An Estimation of Hydraulic Power Take-off Unit Parameters for Wave Energy Converter Device Using Non-Evolutionary NLPQL and Evolutionary GA Approaches †
Abstract
:1. Introduction
2. Mathematical Modelling of WEC with HPTO Unit
2.1. Hydrodynamic Motion of the Floater
2.2. Hydraulic Power Take-off (HPTO) Mechanism
3. Simulation Studies of WECs
3.1. Ocean Wave Input Data
3.2. Simulation Set-up of WEC with HPTO Unit Model
3.3. Optimisation of Configuration Parameter
3.3.1. Non-Evolutionary NLPQL-Based Optimisation
3.3.2. Evolutionary GA-Based Optimisation
4. Results and Discussion
4.1. Comparisons between NLPQL and GA Optimisation of HPTO Unit
4.1.1. Chronological Variation of the Objective Function and Parameters Variables
4.1.2. Best Estimated Parameters
4.1.3. Operational Behaviour of the HPTO Unit
4.1.4. Performance of the WECs
4.2. Evaluations of Optimal WECs Using Irregular Wave Data
5. Conclusions
- The simulation–optimisation using the NLPQL algorithm was completed after the 22 number of iterations with the duration of 3237 s (approximately 53 m 57 s) after the NLPQL operator had satisfied its accuracy requirement. Importantly, the overall performance of HPTO has significantly improved up to 96% in regular wave conditions.
- The simulation–optimisation duration using the GA technique is longer than the NLPQL approach, which was completed after 7 h and 32 min. However, the overall performance of HPTO has significantly improved up to 97% in regular wave conditions.
- The HPTO unit estimated by the NLPQL approach is much smaller in terms of size, weight and cost compared to the GA approach. Thus, the HPTO unit’s cost estimated by NLPQL is cheaper than the HPTO unit cost estimated by the GA approach.
- The results show that both optimal HPTO units can generate electricity up to 62% and 77% of rated capacity in irregular wave circumstances.
- In conclusion, both of the optimisation approaches were effective in determining the optimal parameters of the HPTO unit. For the sake of quickness, the NLPQL approach is more relevant. While, for the sake of effectiveness, the GA approach is more recommended.
- Further experimental validation of the best estimated HPTO unit is needed to verify the accuracy of the developed model simulation.
- The simulation–optimisation of the HPTO unit using other types of the optimisation algorithm, such as Particle Swarm Optimization, Gravitational Search Algorithm, et cetera, needs to be explored to achieve a good trade-off between cost and performance.
- The simulation–optimisation using other software types, such as Simcenter Amesim software invented by Siemens, is highly recommended.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
ACO | Ant Colony Optimization |
CFD | Computational Fluid Dynamics |
CV | Check Valve |
GA | Genetic Algorithm |
GSA | Gravitational Search Algorithm |
HM | Hydraulic Motor |
HPA | High-Pressure Accumulator |
HPTO | Hydraulic Power Take-Off |
JONSWAP | Joint North Sea Wave Observation Project |
LPA | Low-Pressure Accumulator |
NLPQL | Non-Linear Programming by Quadratic Lagrangian |
OF | Objective Function |
PMSG | Permanent Magnet Synchronous Generator |
PSO | Particle Swarm Optimization |
PTO | Power Take-Off |
SOC | State-Of-Charge |
SQP | Sequential Quadratic Programming |
TS | Tabu Search |
WAB | Wave-Activated-Body |
WEC | Wave Energy Converter |
WECs | Wave Energy Converters |
Appendix A
HPTO Component (Unit) | Ranges | Ref. | |
---|---|---|---|
Minimum | Maximum | ||
Hydraulic cylinder a | [47] | ||
Available piston diameter, (mm) | 30 | 203 | |
Available rod diameter, (mm) | 10 | 140 | |
Operating pressure, (bar) | 0 | 207 | |
