Wind Farm Layout Optimization Using a Metamodel and EA/PSO Algorithm in Korea Offshore
Abstract
:1. Introduction
2. Wind Farm Layout Optimization Framework
2.1. Wake Modeling
2.2. Optimization Framework
- (1)
- Scenario 1: An approach using just patterns in the arrangement of rows and columns of turbines.
- (2)
- Scenario 2: A method of converting a wind farm domain (x, y) into a single parameter or an approach that directly uses the orthogonal coordinates (x, y) of turbines as design variables. In this case, the grid is mapped within the domain and placed by the index number.
3. Offshore Wind Farm Case Study Results
3.1. Defining the Design Variable and Objective Function
3.2. Optimal Turbine Layout Results
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Al-Addous, M.; Jaradat, M.; Albatayneh, A.; Wellmann, J.; Al Hmidan, S. The Significance of Wind Turbines Layout Optimization on the Predicted Farm Energy Yield. Atmosphere 2020, 11, 117. [Google Scholar] [CrossRef] [Green Version]
- GWEC. Global Offshore Wind Report 2020; GWEC: Brussels, Belgium, 2020; Volume 19, pp. 63–66. [Google Scholar]
- Fischetti, M.; Fraccaro, M. Machine learning meets mathematical optimization to predict the optimal production of offshore wind parks. Comput. Oper. Res. 2019, 106, 289–297. [Google Scholar] [CrossRef] [Green Version]
- Bansal, J.C.; Farswan, P. Wind farm layout using biogeography based optimization. Renew. Energy 2017, 107, 386–402. [Google Scholar] [CrossRef]
- Schmidt, J.; Stoevesandt, B. The impact of wake models on wind farm layout optimization. J. Phys. Conf. Ser. 2015, 625, 012040. [Google Scholar] [CrossRef]
- Mosetti, G.; Poloni, C.; Diviacco, B. Optimization of wind turbine positioning in large windfarms by means of a genetic algorithm. J. Wind. Eng. Ind. Aerodyn. 1994, 51, 105–116. [Google Scholar] [CrossRef]
- Yang, K.; Kwak, G.; Cho, K.; Huh, J. Wind farm layout optimization for wake effect uniformity. Energy 2019, 183, 983–995. [Google Scholar] [CrossRef]
- Elkinton, C.N. Offshore Wind Farm Layout Optimization. Ph.D. Thesis, University of Massachusetts Amherst, Amherst, MA, USA, 2007. [Google Scholar]
- Elkinton, C.N.; Manwell, J.F.; McGowan, J.G. Offshore Wind Farm Layout Optimization (OWFLO) Project: Preliminary Results. In Proceedings of the 44th AIAA Aerospace Science Meeting and Exhibit, AIAA, Reno, NV, USA, 9–12 January 2006. [Google Scholar]
- Réthoré, P.; Fuglsang, P.; Larsen, G.C.; Buhl, T.; Larsen, T.J.; Madsen, H.A. TOPFARM: Multi-fidelity optimization of wind farms. Wind Energy 2013, 17, 1797–1816. [Google Scholar] [CrossRef] [Green Version]
- Gao, X.; Yang, H.; Lin, L.; Koo, P. Wind turbine layout optimization using multi-population genetic algorithm and a case study in Hong Kong offshore. J. Wind. Eng. Ind. Aerodyn. 2015, 139, 89–99. [Google Scholar] [CrossRef]
- Wang, L.; Tan, A.C.; Gu, Y. Comparative study on optimizing the wind farm layout using different design methods and cost models. J. Wind. Eng. Ind. Aerodyn. 2015, 146, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Douwe, J.R. Validation of Wind Turbine Wake Models. Master’s Thesis, Delft University of Technology, Delft, The Netherlands, 2007. [Google Scholar]
