Anisotropy of Strength and Elastic Properties of Lower Paleozoic Shales from the Baltic Basin, Poland
Abstract
:1. Introduction
2. Materials and Methods
2.1. Specimen Characteristics
2.2. Sample Preparation
2.3. Experimental Equipment
- εv—volumetric strain,
- εz—axial strain,
- εx,y—lateral strain.
2.4. Experimental Procedure
3. Results and Discussion
3.1. Estimation of Strength and Static Moduli
3.2. Anisotropy
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Soeder, D.J. The successful development of gas and oil resources from shales in North America. J. Pet. Sci. Eng. 2018, 163, 399–420. [Google Scholar] [CrossRef]
- Slatt, R. Important geological properties of unconventional resource shales. Cent. Eur. J. Geosci. 2011, 3, 435–448. [Google Scholar] [CrossRef] [Green Version]
- Du, J.; Hu, L.; Meegoda, J.N.; Zhang, G. Shale softening: Observations, phenomenological behavior, and mechanisms. Appl. Clay Sci. 2018, 161, 290–300. [Google Scholar] [CrossRef]
- Zoback, M.D.; Barton, C.A.; Brudy, M.; Castillo, D.A.; Finkbeiner, T.; Grollimund, B.R.; Moos, D.B.; Peska, P.; Ward, C.D.; Wiprut, D.J. Determination of stress orientation andmagnitude in deepwells. Int. J. Rock Mech. Min. Sci. 2003, 40, 1049–1076. [Google Scholar] [CrossRef]
- Slatt, R.; Abousleiman, Y. Merging sequence stratigraphy and geomechanics for unconventional gas shales. Lead. Edge 2011, 30, 274–282. [Google Scholar] [CrossRef]
- Ahmed, M.; Rezaei-Gomari, S. Economic Feasibility Analysis of Shale Gas Extraction from UK’s Carboniferous Bowland-Hodder Shale Unit. Resources 2019, 8, 5. [Google Scholar] [CrossRef] [Green Version]
- Jarvie, D.M.; Hill, R.J.; Ruble, T.E.; Pollastro, R.M. Unconventional shale-gas systems: The Mississippian Barnett Shale of north central Texas as one model for thermogenic shale-gas assessment. AAPG Bull. 2007, 91, 475–499. [Google Scholar] [CrossRef]
- Søreide, O.K.; Bostrøm, B.; Horsrud, P. Borehole stability simulations of an HPHT field using anisotropic shale modeling. In Proceedings of the ARMA Conference, Asheville, NC, USA, 28 June–1 July 2008. [Google Scholar]
- Slatt, R.; Rodriguez, N. Comparative sequence stratigraphy and organic geochemistry of North American unconventional gas shales: Commonality or coincidence? J. Nat. Gas Sci. Eng. 2012, 8, 68–84. [Google Scholar] [CrossRef]
- Lora, R.V.; Ghazanfari, E.; Izquierdo, E.A. Geomechanical characterization of Marcellus shale. Rock Mech. Rock Eng. 2016, 49, 3403–3424. [Google Scholar] [CrossRef] [Green Version]
- Buscarnera, G.; Cusatis, G.; Zubelewicz, A.; Bažant, Z.P. Shale fracturing for energy recovery: Current issues and review of available analytical and computational models. Shale Energy Eng. 2014, 168–179. [Google Scholar] [CrossRef]
- Sone, H.; Zoback, M.D. Mechanical properties of shale-gas reservoir rocks—Part 1: Static and dynamic elastic properties and anisotropy. Geophysics 2013, 78, 381–392. [Google Scholar] [CrossRef] [Green Version]