Operating flow rate, (L/min) | 0 | 900 | |
HP accumulator b | [48] | ||
Available nominal volume, (L) | 0.2 | 57 | |
Operating pressure, (bar) | 0 | 690 | |
Operating flow rate, (L/min) | 0 | 900 | |
LP accumulator c | [49] | ||
Available nominal volume, (L) | 0 | 565 | |
Operating pressure, (bar) | 0 | 80 | |
Operating flow rate, (L/min) | 0 | 3000 | |
Hydraulic motor d | [50] | ||
Available motor displacement, (cc/rev) | 20 | 23,034 | |
Operating pressure, (bar) | 0 | 420 | |
Operating speed, (rpm) | 0 | 1000 | |
Operating flow rate, (L/min) | 0 | 200 | |
Operating torque, (Nm) | 0 | 1428 |
References
- Sang, Y.; Karayaka, H.B.; Yan, Y.; Yilmaz, N.; Souders, D. Ocean (Marine) Energy. In Comprehensive Energy Systems; Elsevier: Amsterdam, The Netherlands, 2018; Volumes 1–5, pp. 733–769. ISBN 9780128095973. [Google Scholar]
- Mustapa, M.A.; Yaakob, O.B.; Ahmed, Y.M.; Rheem, C.K.; Koh, K.K.; Adnan, F.A. Wave energy device and breakwater integration: A review. Renew. Sustain. Energy Rev. 2017, 77, 43–58. [Google Scholar] [CrossRef]
- de Falcão, A.F.O. Wave energy utilization: A review of the technologies. Renew. Sustain. Energy Rev. 2010, 14, 899–918. [Google Scholar] [CrossRef]
- Titah-Benbouzid, H.; Benbouzid, M. An up-to-date technologies review and evaluation of wave energy converters. Int. Rev. Electr. Eng. 2015, 10, 52–61. [Google Scholar] [CrossRef]
- Rusu, E.; Onea, F. A review of the technologies for wave energy extraction. Clean Energy 2018, 2, 10–19. [Google Scholar] [CrossRef] [Green Version]
- Al Shami, E.; Zhang, R.; Wang, X. Point absorber wave energy harvesters: A review of recent developments. Energies 2019, 12, 47. [Google Scholar] [CrossRef] [Green Version]
- Têtu, A. Power Take-Off Systems for WECs; Springer: Cham, Switzerland, 2017; pp. 203–220. [Google Scholar]
- Kukner, A.; Erselcan, İ.Ö. A review of power take-off systems employed in wave energy. J. Nav. Sci. Eng. 2014, 10, 32–44. [Google Scholar]
- Gaspar, J.F.; Calvário, M.; Kamarlouei, M.; Guedes Soares, C. Power take-off concept for wave energy converters based on oil-hydraulic transformer units. Renew. Energy 2016, 86, 1232–1246. [Google Scholar] [CrossRef]
- Jusoh, M.A.; Ibrahim, M.Z.; Daud, M.Z.; Albani, A.; Yusop, Z.M. Hydraulic power take-off concepts for wave energy conversion system: A review. Energies 2019, 12, 4510. [Google Scholar] [CrossRef] [Green Version]
- Galván-Pozos, D.E.; Ocampo-Torres, F.J. Dynamic analysis of a six-degree of freedom wave energy converter based on the concept of the Stewart-Gough platform. Renew. Energy 2020, 146, 1051–1061. [Google Scholar] [CrossRef]
- Penalba, M.; Davidson, J.; Windt, C.; Ringwood, J.V. A high-fidelity wave-to-wire simulation platform for wave energy converters: Coupled numerical wave tank and power take-off models. Appl. Energy 2018, 226, 655–669. [Google Scholar] [CrossRef] [Green Version]
- Liu, C.; Yang, Q.; Bao, G. Influence of hydraulic power take-off unit parameters on power capture ability of a two-raft-type wave energy converter. Ocean Eng. 2018, 150, 69–80. [Google Scholar] [CrossRef]
- Sheng, W.; Lewis, A. Power takeoff optimization for maximizing energy conversion of wave-activated bodies. IEEE J. Ocean. Eng. 2016, 41, 529–540. [Google Scholar] [CrossRef]
- Cargo, C.J.; Hillis, A.J.; Plummer, A.R. Optimisation and control of a hydraulic power take-off unit for a wave energy converter in irregular waves. Proc. Inst. Mech. Eng. Part A J. Power Energy 2014, 228, 462–479. [Google Scholar] [CrossRef] [Green Version]
