Photovoltaic Panels Temperature Regulation Using Evaporative Cooling Principle: Detailed Theoretical and Real Operating Conditions Experimental Approaches
Abstract
:1. Introduction
2. Modeling
2.1. Model Description
2.2. Modelling
3. Experimentation Setup
4. Results and Discussion
4.1. PV Panels’ Temperature
4.2. Electrical Power Improvement
4.3. Effect of Water on Air and PV Panel Temperatures
4.4. Comparison between the Experimental and Theoretical Results
4.4.1. PV Temperatures
4.4.2. Water and Air Temperatures
4.5. Parametric Study
4.6. Fan and Water Pumping Power Consumption
4.7. Uncertainty Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature, Subscripts and Special Symbols
Cp | specific heat at constant pressure [J kg−1 K−1] |
CPV | cold PV panel (cooled panel) |
hydraulic diameter | |
EXP | experimental data |
f | friction factor |
G | solar radiation [Wm−2] |
H | height [m] |
h | specific enthalpy [J kg−1] |
hfg | specific enthalpy of evaporation [J kg−1] |
HPV | hot PV panel (reference panel) |
L | length [m] |
Le | Lewis number |
mass flow rate (kg s−1) | |
P | width [m] |
pressure drop [Pa] | |
q | heat flux [Wm−2] |
Re | Reynold’s number |
RH | relative humidity |
density [kg/m3] | |
T | temperature [°C] |
TC | thermocouples |
U | coefficient of heat transfer [Wm−2 K−1] |
Um | coefficient of mass transfer [kgm−2 s−1] |
V | voltage [V] |
volume flow rate [m3/s] | |
air velocity [m/s] | |
Ws | saturation humidity (kg of vapor/kg of air) |
Wf | fan power |
power gain | |
WS | wind speed ms−1 |
x | axial coordinate (m) |
Subscripts | |
am | ambient temperature |
c | actual |
conv | convection |
i | inlet conditions |
l | liquid (water) |
mp | maximum power |
oc | open circuit |
pv | PV panel |
R | reference |
r | radiation |
s | saturated layer |
sc | short circuit |
v | water vapor |
Special Symbols | |
β | PV panels efficiency temperature coefficient |
emissivity coefficient | |
density [kg/m3] | |
Boltzmann’s constant | |
efficiency | |
optical efficiency |
References
- Solar Energy. Available online: https://www.irena.org/solar (accessed on 20 December 2020).
- Elminshawy, N.A.; Mohamed, A.; Morad, K.; Elhenawy, Y.; Alrobaian, A.A. Performance of PV panel coupled with geothermal air cooling system subjected to hot climatic. Appl. Therm. Eng. 2019, 148, 1–9. [Google Scholar] [CrossRef]
- Solanki, C.; Sangani, C.; Gunashekar, D.; Antony, G. Enhanced heat dissipation of V-trough PV modules for better performance. Sol. Energy Mater. Sol. Cells 2008, 92, 1634–1638. [Google Scholar] [CrossRef]
- Fakouriyan, S.; Saboohi, Y.; Fathi, A. Experimental analysis of a cooling system effect on photovoltaic panels’ efficiency and its preheating water production. Renew. Energy 2019, 134, 1362–1368. [Google Scholar] [CrossRef]
- Abdollahi, N.; Rahimi, M. Potential of water natural circulation coupled with nano-enhanced PCM for PV module cooling. Renew. Energy 2020, 147, 302–309. [Google Scholar] [CrossRef]
- Luboń, W.; Pełka, G.; Janowski, M.; Pająk, L.; Stefaniuk, M.; Kotyza, J.; Reczek, P. Assessing the Impact of Water Cooling on PV Modules Efficiency. Energies 2020, 13, 2414. [Google Scholar] [CrossRef]
- Salem, M.; Elsayed, M.; Abd-Elaziz, A.; Elshazly, K. Performance enhancement of the photovoltaic cells using Al2O3/PCM mixture and/or water cooling-techniques. Renew. Energy 2019, 138, 876–890. [Google Scholar] [CrossRef]