- Sone, H.; Zoback, M.D. Mechanical properties of shale-gas reservoir rocks—Part 2: Ductile creep, brittle strength, and their relation to the elastic modulus. Geophysics 2013, 78, 393–402. [Google Scholar] [CrossRef]
- Johri, M.; Zoback, M.D. The evolution of stimulated reservoir volume during hydraulic stimulation of shale gas formations. In Proceedings of the Unconventional Resources Technology Conference, Society of Exploration Geophysicists, American Association of Petroleum Geologists, Society of Petroleum Engineers, Denver, CO, USA, 12–14 August 2013; pp. 1661–1671. [Google Scholar]
- Rybacki, E.; Reinicke, A.; Meier, T.; Makasi, M.; Dresen, G. What controls the mechanical properties of shale rocks?—Part I: Strength and Young’s modulus. J. Pet. Sci. Eng. 2015, 135, 702–722. [Google Scholar] [CrossRef]
- Feng, X.T. Laboratory and Field Testing. In Rock Mechanics and Engineering; CRC Press: Boca Raton, FL, USA, 2017; Volume 2, pp. 1–646. [Google Scholar] [CrossRef]
- Montgomery, C.T.; Smith, M.B. Hydraulic fracturing: History of an enduring technology. J. Petrol. Technol. 2010, 62, 26–40. [Google Scholar] [CrossRef]
- Vermylen, J.P. Geomechanical Studies of the Barnett Shale, Texas, USA; Stanford University: Stanford, CA, USA, 2011. [Google Scholar]
- Ghassemi, A.; Suarez-Rivera, R. Sustaining Fracture Area and Conductivity of Gas Shale Reservoirs for Enhancing Long-term Production and Recovery. In Proceedings of the AGU Fall Meeting Abstracts, San Francisco, CA, USA, 13–17 December 2010; Volume 2010. [Google Scholar]
- Pireh, A.; Alavi, S.A.; Ghassemi, M.R.; Shaban, A. Analysis of natural fractures and effect of deformation intensity on fracture density in Garau formation for shale gas development within two anticlines of Zagros fold and thrust belt. Iran. J. Petrol. Sci. Eng. 2015, 125, 162–180. [Google Scholar] [CrossRef]
- Parvizi, H.; Rezaei-Gomari, S.; Nabhani, F.; Dehghan Monfared, A. Modeling the Risk of Commercial Failure for Hydraulic Fracturing Projects Due to Reservoir Heterogeneity. Energies 2018, 11, 218. [Google Scholar] [CrossRef] [Green Version]
- Fjær, E.; Holt, A.M.; Horsrud, P.; Raaen, A.M.; Risnes, R. Petroleum Related Rock Mechanics, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2008. [Google Scholar]
- Gholami, R.; Moradzadeh, A.; Rasouli, V.; Hanachi, J. Practical application of failure criteria in determining safe mud weight windows in drilling operations. J. Rock Mech. Geotech. Eng. 2014, 6, 13–25. [Google Scholar] [CrossRef] [Green Version]
- Masoud, A.; Abbas, K.M.; Hossein, J. Determination of a safe mud window and analysis of wellbore stability to minimize drilling challenges and non-productive time. J. Pet. Explor. Prod. Technol. 2016, 6, 493–503. [Google Scholar]
- Warpinski, N.R.; Mayerhofer, M.J.; Vincent, M.C.; Cipolla, C.L.; Lolon, E.P. Stimulating Unconventional Reservoirs: Maximizing Network Growth While Optimizing Fracture Conductivity. J. Can. Pet. Technol. 2009, 48, 39–51. [Google Scholar] [CrossRef]