- Brito, M.; Teixeira, L.; Canelas, R.B.; Ferreira, R.M.L.; Neves, M.G. Experimental and numerical studies of dynamic behaviors of a hydraulic power take-off cylinder using spectral representation method. J. Tribol. 2018, 140. [Google Scholar] [CrossRef]
- Brito, M.; Ferreira, R.M.L.; Teixeira, L.; Neves, M.G.; Canelas, R.B. Experimental investigation on the power capture of an oscillating wave surge converter in unidirectional waves. Renew. Energy 2020, 151, 975–992. [Google Scholar] [CrossRef]
- Amaran, S.; Sahinidis, N.V.; Sharda, B.; Bury, S.J. Simulation optimization: A review of algorithms and applications. Ann. Oper. Res. 2016, 240, 351–380. [Google Scholar] [CrossRef] [Green Version]
- Jusoh, M.A.; Daud, M.Z. Particle swarm optimisation-based optimal photovoltaic system of hourly output power dispatch using Lithium-ion batteries. J. Mech. Eng. Sci. 2017, 11, 2780–2793. [Google Scholar] [CrossRef]
- Jusoh, M.A.; Daud, M.Z. Control strategy of a grid-connected photovoltaic with battery energy storage system for hourly power dispatch. Int. J. Power Electron. Drive Syst. 2017, 8, 1830–1840. [Google Scholar] [CrossRef]
- Daud, M.Z.; Mohamed, A.; Hannan, M.A. An improved control method of battery energy storage system for hourly dispatch of photovoltaic power sources. Energy Convers. Manag. 2013, 73, 256–270. [Google Scholar] [CrossRef]
- Daud, M.Z.; Mohamed, A.; Ibrahim, A.A.; Hannan, M.A. Heuristic optimization of state-of-charge feedback controller parameters for output power dispatch of hybrid photovoltaic/battery energy storage system. Meas. J. Int. Meas. Confed. 2014, 49, 15–25. [Google Scholar] [CrossRef]
- Jusoh, M.A.; Daud, M.Z. Accurate battery model parameter identification using heuristic optimization. Int. J. Power Electron. Drive Syst. 2020, 11, 333–341. [Google Scholar] [CrossRef] [Green Version]
- Giassi, M.; Göteman, M. Layout design of wave energy parks by a genetic algorithm. Ocean Eng. 2018, 154, 252–261. [Google Scholar] [CrossRef]
- Sirigu, S.A.; Foglietta, L.; Giorgi, G.; Bonfanti, M.; Cervelli, G.; Bracco, G.; Mattiazzo, G. Techno-Economic optimisation for a wave energy converter via genetic algorithm. J. Mar. Sci. Eng. 2020, 8, 482. [Google Scholar] [CrossRef]
- McCabe, A.P.; Aggidis, G.A.; Widden, M.B. Optimizing the shape of a surge-and-pitch wave energy collector using a genetic algorithm. Renew. Energy 2010, 35, 2767–2775. [Google Scholar] [CrossRef]
- Calvário, M.; Gaspar, J.F.; Kamarlouei, M.; Hallak, T.S.; Guedes Soares, C. Oil-hydraulic power take-off concept for an oscillating wave surge converter. Renew. Energy 2020, 159, 1297–1309. [Google Scholar] [CrossRef]
- Jusoh, M.A.; Ibrahim, M.Z.; Daud, M.Z.; Yusop, Z.M.; Albani, A.; Rahman, S.J.; Mohad, S. Parameters estimation of hydraulic power take-off system for wave energy conversion system using genetic algorithm. In Proceedings of the IOP Conference Series: Earth and Environmental Science; Institute of Physics Publishing: Bristol, UK, 2020; Volume 463, p. 12129. [Google Scholar]
- Hansen, R.H.; Kramer, M.M.; Vidal, E.; Hansen, R.H.; Kramer, M.M.; Vidal, E. Discrete displacement hydraulic power take-off system for the wavestar wave energy converter. Energies 2013, 6, 4001–4044. [Google Scholar] [CrossRef]
- Hansen, A.H.; Asmussen, M.F.; Bech, M.M. Model predictive control of a wave energy converter with discrete fluid power power take-off system. Energies 2018, 11, 635. [Google Scholar] [CrossRef] [Green Version]
- Garcia-Rosa, P.B.; Cunha, J.P.V.S.; Lizarralde, F.; Estefen, S.F.; Costa, P.R. Efficiency optimization in a wave energy hyperbaric converter. In Proceedings of the 2009 International Conference on Clean Electrical Power, ICCEP 2009, Capri, Italy, 9–11 June 2009; pp. 68–75. [Google Scholar]
