 0.265 | −0.448 | −0.713 | −0.265 |
Shaanxi | 0.277 | −1.155 | −1.433 | −1.433 | −0.277 | 1.155 | −0.277 | −1.433 | −1.155 |
Gansu | 0.707 | −0.713 | −1.420 | −1.420 | −0.707 | 0.713 | −0.707 | −1.420 | −0.713 |
Qinghai | 0.707 | −0.713 | −1.420 | −1.420 | −0.707 | 0.713 | −0.707 | −1.420 | −0.713 |
Ningxia | 0.271 | −0.032 | −0.303 | −0.303 | −0.271 | 0.032 | −0.271 | −0.303 | −0.032 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, C.; Liu, D.; Zhou, P.; Luo, J.; Yuksel, S.; Dincer, H. Hybrid Predictive Decision-Making Approach to Emission Reduction Policies for Sustainable Energy Industry. Energies 2020, 13, 2220. https://doi.org/10.3390/en13092220
Zhou C, Liu D, Zhou P, Luo J, Yuksel S, Dincer H. Hybrid Predictive Decision-Making Approach to Emission Reduction Policies for Sustainable Energy Industry. Energies. 2020; 13(9):2220. https://doi.org/10.3390/en13092220
Chicago/Turabian StyleZhou, Chao, Dongyu Liu, Pengfei Zhou, Jie Luo, Serhat Yuksel, and Hasan Dincer. 2020. "Hybrid Predictive Decision-Making Approach to Emission Reduction Policies for Sustainable Energy Industry" Energies 13, no. 9: 2220. https://doi.org/10.3390/en13092220
APA StyleZhou, C., Liu, D., Zhou, P., Luo, J., Yuksel, S., & Dincer, H. (2020). Hybrid Predictive Decision-Making Approach to Emission Reduction Policies for Sustainable Energy Industry. Energies, 13(9), 2220. https://doi.org/10.3390/en13092220