- Gu, B.; Yongqian, L.; Jie, Y.; Li, L.; Shun, K. A Wind Farm Optimal Control Algorithm Based on Wake Fast-Calculation Model. J. Sol. Energy Eng. 2016, 138, 024501. [Google Scholar]
- EMD International A/S. Introduction to Wind Turbine Wake Modeling and Wake Generated Turbulence; windPRO/PARK; EMD International A/S: Aalborg, Denmark, 2019. [Google Scholar]
- Sanderse, B. Aerodynamics of Wind Turbine Wakes: Literature Review; ECN-e-09-016; Energy Research Center of Netherland (ECN): Petten, The Netherland, 2009. [Google Scholar]
- Dynardo GmbH. optiSLang; Version 7.5.1; Documentation: Weimar, Germany, 2019. [Google Scholar]
- Bäck, T. Evolution strategies: An alternative evolutionary algorithm. Comput. Vis. 1996, 1063, 1–20. [Google Scholar]
- Riedel, J.; Blum, S.; Puisa, R.; Wintermantel, M. Adaptive mutation strategies for evolutionary algorithms: A comparative benchmark study. In Proceedings of the Weimarer Optimierungs-und Stochastiktage 2.0, Weimar, Germany, 1–2 December 2005. [Google Scholar]
- Poli, R.; Kennedy, J.; Blackwell, T. Particle swarm optimization. Swarm Intell. 2007, 1, 33–57. [Google Scholar] [CrossRef]
- Phadke, M. Quality Engineering Using Robust Design; Prentice Hall: Englewood Cliffs, NJ, USA, 1989. [Google Scholar]
- Hou, P.; Hu, W.; Soltani, M.; Chen, Z. Optimized Placement of Wind Turbines in Large-Scale Offshore Wind Farm Using Particle Swarm Optimization Algorithm. IEEE Trans. Sustain. Energy 2015, 6, 1272–1282. [Google Scholar] [CrossRef] [Green Version]
- Florian, A. An efficient sampling scheme: Updated Latin Hypercube Sampling. Probabilistic Eng. Mech. 1992, 7, 123–130. [Google Scholar] [CrossRef]
- Yang, K. Determining an Appropriate Parameter of Analytical Wake Models for Energy Capture and Layout Optimization on Wind Farms. Energies 2020, 13, 739. [Google Scholar] [CrossRef] [Green Version]
- Archer, C.L.; Vasel-Be-Hagh, A.; Yan, C.; Wu, S.; Pan, Y.; Brodie, J.F.; Maguire, A.E. Review and evaluation of wake loss models for wind energy applications. Appl. Energy 2018, 226, 1187–1207. [Google Scholar] [CrossRef]
Design Variable | Description | Unit | Initial | Level 1 | Level 2 | Level 3 |
---|---|---|---|---|---|---|
x1 | Coastline Distance | m | 1000 | 1000 | 1250 | 1500 |
x2 | Farm Base Angle | Degree | 0 | −10 | 0 | 10 |
x3 | Farm Side Angle | Degree | 90 | 70 | 90 | 110 |
x4 | 1 × 1 Row Distance | m | 1000 | 556 | 778 | 1000 |
x5 | 1 × 2 Row Distance | m | 1000 | 556 | 778 | 1000 |
x6 | 1 × 3 Row Distance | m | 1000 | 556 | 778 | 1000 |
x7 | 1 × 4 Row Distance | m | 1000 | 556 | 778 | 1000 |
x8 | 1 × 5 Row Distance | m | 1000 | 556 | 778 | 1000 |
x9 | 1 × 6 Row Distance | m | 1000 | 556 | 778 | 1000 |
No | x1 | x2 | x3 | x4 | x5 | x6 | x7 | x8 | x9 | AEP (MWh/y) | Wake Loss (%) | CF (%) |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 1000 | −10 | 70 | 556 | 556 | 556 | 556 | 556 | 556 | 167,518.2 | 9.3 | 25.8 |
2 | 1000 | −10 | 70 | 556 | 556 | 556 | 778 | 778 | 778 | 168,502.4 | 8.8 | 25.9 |
⋮ | ⋮ | ⋮ | ||||||||||
54 | 1500 | 0 | 70 | 778 | 1000 | 556 | 1000 | 778 | 556 | 169,410.6 | 8.5 | 26.1 |
EA | PSO |
---|---|
Population size: 1000 | Population size: 1000 |
Archive size: 20 | Archive size: 20 |
Crossover probability: 50% | Stop criteria: Diversity < 10% |
Mutation rate: 20% | - |
