Research on Hybrid Solar Photovoltaic/Thermal (PV/T) System
A special issue of Energies (ISSN 1996-1073). This special issue belongs to the section "A2: Solar Energy and Photovoltaic Systems".
Deadline for manuscript submissions: closed (31 August 2021) | Viewed by 15159
Special Issue Editors
Interests: turbulent flow and heat transfer; energy storage; compressors for hydrogen/air storage; aeroacoustics and hydrogen combustion
Special Issues, Collections and Topics in MDPI journals
Interests: new materials for dye-sensitised solar cells (DSSCs); thin-film-based building integrated PV
Special Issues, Collections and Topics in MDPI journals
Special Issue Information
Dear Colleagues,
Present-day buildings have become the third largest consumer of energy after industry and agriculture and energy consumption in buildings, contributing up to 40% of the total energy use in developed countries. Energy consumption is rapidly increasing along with the growth of population, urbanization, and demands of building services and comfort levels. Thus, reducing building energy consumption plays a very important role in controlling global energy demand and mitigating climate change.
A useful measure to reduce building energy use is the hybrid photovoltaic/thermal (PV/T) system. PV/T panels combine two well-established renewable energy technologies, solar photovoltaics modules and solar thermal collectors, into one integrated component that removes generated heat from solar photovoltaics, thereby improving electrical efficiencies. The electrical performance of more recently installed PV/T systems does show an overall increase in the annual electrical energy output of 4%–12% in comparison with solar PV systems in the same situation. Using PV/T the generation potential per square meter can be substantially increased. This is particularly advantageous when space for installation can be limited, such as on domestic roofs. In some systems, it is possible to obtain the same energy output as a side-by-side installation of solar PV and solar thermal in 40% less area. PV/T systems can also integrate with energy-use equipment, such as heat pumps and absorption chillers, to provide heating or cooling for buildings. Moreover, solar thermal and power technologies can also integrate with distributed energy storage systems and building demand response technologies to improve the flexibility and reliability of both utility grid and buildings.
However, there are outstanding challenges for PV/T systems, including making PV/T technologies cost-effective, reducing the environmental of their production, installation, and disposal processes, efficient integration with existing energy devices and infrastructures in buildings, technical and economic optimisation of design and management, smart controls, and market and policy aspects. Thus, to further spread the technologies and methods related to PV/T systems, this Special Issue is proposed to cover both original research and review studies related to hybrid photovoltaic/thermal systems. This includes modelling and experimental findings on technical and economic optimisation of PV/T system processes in buildings.
Dr. Yasser Mahmoudi Larimi
Dr. Senthilarasu Sundaram
Prof. Manosh C. Paul
Guest Editors
Manuscript Submission Information
Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.
Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Energies is an international peer-reviewed open access semimonthly journal published by MDPI.
Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.
Keywords
- Advanced PV/T materials
- Thermal and electrical energy storage solutions for PV/T systems in buildings
- Solar cooling and passive solar systems
- Integration of PV/T with other renewables such as solar-assisted heat pumps
- Smart control algorithms for advanced PV/T systems
- Life-cycle analyses of advanced and innovative solar thermal technologies
- Energy flexibility and demand response techniques for solar energy technologies
- Investment, markets and policy assessments of solar technologies
Benefits of Publishing in a Special Issue
- Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
- Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
- Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
- External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
- e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.
Further information on MDPI's Special Issue polices can be found here.