- Estefen, S.F.; Esperança, P.D.T.; Ricarte, E.; Da Costa, P.R.; Pinheiro, M.M.; Clemente, C.H.P.; Franco, D.; Melo, E.; De Souza, J.A. Experimental and numerical studies of the wave energy hyperbaric device for electricity production. In Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering—OMAE; American Society of Mechanical Engineers Digital Collection: New York, NY, USA, 2008; Volume 6, pp. 811–818. [Google Scholar]
- Windt, C.; Davidson, J.; Ransley, E.J.; Greaves, D.; Jakobsen, M.; Kramer, M.; Ringwood, J.V. Validation of a CFD-based numerical wave tank model for the power production assessment of the wavestar ocean wave energy converter. Renew. Energy 2020, 146, 2499–2516. [Google Scholar] [CrossRef]
- Ransley, E.J.; Greaves, D.M.; Raby, A.; Simmonds, D.; Jakobsen, M.M.; Kramer, M. RANS-VOF modelling of the Wavestar point absorber. Renew. Energy 2017, 109, 49–65. [Google Scholar] [CrossRef] [Green Version]
- Gibraltar Project—Eco Wave Power. Available online: https://www.ecowavepower.com/gibraltar-project/ (accessed on 4 May 2019).
- Penalba, M.; Sell, N.P.; Hillis, A.J.; Ringwood, J.V. Validating a wave-to-wire model for a wave energy converter—Part I: The hydraulic transmission system. Energies 2017, 10, 977. [Google Scholar] [CrossRef] [Green Version]
- Cargo, C.J.; Plummer, A.R.; Hillis, A.J.; Schlotter, M. Determination of optimal parameters for a hydraulic power take-off unit of a wave energy converter in regular waves. Proc. Inst. Mech. Eng. Part A J. Power Energy 2012, 226, 98–111. [Google Scholar] [CrossRef]
- Do, H.T.; Dang, T.D.; Ahn, K.K. A multi-point-absorber wave-energy converter for the stabilization of output power. Ocean Eng. 2018, 161, 337–349. [Google Scholar] [CrossRef]
- Muzathik, A.M.; Wan Nik, W.B.; Samo, K.B.; Ibrahim, M.Z. Ocean wave measurement and wave climate prediction of Peninsular Malaysia. J. Phys. Sci. 2011, 22, 77–92. [Google Scholar]
- Chen, Q.; Yue, X.; Geng, D.; Yan, D.; Jiang, W. Integrated characteristic curves of the constant-pressure hydraulic power take-off in wave energy conversion. Int. J. Electr. Power Energy Syst. 2020, 117, 105730. [Google Scholar] [CrossRef]
- Jianan, X.; Tao, X. MPPT Control of Hydraulic Power Take-Off for Wave Energy Converter on Artificial Breakwater. J. Mar. Sci. Eng. 2019, 8, 304. [Google Scholar] [CrossRef]
- Zhang, S.; Tezdogan, T.; Zhang, B.; Xu, L.; Lai, Y. Hull form optimisation in waves based on CFD technique. Ships Offshore Struct. 2018, 13, 149–164. [Google Scholar] [CrossRef]
- Navid, A.; Khalilarya, S. Evaluation of a diesel engine optimized by non-evolutionary NLPQL and evolutionary genetic algorithms and assessing second law efficiency: Analysis in exergy loss and chemical exergy. Appl. Therm. Eng. 2019, 159. [Google Scholar] [CrossRef]
- Navid, A.; Khalilarya, S.; Taghavifar, H. Comparing multi-objective non-evolutionary NLPQL and evolutionary genetic algorithm optimization of a DI diesel engine: DoE estimation and creating surrogate model. Energy Convers. Manag. 2016, 126, 385–399. [Google Scholar] [CrossRef]
- Chen, Y.; Lv, L. The multi-objective optimization of combustion chamber of DI diesel engine by NLPQL algorithm. Appl. Therm. Eng. 2014, 73, 1332–1339. [Google Scholar] [CrossRef]
- Hu, N.; Zhou, P.; Yang, J. Comparison and combination of NLPQL and MOGA algorithms for a marine medium-speed diesel engine optimisation. Energy Convers. Manag. 2017, 133, 138–152. [Google Scholar] [CrossRef] [Green Version]
- Hydraulic Cylinders—Heavy Duty Roundline Welded—Series RDH | Malaysia. Available online: https://ph.parker.com/my/en/heavy-duty-hydraulic-roundline-cylinders-series-rdh (accessed on 19 January 2020).