- Soliman, M.Y.; Daal, J.; East, L. Fracturing unconventional formations to enhance productivity. J. Nat. Gas Sci. Eng. 2012, 8, 52–67. [Google Scholar] [CrossRef]
- Islam, M.A.; Skalle, P. An experimental investigation of shale mechanical properties through drained and undrained test mechanisms. Rock Mech. Rock Eng. 2013, 46, 1391–1413. [Google Scholar] [CrossRef] [Green Version]
- Meier, T.; Rybacki, E.; Reinicke, A.; Dresen, G. Influence of borehole diameter on the formation of borehole breakouts in black shale. Int. J. Rock Mech. Min. Sci. 2013, 62, 74–85. [Google Scholar] [CrossRef]
- Meier, T.; Rybacki, E.; Backers, T.; Dresen, G. Influence of Bedding Angle on Borehole Stability: A Laboratory Investigation of Transverse Isotropic Oil Shale. Rock Mech. Rock Eng. 2015, 48, 1535–1546. [Google Scholar] [CrossRef]
- Han, H.; Yin, S. Determination of in-situ stress and geomechanical properties from borehole deformation. Energies 2018, 11, 113. [Google Scholar] [CrossRef] [Green Version]
- Hornby, B.E.; Schwartz, M.L.; Hudson, A.J. Anisotropic effective-medium modeling of the elastic properties of shales. Geophysics 1994, 59, 1570–1583. [Google Scholar] [CrossRef]
- Johnston, J.E.; Christensen, N.J. Seismic anisotropy of shales. J. Geophys. Res. 1995, 100, 5991–6003. [Google Scholar] [CrossRef] [Green Version]
- Sondergeld, C.H.; Rai, C.S. Elastic anisotropy of shales. Lead. Edge 2011, 30, 324–331. [Google Scholar] [CrossRef]
- Vernik, L.; Nur, A. Ultrasonic velocity and anisotropy of hydrocarbon source rocks. Geophysics 1992, 57, 727–735. [Google Scholar] [CrossRef]
- Vernik, L.; Liu, X. Velocity anisotropy in shales: A petrophyscial study. Geophysics 1997, 62, 521–532. [Google Scholar] [CrossRef]
- Sondergeld, C.H.; Rai, C.S.; Margesson, R.W.; Whidden, K.J. Ultrasonic measurement of anisotropy on the Kimmeridge shale. In Proceedings of the 70th Annual International Meeting, SEG, Expanded Abstracts, Lisbon, Portugal, 15–17 July 2000; pp. 1858–1861. [Google Scholar]
- Vernik, L.; Milovac, J. Rock physics of organic shales. Lead. Edge 2011, 30, 318–323. [Google Scholar] [CrossRef]
- Vanorio, T.; Mukerji, T.; Mavko, G. Emerging methodologies to characterize the rock physics properties of organic-rich shales. Lead. Edge 2008, 27, 780–787. [Google Scholar] [CrossRef]
- Ahmadov, R. Micro-Textural, Elastic and Transport Properties of Source Rocks. Ph.D. Thesis, Stanford University, Stanford, CA, USA, 2011. [Google Scholar]
- Josh, M.; Esteban, L.; Delle Piane, C.; Sarout, J.; Dewhurst, D.N.; Clennell, M.B. Laboratory characterisation of shale properties. J. Pet. Sci. Eng. 2012, 88, 107–124. [Google Scholar] [CrossRef] [Green Version]
- Dewhurst, D.N.; Siggins, A.F. Impact of fabric, microcracks and stress field on shale anisotropy. Geophys. J. Int. 2006, 165, 135–148. [Google Scholar] [CrossRef] [Green Version]
- Sarout, J.; Guéguen, Y. Anisotropy of elastic wave velocities in deformed shales: Part 1—Experimental results. Geophysics 2008, 73, 75–89. [Google Scholar] [CrossRef]