Solution | x1 | x2 | x3 | x4 | x5 | x6 | x7 | x8 | x9 | AEP (MWh/y) | Wake Loss (%) | CF (%) |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Initial | 1000 | 0 | 0 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 168,000 | 9.1 | 25.8 |
DOE Best | 1250 | −10 | 90 | 778 | 1000 | 1000 | 778 | 778 | 1000 | 170,874 | 7.5 | 26.3 |
PSO | 1216.1 | −9.2 | 86.5 | 1000 | 988.1 | 1000 | 997.9 | 999.1 | 997.5 | 171,762 | 7.069 | 26.5 |
EA | 1453.9 | −10 | 70 | 969.5 | 999.9 | 852.1 | 1000 | 1000 | 1000 | 172,662 | 7.397 | 26.5 |
Reanalysis | 1453.9 | −10 | 70 | 969.5 | 999.9 | 852.1 | 1000 | 1000 | 1000 | 172,437 | 7.4 | 26.5 |
Results | WTG1 | WTG2 | WTG3 | WTG4 | WTG5 | WTG6 | WTG7 | WTG8 | WTG9 | WTG10 | WTG11 | WTG12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Initial | Easting (m) | 526,339 | 526,397 | 526,999 | 526,997 | 527,599 | 527,597 | 528,199 | 528,197 | 528,799 | 528,797 | 529,399 | 529,397 |
Northing (m) | 3,906,422 | 3,907,200 | 3,906,422 | 3,907,200 | 3,906,422 | 3,907,200 | 3,906,422 | 3,907,200 | 3,906,422 | 3,907,200 | 3,906,422 | 3,907,200 | |
AEP (MWh/y) | 13,867.6 | 14,296.0 | 13,458.7 | 13,927.9 | 13,512.1 | 13,969.2 | 13,657.1 | 14,072.1 | 13,842.1 | 14,220.8 | 14,279.3 | 14,430.3 | |
Wake Loss (%) | 7.3 | 2.6 | 11.0 | 6.3 | 11.6 | 7.4 | 11.6 | 7.8 | 11.2 | 7.9 | 9.1 | 7.4 | |
DOE Best | Easting (m) | 526,438 | 526,571 | 526,991 | 527,162 | 527,582 | 527,753 | 528,211 | 528,344 | 528,802 | 528,935 | 529,354 | 529,526 |
Northing (m) | 3,906,169 | 3,906,935 | 3,905,846 | 3,906,831 | 3,905,742 | 3,906,727 | 3,905,856 | 3,906,623 | 3,905,752 | 3,906,518 | 3,905,429 | 3,906,414 | |
AEP (MWh/y) | 14,125.5 | 14,442 | 14,012.9 | 14,239.2 | 13,855.6 | 14,288.8 | 13,787.1 | 14,297.9 | 14,039.3 | 14,432.2 | 14,639.2 | 14,713.8 | |
Wake Loss (%) | 6 | 2.7 | 8.2 | 5.4 | 10.3 | 6.3 | 11.4 | 7.2 | 10.6 | 7.4 | 7.6 | 6.5 | |
Optimal | Easting (m) | 526,400 | 526,899 | 526,991 | 527,490 | 527,582 | 528,081 | 528,173 | 528,671 | 528,764 | 529,262 | 529,354 | 529,853 |
Northing (m) | 3,905,700 | 3,906,567 | 3,905,596 | 3,906,462 | 3,905,492 | 3,906,358 | 3,905,387 | 3,906,254 | 3,905,283 | 3,906,150 | 3,905,179 | 3,906,046 | |
AEP (MWh/y) | 14,586.6 | 14,510.9 | 14,093.0 | 14,301.6 | 13,997.1 | 14,352.6 | 14,074.0 | 14,410.6 | 14,219.8 | 14,566.1 | 14,460.3 | 14,864.6 | |
Wake Loss (%) | 3.7 | 3.7 | 8.0 | 6.2 | 9.7 | 7.0 | 10.1 | 7.4 | 9.9 | 7.4 | 9.0 | 6.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shin, J.; Baek, S.; Rhee, Y. Wind Farm Layout Optimization Using a Metamodel and EA/PSO Algorithm in Korea Offshore. Energies 2021, 14, 146. https://doi.org/10.3390/en14010146
Shin J, Baek S, Rhee Y. Wind Farm Layout Optimization Using a Metamodel and EA/PSO Algorithm in Korea Offshore. Energies. 2021; 14(1):146. https://doi.org/10.3390/en14010146
Chicago/Turabian StyleShin, Joongjin, Seokheum Baek, and Youngwoo Rhee. 2021. "Wind Farm Layout Optimization Using a Metamodel and EA/PSO Algorithm in Korea Offshore" Energies 14, no. 1: 146. https://doi.org/10.3390/en14010146
APA StyleShin, J., Baek, S., & Rhee, Y. (2021). Wind Farm Layout Optimization Using a Metamodel and EA/PSO Algorithm in Korea Offshore. Energies, 14(1), 146. https://doi.org/10.3390/en14010146