- Bladder Accumulator—High Pressure (EHV) | Malaysia. Available online: https://ph.parker.com/my/en/bladder-accumulator-high-pressure-ehv (accessed on 19 January 2020).
- Bladder Accumulator—Low Pressure (EBV Series) | Malaysia. Available online: https://ph.parker.com/my/en/low-pressure-bladder-accumulator-ebv (accessed on 19 January 2020).
- High Torque Radial Piston Motors—Series MR* | Malaysia. Available online: https://ph.parker.com/my/en/high-torque-radial-piston-motors-series-mr (accessed on 19 January 2020).
No. | Parameter Setting | Unit |
---|---|---|
1 | Diameter of piston, dp | m |
2 | Diameter of rod, dr | m |
3 | Volume capacity of HPA, Vcap,HPA | L |
4 | Volume capacity of LPA, Vcap,LPA | L |
5 | Pre-charge gas pressure of HPA, p0,HPA | Bar |
6 | Pre-charge gas pressure of LPA, p0,LPA | Bar |
7 | Displacement of HM, DHM. | cc/rev |
Item | Details |
---|---|
Type | Desktop |
Windows | Windows 10 Pro |
Memory (RAM) | 12 GB |
CPU | Intel (R) Core (TM) i7-9750H 2.60 GHz |
MATLAB Version | R2019b |
Descriptions (Unit) | Value |
---|---|
Generator | |
Rated power, Prated (kW) | 0.1 |
Rated speed, ωG,rated (rpm) | 200 |
Rated torque τG,rated (Nm) | 6.0 |
Viscous friction coefficient, (Nm/rpm) | 0.024 |
Moment of inertia, (kgm2) | 0.0036 |
Hydraulic cylinder | |
Diameter of the piston, dp (m) | 0.035 * |
Diameter of the piston rod, dr (m) | 0.025 * |
Length of stroke, lstroke (m) | 0.3 |
HP accumulator | |
Pre-charge gas pressure, p0,HPA (bar) | 40 * |
Volume capacity, Vcap,HPA (L) | 8 * |
Adiabatic index, γ | 1.4 |
LP accumulator | |
Pre-charge gas pressure, p0,LPA (bar) | 5 * |
Volume capacity, Vcap,HPA (L) | 2 * |
Adiabatic index, γ | 1.4 |
Hydraulic motor | |
Displacement, DHM (cc/rev) | 8 * |
Oil properties | |
Viscosity, Visoil (cSt) | 50 |
Density, Doil (kg/m3) | 850 |
Setting | Value |
---|---|
Maximum number of function evaluations | 7 |
Maximum number of iterations | 100 |
Step size for finite difference step | 0.001 |
Final accuracy | 0.0001 |
Setting | Value |
---|---|
Population size | 50 |
Reproduction ratio (%) | 80 |
Maximum number of generations | 100 |
Mutation probability (%) | 10 |
Mutation amplitude | 0.1 |
Seed | 1 |
Final accuracy | 0.0001 |
Parameter (Unit) | Non-Optimal Case | Optimal Case by | |
---|---|---|---|
NLPQL | GA | ||
Hydraulic cylinder | |||
Diameter of piston, dp (mm) | 36 | 34.9 | 31.6 |
Diameter of piston rod, dr (mm) | 25 | 21.8 | 20.0 |
HP accumulator | |||
Pre-charge gas pressure, p0,HPA (bar) | 40 | 46.9 | 68.9 |