- Dewhurst, D.N.; Siggins, A.F.; Sarout, J.; Raven, M.D.; Nordgård-Bolås, H.M. Geomechanical and ultrasonic characterization of a Norwegian Sea shale. Geophysics 2011, 76, 101–111. [Google Scholar] [CrossRef]
- Kuila, U.; Dewhurst, D.N.; Siggins, A.F.; Raven, M.D. Stress anisotropy and velocity anisotropy in low porosity shale. Tectonophysics 2011, 503, 34–44. [Google Scholar] [CrossRef]
- Hornby, B.E. Experimental laboratory determination of the dynamic elastic properties of wet, drained shales. J. Geophys. Res. 1998, 103, 29945–29964. [Google Scholar] [CrossRef]
- Moska, R.; Kasza, P.; Masłowski, M. Rock anisotropy and brittleness from laboratory ultrasonic measurements in the service of hydraulic fracturing. Acta Geodyn. Geromater. 2018, 15, 67–77. [Google Scholar] [CrossRef] [Green Version]
- Trzeciak, M.; Sone, H.; Dąbrowski, M. Long-term creep tests and viscoelastic constitutive modeling of lower Paleozoic shales from the Baltic Basin, N Poland. Int. J. Rock Mech. Min. Sci. 2018, 112, 139–157. [Google Scholar] [CrossRef]
- Rybacki, E.; Meier, T.; Dresen, G. What controls the mechanical properties of shale rocks?—Part II: Brittleness. J. Pet. Sci. Eng. 2016, 144, 39–58. [Google Scholar] [CrossRef] [Green Version]
- Warpinski, N.R.; Waltman, C.K.; Du, J.; Ma, Q. Anisotropy effects in microseismic monitoring. In Proceedings of the SPE Annual Technical Conference and Exhibition, New Orleans, LO, USA, 4–7 October 2009. [Google Scholar] [CrossRef]
- Bayuk, I.O.; Chesnokov, E.; Ammerman, M. Why anisotropy is important for location of microearthquake events in shale? In Proceedings of the Extended Abstract for 79th SEG Annual Conference, Houston, TX, USA, 25–30 October 2009; pp. 1632–1636. [Google Scholar]
- Grechka, V.; Singh, P.; Das, I. Estimation of effective anisotropy simultaneously with locations of microseismic events. Geophysics 2011, 76, 143–155. [Google Scholar] [CrossRef]
- Grechka, V.; Yaskevich, S. Azimuthal anisotropy in microseismic monitoring: A Bakken case study. Geophysics 2014, 79, 1–12. [Google Scholar] [CrossRef]
- Gajek, W.; Trojanowski, J.; Malinowski, M.; Jarosiński, M.; Riedel, M. Results of the downhole microseismic monitoring at a pilot hydraulic fracturing site in Poland—Part 1: Event location and stimulation performance. Interpretation 2018, 6, 39–48. [Google Scholar] [CrossRef]
- Dyrka, I. Petrophysical and mineralogical characterization of prospective hydrocarbon complexes estimated based on selected laboratory research results. Przegląd Geol. 2016, 64, 982–986. [Google Scholar]
- Karcz, P.; Janas, M. Organic matter in Cambrian, Ordovician and Silurian shales of the Baltic-Podlasie-Lublin Basin in Poland. Przegląd Geol. 2016, 64, 995–999. [Google Scholar]
- Podhalańska, T.; Waksmundzka, M.I.; Becker, A.; Roszkowska-Remin, J.; Dyrka, I.; Feldman-Olszewska, A.; Głuszyński, A.; Grotek, I.; Janas, M.; Karcz, P.; et al. Prospective zones for unconventional hydrocarbon resources in Cambrian, Ordovician, Silurian and Carboniferous rocks of Poland: Integration of the research results. Przegląd Geol. 2016, 64, 1008–1021. [Google Scholar]