- Sarafraz, M.; Safaei, M.R.; Leon, A.S.; Tlili, I.; Alkanhal, T.A.; Tian, Z.; Goodarzi, M.; Arjomandi, M. Experimental investigation on thermal performance of a PV/T-PCM (photovoltaic/thermal) system cooling with a PCM and nanofluid. Energies 2019, 12, 2572. [Google Scholar] [CrossRef] [Green Version]
- Haidar, Z.A.; Orfi, J.; Kaneesamkandi, Z. Experimental investigation of evaporative cooling for enhancing photovoltaic panels efficiency. Results Phys. 2018, 11, 690–697. [Google Scholar] [CrossRef]
- Kadhim, A.M.; Aljubury, I.M.A. Experimental Evaluation of Evaporative Cooling for Enhancing Photovoltaic Panels Efficiency Using Underground Water. J. Eng. 2020, 26, 14–33. [Google Scholar] [CrossRef]
- Alami, A.H. Effects of evaporative cooling on efficiency of photovoltaic modules. Energy Convers. Manag. 2014, 77, 668–679. [Google Scholar] [CrossRef]
- Abdallah, S.R.; Saidani-Scott, H.; Benedi, J. Experimental study for thermal regulation of photovoltaic panels using saturated zeolite with water. Sol. Energy 2019, 188, 464–474. [Google Scholar] [CrossRef]
- Borkar, D.S.; Prayagi, S.V.; Gotmare, J. Performance evaluation of photovoltaic solar panel using thermoelectric cooling. Int. J. Eng. Res. 2014, 3, 536–539. [Google Scholar] [CrossRef]
- Zhu, L.; Raman, A.P.; Fan, S. Radiative cooling of solar absorbers using a visibly transparent photonic crystal thermal blackbody. Proc. Natl. Acad. Sci. USA 2015, 112, 12282–12287. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Firoozzadeh, M.; Shiravi, A.H.; Shafiee, M. Different methods of using phase change materials (PCMs) as coolant of photovoltaic modules: A review. J. Energy Manag. Technol. 2020, 4, 30–36. [Google Scholar]
- Al-Waeli, A.H.; Kazem, H.A.; Chaichan, M.T.; Sopian, K. Photovoltaic/Thermal (PV/T) Systems Principles, Design, and Applications; Springer Nature: Berlin, Germany, 2019. [Google Scholar]
- Cotfas, D.; Cotfas, P. Multiconcept methods to enhance photovoltaic system efficiency. Int. J. Photoenergy 2019, 2019, 1905041. [Google Scholar] [CrossRef]
- Ramkumar, R.; Kesavan, M.; Raguraman, C.; Ragupathy, A. Enhancing the Performance of Photovoltaic Module Using Clay Pot Evaporative Cooling Water. In Proceedings of the 2016 International Conference on Energy Efficient Technologies for Sustainability (ICEETS), Nagercoil, India, 7–8 April 2016; pp. 217–222. [Google Scholar]
- Drabiniok, E.; Neyer, A. Micro porous polymer foil for application in evaporation cooling. Microsyst. Technol. 2014, 20, 1913–1918. [Google Scholar] [CrossRef]
- Lucas, M.; Aguilar, F.; Ruiz, J.; Cutillas, C.; Kaiser, A.; Vicente, P. Photovoltaic Evaporative Chimney as a new alternative to enhance solar cooling. Renew. Energy 2017, 111, 26–37. [Google Scholar] [CrossRef]
- Lucas, M.; Ruiz, J.; Aguilar, F.; Cutillas, C.; Kaiser, A.; Vicente, P. Experimental study of a modified evaporative photovoltaic chimney including water sliding. Renew. Energy 2019, 134, 161–168. [Google Scholar] [CrossRef]
- Boulama, K.; Galanis, N.; Orfi, J. Heat and mass transfer between gas and liquid streams in direct contact. Int. J. Heat Mass Transf. 2004, 47, 3669–3681. [Google Scholar] [CrossRef]
- Loveday, D.L.; Taki, A.H. Convective heat transfer coefficients at a plane surface on a full-scale building facade. Int. J. Heat Mass Transf. 1996, 39, 1729–1742. [Google Scholar]