Volume capacity, Vcap,HPA (L) | 8 | 2.8 | 30.0 |
LP accumulator | |||
Pre-charge gas pressure, p0,LPA (bar) | 5 | 3.2 | 2.2 |
Volume capacity, Vcap,LPA (L) | 2 | 4.0 | 5.8 |
Hydraulic motor | |||
Displacement, DHM (cc/rev) | 8 | 8.4 | 5.5 |
Descriptions (Unit) | Non-Optimal Case | Optimal Case by | ||
---|---|---|---|---|
NLPQL | GA | |||
Hydraulic cylinder | ||||
Max. operating pressure, (bar) | Side A | 46.48 | 50.5 | 72.8 |
Side B | 46.40 | 50.5 | 72.8 | |
Max. operating flow rate, (L/min) | Side A (In) | 2.75 | 3.49 | 2.71 |
Side A (Out) | 4.73 | 4.29 | 4.05 | |
Side B (In) | 2.10 | 2.08 | 2.33 | |
Side B (Out) | 2.07 | 2.23 | 2.25 | |
HP accumulator | ||||
Max. operating pressure, (bar) | 43.4 | 47.8 | 69.8 | |
Max. operating flow rate, (L/min) | In | 3.78 | 3.23 | 3.06 |
Out | 1.36 | 1.66 | 1.10 | |
LP accumulator | ||||
Max. operating pressure, (bar) | 5.05 | 3.25 | 2.61 | |
Max. operating flow rate, (L/min) | In | 1.28 | 1.66 | 1.09 |
Out | 1.30 | 1.82 | 0 | |
Hydraulic motor | ||||
Max. operating pressure, (bar) | Inlet | 43.4 | 47.5 | 69.8 |
Outlet | 5.03 | 3.25 | 2.63 | |
Max. operating flow rate, (L/min) | 5.03 | 1.67 | 1.10 | |
Max. operating speed, (rpm) | 174 | 202 | 204 | |
Max. operating torque, (Nm) | 5.24 | 6.04 | 6.05 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jusoh, M.A.; Ibrahim, M.Z.; Daud, M.Z.; Yusop, Z.M.; Albani, A. An Estimation of Hydraulic Power Take-off Unit Parameters for Wave Energy Converter Device Using Non-Evolutionary NLPQL and Evolutionary GA Approaches. Energies 2021, 14, 79. https://doi.org/10.3390/en14010079
Jusoh MA, Ibrahim MZ, Daud MZ, Yusop ZM, Albani A. An Estimation of Hydraulic Power Take-off Unit Parameters for Wave Energy Converter Device Using Non-Evolutionary NLPQL and Evolutionary GA Approaches. Energies. 2021; 14(1):79. https://doi.org/10.3390/en14010079
Chicago/Turabian StyleJusoh, Mohd Afifi, Mohd Zamri Ibrahim, Muhamad Zalani Daud, Zulkifli Mohd Yusop, and Aliashim Albani. 2021. "An Estimation of Hydraulic Power Take-off Unit Parameters for Wave Energy Converter Device Using Non-Evolutionary NLPQL and Evolutionary GA Approaches" Energies 14, no. 1: 79. https://doi.org/10.3390/en14010079
APA StyleJusoh, M. A., Ibrahim, M. Z., Daud, M. Z., Yusop, Z. M., & Albani, A. (2021). An Estimation of Hydraulic Power Take-off Unit Parameters for Wave Energy Converter Device Using Non-Evolutionary NLPQL and Evolutionary GA Approaches. Energies, 14(1), 79. https://doi.org/10.3390/en14010079