- Sowiżdżał, K.; Such, P.; Leśniak, G.; Słota-Valim, M. Evaluation of the impact of the petrophysical properties of shale formations on their sealing efficiency for underburden reservoir intervals and hydrocarbon accumulations. Nafta-Gaz 2017, 73, 730–738. [Google Scholar] [CrossRef]
- Such, P.; Leśniak, G.; Mroczkowska-Szerszeń, M.; Dudek, L.; Cicha-Szot, R.; Spunda, K. Methodology of pore space analysis in shale rocks. Pract. Nauk. Inst. Naft. Gazu 2017, 214, 1–154. [Google Scholar]
- Hossain, M.M.; Rahman, M.K.; Rahman, S.S. Hydraulic fracture initiation and propagation: Roles of wellbore trajectory, perforation and stress regimes. J. Petrol. Sci. Eng. 2000, 27, 129–149. [Google Scholar] [CrossRef]
- Davies, R.J.; Mathias, S.A.; Moss, J.; Hustoft, S.; Newport, L. Hydraulic fractures: How far can they go? Mar. Petrol. Geol. 2012, 37, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Ghassemi, A.; Zhou, X.X.; Rawal, C. A three-dimensional poroelastic analysis of rock failure around a hydraulic fracture. J. Petrol. Sci. Eng. 2013, 108, 118–127. [Google Scholar] [CrossRef]
- Rezaee, R. Fundamentals of Gas Shale Reservoirs; John Wiley & Sons: Hoboken, NJ, USA, 2015. [Google Scholar]
- Kasza, P. Hydraulic fracturing in unconventional reservoirs, and methods of their analysis. Pract. Nauk. Inst. Naft. Gazu 2019, 226, 1–147. [Google Scholar] [CrossRef]
- Wilk, K. Experimental and Simulation Studies of Energized Fracturing Fluid Efficiency in Tight Gas Formations. Energies 2019, 12, 4465. [Google Scholar] [CrossRef] [Green Version]
- Li, Q.; Xinga, H.; Liu, J.; Liu, X. A review on hydraulic fracturing of unconventional reservoir. Petroleum 2015, 1, 8–15. [Google Scholar] [CrossRef] [Green Version]
- Becklumb, P.; Williams, T.G.; Chong, J. Shale Gas in Canada: Environmental Risks and Regulation; Library of Parliament-Bibliothѐque Du Parlement, Economics, Resources and International Affairs Division, Resources and International Affairs Division Parliament of Canada: Ottawa, CA, Canada, 2015; Volume 18. [Google Scholar]
- Howarth, R.W.; Santoro, R.; Ingraffea, A. Methane and the greenhouse-gas footprint of natural gas from shale formations. Clim. Change 2011, 106, 679. [Google Scholar] [CrossRef] [Green Version]
- Mahesar, A.A.; Shar, A.M.; Ali, M.; Tunio, A.H.; Uqailli, M.A.; Mohanty, U.S.; Akhondzadeh, H.; Iglauer, S.; Keshavarz, A. Morphological and petro physical estimation of Eocene tight carbonate formation cracking by cryogenic liquid nitrogen; a case study of Lower Indus basin, Pakistan. J. Pet. Sci. Eng. 2020, 192, 107318. [Google Scholar] [CrossRef]
- Memon, K.R.; Mahesar, A.A.; Ali, M.; Tunio, A.H.; Mohanty, U.S.; Akhondzadeh, H.; Awan, F.U.R.; Iglauer, S.; Keshavarz, A. Influence of Cryogenic Liquid Nitrogen on Petro-Physical Characteristics of Mancos Shale: An Experimental Investigation. Energy Fuels 2020, 34, 2160–2168. [Google Scholar] [CrossRef]