- Jones, A.D.; Underwood, C.P. A Thermal Model for Photovoltaic Systems. Sol. Energy 2001, 70, 349–359. [Google Scholar] [CrossRef]
- Fan, M.; Vittal, V.; Heydt, G.T.; Ayyanar, R. Probabilistic power flow studies for transmission systems with photovoltaic generation using cumulants. IEEE Trans. Power Syst. 2012, 27, 2251–2261. [Google Scholar] [CrossRef]
- Nakanishi, F.; Ikegami, T.; Ebihara, K.; Kuriyama, S.; Shiota, Y. Modeling and operation of a 10 kW photovoltaic power generator using equivalent electric circuit method. In Proceedings of the Conference Record of the Twenty-Eighth IEEE Photovoltaic Specialists Conference-2000 (Cat. No. 00CH37036), Anchorage, AK, USA, 15–22 September 2000; pp. 1703–1706. [Google Scholar]
- Rahman, S.; Bouzguenda, M. A model to determine the degree of penetration and energy cost of large scale utility interactive photovoltaic systems. IEEE Trans. Energy Convers. 1994, 9, 224–230. [Google Scholar] [CrossRef]
- Hussein, K.; Muta, I.; Hoshino, T.; Osakada, M. Maximum photovoltaic power tracking: An algorithm for rapidly changing atmospheric conditions. IEE Proc. -Gener. Transm. Distrib. 1995, 142, 59–64. [Google Scholar] [CrossRef]
- Lin, C.-H.; Hsieh, W.-L.; Chen, C.-S.; Hsu, C.-T.; Ku, T.-T.; Tsai, C.-T. Financial analysis of a large-scale photovoltaic system and its impact on distribution feeders. IEEE Trans. Ind. Appl. 2011, 47, 1884–1891. [Google Scholar] [CrossRef]
- Assoa, Y.; Menezo, C.; Fraisse, G.; Yezou, R.; Brau, J. Study of a new concept of photovoltaic–thermal hybrid collector. Sol. Energy 2007, 81, 1132–1143. [Google Scholar] [CrossRef] [Green Version]
- Du, Y.; Fell, C.J.; Duck, B.; Chen, D.; Liffman, K.; Zhang, Y.; Gu, M.; Zhu, Y. Evaluation of photovoltaic panel temperature in realistic scenarios. Energy Convers. Manag. 2016, 108, 60–67. [Google Scholar] [CrossRef]
- Cengel, Y.A.; Klein, S.; Beckman, W. Heat Transfer: A Practical Approach; WBC McGraw-Hill Boston: Boston, MA, USA, 1998; Volume 141. [Google Scholar]
Parameter | Value |
---|---|
Rated power (Pmax) | 130 W |
Volatage at Pmax (Vmp) | 17.2 V |
Current at Pmax (Imp) | 7.56 A |
Open-circuit voltage Voc | 21.6 V |
Short-circuit current Isc | 8.15 A |
Voltage temperature coefficient | −0.3%/°C |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Haidar, Z.A.; Orfi, J.; Kaneesamkandi, Z. Photovoltaic Panels Temperature Regulation Using Evaporative Cooling Principle: Detailed Theoretical and Real Operating Conditions Experimental Approaches. Energies 2021, 14, 145. https://doi.org/10.3390/en14010145
Haidar ZA, Orfi J, Kaneesamkandi Z. Photovoltaic Panels Temperature Regulation Using Evaporative Cooling Principle: Detailed Theoretical and Real Operating Conditions Experimental Approaches. Energies. 2021; 14(1):145. https://doi.org/10.3390/en14010145
Chicago/Turabian StyleHaidar, Zeyad A., Jamel Orfi, and Zakariya Kaneesamkandi. 2021. "Photovoltaic Panels Temperature Regulation Using Evaporative Cooling Principle: Detailed Theoretical and Real Operating Conditions Experimental Approaches" Energies 14, no. 1: 145. https://doi.org/10.3390/en14010145
APA StyleHaidar, Z. A., Orfi, J., & Kaneesamkandi, Z. (2021). Photovoltaic Panels Temperature Regulation Using Evaporative Cooling Principle: Detailed Theoretical and Real Operating Conditions Experimental Approaches. Energies, 14(1), 145. https://doi.org/10.3390/en14010145