- Poprawa, P.; Šliaupa, S.; Stephenson, R.; Lazauskien, J. Late Vendian–Early Palæozoic tectonic evolution of the Baltic Basin: Regional tectonic implications from subsidence analysis. Tectonophysics 1999, 314, 219–239. [Google Scholar] [CrossRef]
- Poprawa, P. Shale gas potential of the Lower Palaeozoic complex in the Baltic and Lublin-Podlasie basins (Poland). Przegląd Geol. 2010, 58, 226–249. [Google Scholar]
- Modliński, Z.; Podhalańska, T. Outline of the lithology and depositional features of the lower Paleozoic strata in the Polish part of the Baltic region. Geol. Q. 2010, 54, 109–121. [Google Scholar]
- Rietveld, H.M. A profile refinement method for nuclear and magnetic structures. J. Appl. Crystallogr. 1969, 2, 65–71. [Google Scholar] [CrossRef]
- Leśniak, G.; Sowiżdżał, K.; Stadtmuller, M.; Lis-Śledziona, A.; Kaczmarczyk, W.; Słota-Valim, M.; Kasza, P. Wykonanie niestandardowych Kompleksowych Badań Petrofizycznych i Geomechanicznych na Próbkach i Danych z Dolnopaleozoicznych Łupków; Technical Report, Shalemech no. 3; INiG–PIB: Kraków, Poland, 2017. [Google Scholar]
- Janas, M. Rock-Eval Study on Samples Dedicated to ShaleMech Geomechanical Tests (Samples from O-3, B-1, W-1 and M-1 Wells). 2017; Unpublished Report. [Google Scholar]
- ASTM D 4543-01. Standard Practices for Preparing Rock Core Specimens and Determining Dimensional and Shape Tolerances. Annual Book of ASTM Standards; ASTM International: West Conshohocken, PA, USA, 2001. [Google Scholar]
- Bieniawski, Z.T.; Bernede, M.J. Suggested methods for determining the uniaxial compressive strength and deformability of rock materials: Part 1. Suggested method for determining deformability of rock materials in uniaxial compression. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 1979, 16, 138–140. [Google Scholar] [CrossRef]
- ASTM D 2664-95a. Standard Test Method for Triaxial Compressive Strength of Undrained Rock Core Specimens Without Pore Pressure Measurements; ASTM International: West Conshohocken, PA, USA, 1995. [Google Scholar]
- Eurokod 7-PN-EN-1997-2:2009. Geotechnical Design. Design Assisted by Laboratory Testing; European Committee for Standardization: Brussel, Belgium, 2009. [Google Scholar]
- Hallbauer, D.K.; Wagner, H.; Cook, N.G.W. Some observations concerning the microscopic and mechanical behavior of quartzite specimens in stiff, triaxial compression tests. Int. J. Rock Mech. Min. Sci. 1973, 10, 713–726. [Google Scholar] [CrossRef]
- ASTM D 3148-02. Standard Test Method for Elastic Moduli of Intact Rock Core Specimens in Uniaxial Compression; ASTM International: West Conshohocken, PA, USA, 1993. [Google Scholar]
- Dohnalik, M.; Kowalska, S.; Mikołajewski, Z.; Domonik, A.; Tabor, Z. Mineral composition of shales and the results of triaxial compression tests—A case study from the Ordovician and Silurian rocks of Poland. Nafta-Gaz 2015, 71, 355–360. [Google Scholar]
- Niandou, H.; Shao, J.F.; Henry, J.P.; Fourmaintraux, D. Laboratory investigation of the mechanical behavior of Tournemire shale. Int. J. Rock Mech. Min. Sci. 1997, 34, 3–16. [Google Scholar] [CrossRef]
Sample Group | QFP [%] | Carbonate [%] | Clay [%] | TOC [%Weight] | Bulk Density [kg/m3] | Open Porosity [%] |
---|---|---|---|---|---|---|
Pelplin | 36.8–46.5 [42.0] | 6.2–15.6 [11.5] | 43.4–49.4 [46.4] | 1.1–1.8 [1.4] | 2450–2600 [2540] | 1.03–4.14 [2.5] |
Pasłęk | 31.4–37.9 [35.2] | 4.9–8.8 [7.3] | 53.5–61.5 [57.5] | 0.1–1.7 [1.0] | 2530–2620 [2560] | 1.78–5.36 [3.2] |
Jantar 1 | 27.2–45.9 [34.5] | 20.7–34.4 [26.5] | 32.8–49.5 [38.8] | 2.6–3.9 [3.3] | 2340–2490 [2410] | 1.43–6.93 [3.5] |
Jantar 2 | 37.7–43.5 [41.0] | 2.3–10.5 [4.1] | 48.8–59.3 [54.9] | 1.8–6.1 [3.8] | 2280–2640 [2420] | 2.52–8.12 [4.2] |
Sasino 1 | 51.4–58.0 [54.3] | 0.9–3.2 [2.5] | 38.8–46.3 [43.2] | 2.5–6.9 [4.7] | 2250–2530 [2380] | 2.33–4.82 [3.7] |
Sasino 2 | 37.4–43.5 [40.4] | 1.4–4.4 [2.6] | 53.9–58.3 [57.0] | 2.7–4.3 [3.3] | 2290–2510 [2410] | 3.38–8.12 [8.4] |
Sample Group | Orientation | Maximal Differential Stress (σ1–σ3)max | Young’s Static Modulus (Eav) | Poisson’s Static Ratio (νav) |
---|---|---|---|---|
[MPa] | [GPa] | [-] | ||
Pelplin | Vertical | 188–223 | 18.5–27.3 | 0.14–0.23 |
Horizontal | 213–258 | 38.4–47.8 | 0.18–0.30 | |
Pasłęk | Vertical | 173–206 | 20.5–30.2 | 0.18–0.28 |
Horizontal | 174–219 | 41.9–48.7 | 0.23–0.28 | |
Jantar 1 | Vertical | 191–241 | 22.6–24.9 | 0.23–0.24 |
Horizontal | 206–263 | 39.7–50.4 | 0.30–0.32 | |
Jantar 2 | Vertical | 104–123 | 15.3–16.2 | 0.19–0.23 |
Horizontal | 123–176 | 33.7–47.5 | 0.22–0.30 | |
Sasino 1 | Vertical | 178–194 | 18.6–22.1 | 0.19–0.25 |
Horizontal | 220–240 | 34.5–57.2 | 0.22–0.32 | |
Sasino 2 | Vertical | 180 | 16.1–20.0 | 0.16–0.17 |
Horizontal | 179 | 37.4–45.1 | 0.22–0.26 |
Formation | Pelplin | Pasłęk | Jantar 1 | Jantar 2 | Sasino 1 | Sasino 2 |
---|---|---|---|---|---|---|
A(σ1–σ3)max | 1.10–1.47 | 1.05–1.19 | 1.08–1.09 | 1.12–1.55 | 1.17–1.34 | 1.00 |
AEav | 1.60–2.22 | 1.76–2.11 | 1.75–2.02 | 2.20–2.31 | 1.68–3.06 | 1.86–2.41 |
Aνav | 0.78–1.64 | 1.30–1.40 | 1.30–1.33 | 0.96–1.42 | 0.96–1.68 | 1.29–1.63 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wilczynski, P.M.; Domonik, A.; Lukaszewski, P. Anisotropy of Strength and Elastic Properties of Lower Paleozoic Shales from the Baltic Basin, Poland. Energies 2021, 14, 2995. https://doi.org/10.3390/en14112995
Wilczynski PM, Domonik A, Lukaszewski P. Anisotropy of Strength and Elastic Properties of Lower Paleozoic Shales from the Baltic Basin, Poland. Energies. 2021; 14(11):2995. https://doi.org/10.3390/en14112995
Chicago/Turabian StyleWilczynski, Przemyslaw Michal, Andrzej Domonik, and Pawel Lukaszewski. 2021. "Anisotropy of Strength and Elastic Properties of Lower Paleozoic Shales from the Baltic Basin, Poland" Energies 14, no. 11: 2995. https://doi.org/10.3390/en14112995
APA StyleWilczynski, P. M., Domonik, A., & Lukaszewski, P. (2021). Anisotropy of Strength and Elastic Properties of Lower Paleozoic Shales from the Baltic Basin, Poland. Energies, 14(11), 2995. https://doi.org/10.3390/en14112995